1
|
Tanaka K, Nishikawa K, Hara S. Larval Body Shape and Eye Size Variation in Japanese Toads (Anura: Bufonidae: Bufo): An Ecological Implication for Lentic and Lotic Habitats. Zoolog Sci 2023; 40:468-474. [PMID: 38064374 DOI: 10.2108/zs230010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 09/13/2023] [Indexed: 12/18/2023]
Abstract
Variation in morphological traits of anurans has evolved due to the pressures imposed by inhabiting different environments. The Japanese stream toad, Bufo torrenticola, breeds in running water, such as mountain streams, where the larvae grow. This lotic-breeding habit of B. torrenticola was suggested to have evolved from a lentic-breeding ancestor. Evolutionary shift of breeding habit from lentic- to lotic-breeding caused larval morphological changes to adapt to the stream habitat. However, morphological adaptation associated with the larval habitat of these three types of Japanese toads has not been explored well. In this study, we applied geometric morphometrics and distance measurements to compare body and eye characters among the tadpoles of three Japanese toads. The results showed that B. torrenticola has more dorsally and posteriorly positioned eyes, and a longer and wider rostrum because of having a larger mouth and more-developed oral muscles than its close relatives. These characters might be related to lotic lifestyle. Meanwhile, tadpoles of B. torrenticola and its sister taxon B. japonicus japonicus showed similar eye growth pattern, supporting their close phylogenetic relationship. Some of the lotic-adapted characters have also been reported in other lotic tadpoles, which is indicative of convergent evolution among stream-adapted tadpoles.
Collapse
Affiliation(s)
- Kanon Tanaka
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-hon-machi, Sakyo, Kyoto 606-8501, Japan,
| | - Kanto Nishikawa
- Graduate School of Global Environmental Studies, Kyoto University, Yoshida-hon-machi, Sakyo, Kyoto 606-8501, Japan
| | - Sotaro Hara
- Graduate School of Human and Environmental Studies, Kyoto University, Yoshida-nihon-matsu-cho, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Ishikawa K, Taguchi Y, Kobayashi R, Anzai W, Hayashi T, Tokita M. Cranial skeletogenesis of one of the largest amphibians, Andrias japonicus, provides insight into ontogenetic adaptations for feeding in salamanders. Zool J Linn Soc 2021. [DOI: 10.1093/zoolinnean/zlab038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Abstract
Skeletal development in salamanders is greatly influenced by their complex life history. Although the relationship between skull development and life history has been investigated in a variety of salamander species, few studies have compared skull development among lineages. Here, we describe the cranial skeletogenesis of the Japanese giant salamander, Andrias japonicus (family Cryptobranchidae), for the first time. To conduct interspecific comparisons, we also describe the cranial skeletogenesis of Hynobius nebulosus (Hynobiidae), Pleurodeles waltl (Salamandridae) and Ambystoma mexicanum (Ambystomatidae). Our comparative analyses reveal interspecific differences in cranial skeletogenesis, particularly in the timing of the onset of ossification, the direction of ossification (e.g. from anterior to posterior) and the ossification pattern of the hyobranchial skeleton. The early onset of jaw ossification, posterior extension of the maxilla and posterolateral inclination of the squamosal in An. japonicus might be adaptations that allow An. japonicus to gulp feed, primarily using the suction force generated by opening the mouth wide, while also supplementing that force by depressing the hyobranchial skeleton. Multivariate regression of skull shape on log10-transformed centroid size revealed that the unique skull shape of adult and subadult An. japonicus forms through hypermorphosis.
Collapse
Affiliation(s)
- Kaoru Ishikawa
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Yuki Taguchi
- Hiroshima City Asa Zoological Park, Doubutsuen, Asa-cho, Asakita-ku, Hiroshima, Hiroshima, 731-3355, Japan
| | - Ryomei Kobayashi
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| | - Wataru Anzai
- Hiroshima City Asa Zoological Park, Doubutsuen, Asa-cho, Asakita-ku, Hiroshima, Hiroshima, 731-3355, Japan
| | - Toshinori Hayashi
- Amphibian Research Center, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Masayoshi Tokita
- Department of Biology, Faculty of Science, Toho University, 2-2-1 Miyama, Funabashi, Chiba, 274-8510, Japan
| |
Collapse
|
3
|
Takeda K, Okumura T, Taniguchi K, Adachi-Yamada T. Adult Intestine Aging Model. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1076:11-23. [PMID: 29951812 DOI: 10.1007/978-981-13-0529-0_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
The Drosophila adult has an intestine composed of a series of differentiated cells and tissue stem cells, all of which are similar to the mammalian intestinal cells. The aged adult intestine shows apparent characteristics such as multilayering of absorptive cells, misexpression of cell type-specific genes, and hyperproliferation of stem cells. Recent studies have revealed various gene networks responsible for progression of these aged phenotypes. The molecular mechanism for senescence of the Drosophila adult midgut and its relation with the corresponding mechanism in mammals are overviewed. In addition, a basic method for observing aged phenotypes of the midgut is described.
Collapse
Affiliation(s)
- Koji Takeda
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Takashi Okumura
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | - Kiichiro Taniguchi
- Department of Life Science, Faculty of Science, Gakushuin University, Tokyo, Japan
| | | |
Collapse
|