1
|
Shin YK, Nam KW, Park KH, Yoon JM, Park KI. Quantitative assessment of Azumiobodo hoyamushi distribution in the tunic of soft tunic syndrome-affected ascidian Halocynthia roretzi using real-time polymerase chain reaction. Parasit Vectors 2014; 7:539. [PMID: 25425505 PMCID: PMC4253000 DOI: 10.1186/s13071-014-0539-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 11/13/2014] [Indexed: 11/10/2022] Open
Abstract
Background The kinetoplastid parasite, Azumiobodo hoyamushi, is the causative agent of soft tunic syndrome (STS) in ascidians and leads to their mass mortality in Korean waters. This study was conducted to quantify A. hoyamushi density during the development of STS in the tunics of ascidians (Halocynthia roretzi) using real-time polymerase chain reaction (qPCR). Findings The infection intensity of A. hoyamushi, as measured by qPCR, varied depending on the part of the tunic analyzed, as well as the stage of STS development. The highest infection intensity was recorded in the tunics of the siphons. The infection intensity of A. hoyamushi in the siphons was only 2.9 cell/tunic (area, 0.25 cm2) or 106.0 cell/gram tunic (GT) in the early phase of STS, but this value increased dramatically to 16,066 cells/tunic (0.25 cm2) or 617,004 cell/GT at the time of death. The number of A. hoyamushi parasites increased gradually and their distribution spread from the siphons to the other parts of the tunics. Conclusions qPCR enabled the quantitation of A. hoyamushi and the results revealed that parasite density increased as STS progressed. In addition, our results suggested that the siphons might function as the portal of entry for A. hoyamushi during infection.
Collapse
Affiliation(s)
- Yun-Kyung Shin
- National Fisheries Research and Development Institute, Busan, 619-705, Republic of Korea.
| | - Ki-Woong Nam
- Department of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University, 558 Daehakno, Gunsan, 573-701, Republic of Korea.
| | - Kwan Ha Park
- Department of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University, 558 Daehakno, Gunsan, 573-701, Republic of Korea.
| | - Jong-Man Yoon
- Department of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University, 558 Daehakno, Gunsan, 573-701, Republic of Korea.
| | - Kyung-Il Park
- Department of Aquatic Life Medicine, College of Ocean Science and Technology, Kunsan National University, 558 Daehakno, Gunsan, 573-701, Republic of Korea.
| |
Collapse
|
2
|
Kim HJ, Park JS, Park KH, Shin YK, Park KI. The kinetoplastid parasite Azumiobodo hoyamushi, the causative agent of soft tunic syndrome of the sea squirt Halocynthia roretzi, resides in the East Sea of Korea. J Invertebr Pathol 2014; 116:36-42. [DOI: 10.1016/j.jip.2013.12.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/14/2013] [Accepted: 12/17/2013] [Indexed: 10/25/2022]
|
3
|
Jang HB, Kim YK, del Castillo CS, Nho SW, Cha IS, Park SB, Ha MA, Hikima JI, Hong SJ, Aoki T, Jung TS. RNA-seq-based metatranscriptomic and microscopic investigation reveals novel metalloproteases of Neobodo sp. as potential virulence factors for soft tunic syndrome in Halocynthia roretzi. PLoS One 2012; 7:e52379. [PMID: 23300657 PMCID: PMC3531462 DOI: 10.1371/journal.pone.0052379] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 11/12/2012] [Indexed: 12/14/2022] Open
Abstract
Bodonids and trypanosomatids are derived from a common ancestor with the bodonids being a more primitive lineage. The Neobodonida, one of the three clades of bodonids, can be free-living, commensal or parasitic. Despite the ecological and evolutionary significance of these organisms, however, many of their biological and pathological features are currently unknown. Here, we employed metatranscriptomics using RNA-seq technology combined with field-emission microscopy to reveal the virulence factors of a recently described genus of Neobodonida that is considered to be responsible for ascidian soft tunic syndrome (AsSTS), but whose pathogenesis is unclear. Our microscopic observation of infected tunic tissues suggested putative virulence factors, enabling us to extract novel candidate transcripts; these included cysteine proteases of the families C1 and C2, serine proteases of S51 and S9 families, and metalloproteases grouped into families M1, M3, M8, M14, M16, M17, M24, M41, and M49. Protease activity/inhibition assays and the estimation of expression levels within gene clusters allowed us to identify metalloprotease-like enzymes as potential virulence attributes for AsSTS. Furthermore, a multimarker-based phylogenetic analysis using 1,184 concatenated amino acid sequences clarified the order Neobodo sp. In sum, we herein used metatranscriptomics to elucidate the in situ expression profiles of uncharacterized putative transcripts of Neobodo sp., combined these results with microscopic observation to select candidate genes relevant to pathogenesis, and used empirical screening to define important virulence factors.
Collapse
Affiliation(s)
- Ho Bin Jang
- Aquatic Biotechnology Center of WCU Project, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Young Kyu Kim
- Aquatic Biotechnology Center of WCU Project, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Carmelo S. del Castillo
- Aquatic Biotechnology Center of WCU Project, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Seong Won Nho
- Aquatic Biotechnology Center of WCU Project, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - In Seok Cha
- Aquatic Biotechnology Center of WCU Project, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Seong Bin Park
- Aquatic Biotechnology Center of WCU Project, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Mi Ae Ha
- Aquatic Biotechnology Center of WCU Project, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Jun-ichi Hikima
- Aquatic Biotechnology Center of WCU Project, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Sung Jong Hong
- Department of Medical Environmental Biology, College of Medicine, Chung-Ang University, DongJak-Gu, Seoul, South Korea
| | - Takashi Aoki
- Aquatic Biotechnology Center of WCU Project, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
- Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Shinjuku-ku, Tokyo, Japan
| | - Tae Sung Jung
- Aquatic Biotechnology Center of WCU Project, College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
- * E-mail:
| |
Collapse
|
4
|
Song JK, Kim D, Eun JB, Choi BD, Oh MJ, Jung SJ. Identification of cellulolytic bacteria associated with tunic softness syndrome in the sea squirt, Halocynthia roretzi. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0185-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
5
|
Hirose E, Nozawa A, Kumagai A, Kitamura SI. Azumiobodo hoyamushi gen. nov. et sp. nov. (Euglenozoa, Kinetoplastea, Neobodonida): a pathogenic kinetoplastid causing the soft tunic syndrome in ascidian aquaculture. DISEASES OF AQUATIC ORGANISMS 2012; 97:227-35. [PMID: 22422093 DOI: 10.3354/dao02422] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
We used morphological and genetic analyses to investigate a pathogenic kinetoplastid isolated from a diseased edible ascidian Halocynthia roretzi with soft tunic syndrome. The morphological characteristics of the kinetoplastid are similar to those in the order Neobodonida in the subclass Metakinetoplastida. However, the presence of unique globular bodies distinguishes this kinetoplastid from the other polykinetoplastic genera (i.e. Cruzella, Dimastigella and Rhynchobodo) in this order. These globular bodies are cytoplasmic inclusions without an outer delimiting membrane and are composed of a homologous granular matrix containing electron-dense bands. A phylogenetic tree based on 18S rRNA gene sequences also indicated that the kinetoplastid belongs to the order Neobodonida, although it forms an independent clade in this order. From these results, we propose a new genus in the order Neobodonida, i.e. Azumiobodo gen. nov., and Azumiobodo hoyamushi as the type species for the genus.
Collapse
Affiliation(s)
- Euichi Hirose
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Nishihara, Okinawa 903-0213, Japan
| | | | | | | |
Collapse
|
6
|
Cha IS, Castillo CSD, Nho SW, Hikima JI, Aoki T, Jung TS. Innate immune response in the hemolymph of an ascidian, Halocynthia roretzi, showing soft tunic syndrome, using label-free quantitative proteomics. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:809-816. [PMID: 21256860 DOI: 10.1016/j.dci.2011.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Revised: 01/16/2011] [Accepted: 01/16/2011] [Indexed: 05/30/2023]
Abstract
Soft tunic syndrome of Halocynthia roretzi manifests as soft, weak, and rupturable tunics, causing mass mortality. Utilizing liquid chromatography-tandem mass spectrometry (LC-MS/MS), innate immune response was established by comparing hemolymph protein profiles of ascidians with healthy or softened tunics. Of 100 proteins in each individual ascidian, 59 proteins from healthy and 56 proteins from diseased ascidians were functionally classified. Proteins found only in diseased individuals included trypsin inhibitor and Hr-29, and with high exponentially modified protein abundance index (emPAI) values. From 41 proteins identified to be common to both healthy and diseased ascidians, 15 were associated with innate immune response. Ficolin 3, a component of the lectin-complement system, was significantly decreased in diseased ascidians, but a cell surface protein, type II transmembrane serine protease-1 (TTSP), was considerably elevated. These results suggest that trypsin inhibitor, ficolin 3, and TTSP are probably involved in the innate immune response related to this tunic disease. Beside, Hr-29 could be suggested as a biomarker for soft tunic syndrome.
Collapse
Affiliation(s)
- In Seok Cha
- Aquatic Biotechnology Center, College of Veterinary Medicine, Gyeongsang National University, Gajwa-Dong, Jinju, Gyeongnam, Republic of Korea
| | | | | | | | | | | |
Collapse
|
7
|
Kitamura SI, Ohtake SI, Song JY, Jung SJ, Oh MJ, Choi BD, Azumi K, Hirose E. Tunic morphology and viral surveillance in diseased Korean ascidians: Soft tunic syndrome in the edible ascidian, Halocynthia roretzi (Drasche), in aquaculture. JOURNAL OF FISH DISEASES 2010; 33:153-160. [PMID: 19878530 DOI: 10.1111/j.1365-2761.2009.01103.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
'Soft tunic syndrome' causes mass mortality in the edible ascidian Halocynthia roretzi in Korean and Japanese aquaculture. In histopathological comparison, there were no specific differences between diseased specimens from Korea and Japan, indicating that soft tunic syndrome occurring in Korea and Japan is the same disease. No bacterial or protozoan cells were microscopically detected in either healthy or diseased tunics suggesting they are not the direct causes of soft tunic syndrome. Attempts were made to isolate virus from affected ascidians taking into account temperature conditions in which soft tunic syndrome is most prevalent in the field. However, no viruses were isolated from diseased or non-diseased specimens using chinook salmon embryo (CHSE-214), flounder fin (FFN) or epithelioma papillosum cyprini (EPC) cell lines.
Collapse
Affiliation(s)
- S-I Kitamura
- Centre for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Hirose E, Ohtake SI, Azumi K. Morphological characterization of the tunic in the edible ascidian, Halocynthia roretzi (Drasche), with remarks on 'soft tunic syndrome' in aquaculture. JOURNAL OF FISH DISEASES 2009; 32:433-445. [PMID: 19364388 DOI: 10.1111/j.1365-2761.2009.01034.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
'Soft tunic syndrome' is a serious problem in the aquaculture of the edible ascidian, Halocynthia roretzi (Drasche), and often leads to mass mortality. Here, we describe the tunic morphology of intact and diseased ascidians to reveal structural differences between them. Morphologically, diseased tunics are not very different from intact tunics, although the former are thinner and softer than the latter. While several types of cells are distributed in the tunic, the cell types and their cytomorphologies were almost identical in both groups. As bacterial/protozoan cells were not found in either intact or diseased tunics, they are not the direct cause of soft tunic syndrome. The most remarkable difference was in the bundles of tunic fibres that compose the tunic matrix; in intact tunics, the thick bundles interlace to form a firm matrix, whereas in soft tunics, the tunic fibres do not form thick bundles. Furthermore, areas of low fibre density were found in diseased tunics. Therefore, soft tunic syndrome probably causes inhibition of bundle formation and degradation of tunic bundles, creating areas of low fibre density, although the causes remain unknown.
Collapse
Affiliation(s)
- E Hirose
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, Nishihara, Okinawa, Japan.
| | | | | |
Collapse
|