1
|
Loncaric I, Szostak MP, Cabal-Rosel A, Grünzweil OM, Riegelnegg A, Misic D, Müller E, Feßler AT, Braun SD, Schwarz S, Monecke S, Ehricht R, Ruppitsch W, Spergser J, Lewis A, Bloom PH, Saggese MD. Molecular characterization, virulence and antimicrobial and biocidal susceptibility of selected bacteria isolated from the cloaca of nestling ospreys (Pandion haliaetus) from Mono Lake, California, USA. PLoS One 2024; 19:e0311306. [PMID: 39331631 PMCID: PMC11432900 DOI: 10.1371/journal.pone.0311306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
In the present study, the presence of the Enterobacterales, Staphylococcus spp., Mammaliicoccus spp., and Enterococcus spp. in cloacal samples of nestling ospreys (Pandion haliaetus), a fish-eating specialist, from Mono Lake, California, USA was examined by a multiphasic approach, including antimicrobial and biocide susceptibility testing, genotyping, and whole genome sequencing of selected isolates. The most commonly detected species was Escherichia coli, followed by Mammaliicoccus sciuri, Staphylococcus delphini, Enterococcus faecalis, Enterococcus faecium, Hafnia alvei, Klebsiella pneumoniae, Citrobacter braakii and single isolates of Edwardsiella tarda, Edwardsiella albertii, Klebsiella aerogenes, Plesiomonas shigelloides and Staphylococcus pseudintermedius. Multi-drug resistance (MDR) was observed in two E. coli isolates and in an Enterococcus faecium isolate. The MDR blaCTX-M-55-positive E. coli belonged to the pandemic clone ST58. The results of the present study suggest that nestling ospreys are exposed to MDR bacteria, possibly through the ingestion of contaminated fish. Ospreys may be good biosentinels for the presence of these microorganisms and antibiotic resistance in the local environment and the risk for other wildlife, livestock and humans.
Collapse
Affiliation(s)
- Igor Loncaric
- Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Michael P Szostak
- Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Adriana Cabal-Rosel
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, Vienna, Austria
| | - Olivia M Grünzweil
- Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Alina Riegelnegg
- Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Dusan Misic
- Department of Functional Food Products Development, Faculty of Biotechnology and Food Science, Wroclaw University of Environmental and Life Sciences, Wroclaw, Poland
| | - Elke Müller
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Andrea T Feßler
- Centre of Infection Medicine, School of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Sascha D Braun
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
| | - Stefan Schwarz
- Centre of Infection Medicine, School of Veterinary Medicine, Institute of Microbiology and Epizootics, Freie Universität Berlin, Berlin, Germany
- Veterinary Centre for Resistance Research (TZR), School of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
| | - Stefan Monecke
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
- Institut für Medizinische Mikrobiologie und Hygiene, Universitätsklinik Dresden, Dresden, Germany
| | - Ralf Ehricht
- Leibniz Institute of Photonic Technology (IPHT), Jena, Germany
- InfectoGnostics Research Campus, Jena, Germany
- Institute of Physical Chemistry, Friedrich Schiller University, Jena, Germany
| | - Werner Ruppitsch
- Austrian Agency for Health and Food Safety (AGES), Institute of Medical Microbiology and Hygiene, Vienna, Austria
| | - Joachim Spergser
- Institute of Microbiology, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Ashli Lewis
- California State Parks, Grass Valley, CA, United States of America
| | - Peter H Bloom
- Bloom Research Inc, Santa Ana, CA, United States of America
| | - Miguel D Saggese
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA, United States of America
| |
Collapse
|
2
|
Wang X, Li H, Yang Y, Wu Z, Wang Z, Li D, Xia W, Zou S, Liu Y, Wang F. Geographic and environmental impacts on gut microbiome in Himalayan langurs ( Semnopithecus schistaceus) and Xizang macaques ( Macaca mulatta vestita). Front Microbiol 2024; 15:1452101. [PMID: 39296299 PMCID: PMC11408304 DOI: 10.3389/fmicb.2024.1452101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 08/20/2024] [Indexed: 09/21/2024] Open
Abstract
Introduction Gut microbiome plays a crucial role in the health of wild animals. Their structural and functional properties not only reflect the host's dietary habits and habitat conditions but also provide essential support for ecological adaptation in various environments. Methods This study investigated the gut microbiome of Himalayan langurs (Semnopithecus schistaceus) and Xizang macaques (Macaca mulatta vestita) across different geographic regions using 16S rRNA gene and metagenomic sequencing. Results Results showed distinct clustering patterns in gut microbiota based on geographic location. Soil had an insignificant impact on host gut microbiome. Himalayan langurs from mid-altitude regions exhibited higher levels of antibiotic resistance genes associated with multidrug resistance, while Xizang macaques from high-altitude regions showed a broader range of resistance genes. Variations in carbohydrate-active enzymes and KEGG pathways indicated unique metabolic adaptations to different environments. Discussion These findings provide valuable insights into the health and conservation of these primates and the broader implications of microbial ecology and functional adaptations in extreme conditions.
Collapse
Affiliation(s)
- Xueyu Wang
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Hong Li
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Yumin Yang
- Institute of Agricultural Resources and Environment, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Zhijiu Wu
- Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Zhixiang Wang
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Dayong Li
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Wancai Xia
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Shuzhen Zou
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Yujia Liu
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| | - Fan Wang
- Key Laboratory of Conservation Biology of Rhinopithecus roxellana (Department of Education of Sichuan Province), China West Normal University, Nanchong, China
| |
Collapse
|
3
|
Ono H, Nagai K, Higuchi H. Dark Morph of the Oriental Honey-Buzzard ( Pernis ptilorhynchus orientalis) is Attributable to Specific MC1R Haplotypes. Zoolog Sci 2024; 41:342-350. [PMID: 39093280 DOI: 10.2108/zs230092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/21/2024] [Indexed: 08/04/2024]
Abstract
A thorough understanding of the development of complex plumages in birds necessitates the acquisition of genetic data pertaining to the mechanism underlying this phenomenon from various avian species. The oriental honey-buzzard (Pernis ptilorhynchus orientalis), a tropical summer migrant to Northeast Asia, including Japan, exemplifies this aspect owing to the diversity of its ventral coloration and intra-feather barring patterns. However, genetic polymorphism responsible for this diversity has not been identified yet. This study aimed to investigate the link between dark-plumed phenotypes of this subspecies and haplotypes of the melanocortin-1-receptor (MC1R) gene. A draft sequence of MC1R was constructed using next generation sequencing and subsequently amplified using designed polymerase chain reaction (PCR) primers. The genome sequences of 32 honey-buzzard individuals were determined using PCR, and 12 MC1R haplotype sequences were obtained. Among these haplotypes, we found that unique haplotypes with nine non-synonymous substitutions and four or five synonymous substitutions in the coding region had a perfect correlation with the dark-plumed phenotype. The lack of correlation between the genotype of ASIP coding region and plumage phenotype reiterated that the dark morph is attributable to specific MC1R haplotypes. The absence of a correlation between genetic polymorphisms of MC1R and the intra-feather barring patterns, as well as the diversity observed within lighter ground color classes (pale and intermediate), implies the involvement of alternative molecular mechanisms in the manifestation of the aforementioned phenotypes.
Collapse
Affiliation(s)
- Hirotake Ono
- Department of Biology, Keio University, Yokohama, Kanagawa 223-8521, Japan,
- Research and Education Center for Natural Sciences, Keio University, Yokohama, Kanagawa 223-8521, Japan
| | - Kazuya Nagai
- Research and Education Center for Natural Sciences, Keio University, Yokohama, Kanagawa 223-8521, Japan
- Faculty of Agriculture, Iwate University, Morioka, Iwate 020-8550, Japan
| | - Hiroyoshi Higuchi
- Research and Education Center for Natural Sciences, Keio University, Yokohama, Kanagawa 223-8521, Japan
| |
Collapse
|
4
|
Corradini C, De Bene AF, Russini V, Carfora V, Alba P, Cordaro G, Senese M, Terracciano G, Fabbri I, Di Sirio A, Di Giamberardino F, Boria P, De Marchis ML, Bossù T. Detection of Salmonella Reservoirs in Birds of Prey Hosted in an Italian Wildlife Centre: Molecular and Antimicrobial Resistance Characterisation. Microorganisms 2024; 12:1169. [PMID: 38930551 PMCID: PMC11205921 DOI: 10.3390/microorganisms12061169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/03/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
In the European Union, salmonellosis is one of the most important zoonoses reported. Poultry meat and egg products are the most common food matrices associated with Salmonella presence. Moreover, wild and domestic animals could represent an important reservoir that could favour the direct and indirect transmission of pathogens to humans. Salmonella spp. can infect carnivorous or omnivorous wild birds that regularly ingest food and water exposed to faecal contamination. Birds kept in captivity can act as reservoirs of Salmonella spp. following ingestion of infected prey or feed. In this paper, we describe the isolation of different Salmonella serovars in several species of raptors hosted in aviaries in an Italian wildlife centre and in the raw chicken necks used as their feed but intended for human consumption. Characterisations of strains were carried out by integrating classical methods and whole genome sequencing analysis. The strains of S. bredeney isolated in poultry meat and birds belonged to the same cluster, with some of them being multidrug-resistant (MDR) and carrying the Col(pHAD28) plasmid-borne qnrB19 (fluoro)quinolone resistance gene, thus confirming the source of infection. Differently, the S. infantis found in feed and raptors were all MDR, carried a plasmid of emerging S. infantis (pESI)-like plasmid and belonged to different clusters, possibly suggesting a long-lasting infection or the presence of additional undetected sources. Due to the high risk of fuelling a reservoir of human pathogens, the control and treatment of feed for captive species are crucial.
Collapse
Affiliation(s)
- Carlo Corradini
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (C.C.); (A.F.D.B.); (A.D.S.); (F.D.G.); (P.B.); (M.L.D.M.); (T.B.)
| | - Andrea Francesco De Bene
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (C.C.); (A.F.D.B.); (A.D.S.); (F.D.G.); (P.B.); (M.L.D.M.); (T.B.)
| | - Valeria Russini
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (C.C.); (A.F.D.B.); (A.D.S.); (F.D.G.); (P.B.); (M.L.D.M.); (T.B.)
| | - Virginia Carfora
- National Reference Laboratory for Antimicrobial Resistance, General Diagnostics Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (V.C.); (P.A.); (G.C.)
| | - Patricia Alba
- National Reference Laboratory for Antimicrobial Resistance, General Diagnostics Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (V.C.); (P.A.); (G.C.)
| | - Gessica Cordaro
- National Reference Laboratory for Antimicrobial Resistance, General Diagnostics Department, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (V.C.); (P.A.); (G.C.)
| | - Matteo Senese
- UOT Toscana Nord, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 56123 Pisa, Italy; (M.S.); (G.T.); (I.F.)
| | - Giuliana Terracciano
- UOT Toscana Nord, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 56123 Pisa, Italy; (M.S.); (G.T.); (I.F.)
| | - Ilaria Fabbri
- UOT Toscana Nord, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 56123 Pisa, Italy; (M.S.); (G.T.); (I.F.)
| | - Alessandro Di Sirio
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (C.C.); (A.F.D.B.); (A.D.S.); (F.D.G.); (P.B.); (M.L.D.M.); (T.B.)
| | - Fabiola Di Giamberardino
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (C.C.); (A.F.D.B.); (A.D.S.); (F.D.G.); (P.B.); (M.L.D.M.); (T.B.)
| | - Pierpaolo Boria
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (C.C.); (A.F.D.B.); (A.D.S.); (F.D.G.); (P.B.); (M.L.D.M.); (T.B.)
| | - Maria Laura De Marchis
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (C.C.); (A.F.D.B.); (A.D.S.); (F.D.G.); (P.B.); (M.L.D.M.); (T.B.)
| | - Teresa Bossù
- Food Microbiology Unit, Istituto Zooprofilattico Sperimentale del Lazio e della Toscana “M. Aleandri”, 00178 Rome, Italy; (C.C.); (A.F.D.B.); (A.D.S.); (F.D.G.); (P.B.); (M.L.D.M.); (T.B.)
| |
Collapse
|
5
|
Alba C, Sansano-Maestre J, Cid Vázquez MD, Martínez-Herrero MDC, Garijo-Toledo MM, Azami-Conesa I, Moraleda Fernández V, Gómez-Muñoz MT, Rodríguez JM. Captive Breeding and Trichomonas gallinae Alter the Oral Microbiome of Bonelli's Eagle Chicks. MICROBIAL ECOLOGY 2023; 85:1541-1551. [PMID: 35385973 PMCID: PMC10167124 DOI: 10.1007/s00248-022-02002-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/18/2022] [Indexed: 05/10/2023]
Abstract
Bonelli's eagle (Aquila fasciata) is an endangered raptor species in Europe, and trichomonosis is one of the menaces affecting chicks at nest. In this paper, we attempt to describe the oral microbiome of Bonelli's eagle nestlings and evaluate the influence of several factors, such as captivity breeding, Trichomonas gallinae infection, and the presence of lesions at the oropharynx. The core oral microbiome of Bonelli's eagle is composed of Firmicutes, Bacteroidota, Fusobacteria and Proteobacteria as the most abundant phyla, and Megamonas and Bacteroides as the most abundant genera. None of the factors analysed showed a significant influence on alfa diversity, but beta diversity was affected for some of them. Captivity breeding exerted a high influence on the composition of the oral microbiome, with significant differences in the four most abundant phyla, with a relative increase of Proteobacteria and a decrease of the other three phyla in comparison with chicks bred at nest. Some genera were more abundant in captivity bred chicks, such as Escherichia-Shigella, Enterococcus, Lactobacillus, Corynebacterium, Clostridium and Staphylococcus, while Bacteroides, Oceanivirga, Peptostreptococcus, Gemella, Veillonella, Mycoplasma, Suttonella, Alloscardovia, Varibaculum and Campylobacter were more abundant in nest raised chicks. T. gallinae infection slightly influenced the composition of the microbiome, but chicks displaying trichomonosis lesions had a higher relative abundance of Bacteroides and Gemella, being the last one an opportunistic pathogen of abscess complications in humans. Raptor's microbiomes are scarcely studied. This is the first study on the factors that influence the oral microbiome of Bonelli's eagle.
Collapse
Affiliation(s)
- Claudio Alba
- Department of Nutrition and Food Science, Faculty of Veterinary Sciences, University Complutense of Madrid, Madrid, Spain
| | - José Sansano-Maestre
- Department of Animal Production and Public Health, Faculty of Veterinary and Experimental Sciences, Catholic University of Valencia, Valencia, Spain
| | - María Dolores Cid Vázquez
- Department of Animal Health, Faculty of Veterinary Sciences, University Complutense of Madrid, Madrid, Spain
| | - María Del Carmen Martínez-Herrero
- Department of Animal Production and Health, Public Veterinary Health and Food Science and Technology, Faculty of Veterinary Medicine, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - María Magdalena Garijo-Toledo
- Department of Animal Production and Health, Public Veterinary Health and Food Science and Technology, Faculty of Veterinary Medicine, Universidad Cardenal Herrera-CEU, CEU Universities, Valencia, Spain
| | - Iris Azami-Conesa
- Department of Animal Health, Faculty of Veterinary Sciences, University Complutense of Madrid, Madrid, Spain
| | | | - María Teresa Gómez-Muñoz
- Department of Animal Health, Faculty of Veterinary Sciences, University Complutense of Madrid, Madrid, Spain.
| | - Juan Miguel Rodríguez
- Department of Nutrition and Food Science, Faculty of Veterinary Sciences, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
6
|
Costanzo A, Ambrosini R, Franzetti A, Romano A, Cecere JG, Morganti M, Rubolini D, Gandolfi I. The cloacal microbiome of a cavity-nesting raptor, the lesser kestrel ( Falco naumanni). PeerJ 2022; 10:e13927. [PMID: 36221261 PMCID: PMC9548316 DOI: 10.7717/peerj.13927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 07/30/2022] [Indexed: 01/19/2023] Open
Abstract
Background Microbial communities are found on any part of animal bodies exposed to the environment, and are particularly prominent in the gut, where they play such a major role in the host metabolism and physiology to be considered a "second genome". These communities, collectively known as "microbiome", are well studied in humans and model species, while studies on wild animals have lagged behind. This is unfortunate, as different studies suggested the central role of the gut microbiome in shaping the evolutionary trajectories of species and their population dynamics. Among bird species, only few descriptions of raptor gut microbiomes are available, and mainly carried out on captive individuals. Objectives In this study, we aimed at improving the knowledge of raptor microbiomes by providing the first description of the gut microbiome of the lesser kestrel (Falco naumanni), a cavity-nesting raptor. Results The gut microbiome of the lesser kestrel was dominated by Actinobacteria (83.9%), Proteobacteria (8.6%) and Firmicutes (4.3%). We detected no differences in microbiome composition between males and females. Furthermore, the general composition of the microbiome appears similar to that of phylogenetically distant cavity-nesting species. Conclusions Our results broaden the knowledge of raptor gut microbial communities and let us hypothesize that the distinct nest environment in terms of microclimate and presence of organic material from previous breeding attempts, to which cavity-nesting species that reuse the nest are exposed, might be an important driver shaping microbiomes.
Collapse
Affiliation(s)
- Alessandra Costanzo
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
| | - Roberto Ambrosini
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences, University of Milan—Bicocca, Milan, Italy
| | - Andrea Romano
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
| | - Jacopo G. Cecere
- Area Avifauna Migratrice, Istituto Superiore per La Protezione e La Ricerca Ambientale (ISPRA), Ozzano Emilia, (BO), Italy
| | - Michelangelo Morganti
- IRSA-CNR, Water Research Institute-National Research Council of Italy, Brugherio, Italy
| | - Diego Rubolini
- Department of Environmental Sciences and Policy, University of Milan, Milan, Italy
- IRSA-CNR, Water Research Institute-National Research Council of Italy, Brugherio, Italy
| | - Isabella Gandolfi
- Department of Earth and Environmental Sciences, University of Milan—Bicocca, Milan, Italy
| |
Collapse
|