1
|
Abstract
Lipoproteins mediate the transport of apolar lipids in the hydrophilic environment of physiological fluids such as the vertebrate blood and the arthropod hemolymph. In this overview, we will focus on the hemolymph lipoproteins in Crustacea that have received most attention during the last years: the high density lipoprotein/β-glucan binding proteins (HDL-BGBPs), the vitellogenins (VGs), the clotting proteins (CPs) and the more recently discovered large discoidal lipoproteins (dLPs). VGs are female specific lipoproteins which supply both proteins and lipids as storage material for the oocyte for later use by the developing embryo. Unusual within the invertebrates, the crustacean yolk proteins-formerly designated VGs-are more related to the ApoB type lipoproteins of vertebrates and are now termed apolipocrustaceins. The CPs on the other hand, which are present in both sexes, are related to the (sex specific) VGs of insects and vertebrates. CPs serve in hemostasis and wound closure but also as storage proteins in the oocyte. The HDL-BGBPs are the main lipid transporters, but are also involved in immune defense. Most crustacean lipoproteins belong to the family of the large lipid transfer proteins (LLTPs) such as the intracellular microsomal triglyceride transfer protein, the VGs, CPs and the dLPs. In contrast, the HDL-BGBPs do not belong to the LLTPs and their relationship with other lipoproteins is unknown. However, they originate from a common precursor with the dLPs, whose functions are as yet unknown. The majority of lipoprotein studies have focused on decapod crustaceans, especially shrimps, due to their economic importance. However, we will present evidence that the HDL-BGBPs are restricted to the decapod crustaceans which raises the question as to the main lipid transporting proteins of the other crustacean groups. The diversity of crustaceans lipoproteins thus appears to be more complex than reflected by the present state of knowledge.
Collapse
Affiliation(s)
- Ulrich Hoeger
- Institut für Molekulare Physiologie, Johannes Gutenberg-Universität, 55099, Mainz, Germany.
| | - Sven Schenk
- MAX F. PERUTZ LABORATORIES, Vienna Biocenter (VBC), Dr. Bohr-Gasse 9/4, 1030, Vienna, Austria
| |
Collapse
|
2
|
Ventura-López C, Galindo-Torres PE, Arcos FG, Galindo-Sánchez C, Racotta IS, Escobedo-Fregoso C, Llera-Herrera R, Ibarra AM. Transcriptomic information from Pacific white shrimp (Litopenaeus vannamei) ovary and eyestalk, and expression patterns for genes putatively involved in the reproductive process. Gen Comp Endocrinol 2017; 246:164-182. [PMID: 27964922 DOI: 10.1016/j.ygcen.2016.12.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 11/27/2022]
Abstract
The increased use of massive sequencing technologies has enabled the identification of several genes known to be involved in different mechanisms associated with reproduction that so far have only been studied in vertebrates and other model invertebrate species. In order to further investigate the genes involved in Litopenaeus vannamei reproduction, cDNA and SSH libraries derived from female eyestalk and gonad were produced, allowing the identification of expressed sequences tags (ESTs) that potentially have a role in the regulation of gonadal maturation. In the present study, different transcripts involved in reproduction were identified and a number of them were characterized as full-length. These transcripts were evaluated in males and females in order to establish their tissue expression profiles during developmental stages (juvenile, subadult and adult), and in the case of females, their possible association with gonad maturation was assessed through expression analysis of vitellogenin. The results indicated that the expression of vitellogenin receptor (vtgr) and minichromosome maintenance (mcm) family members in the female gonad suggest an important role during previtellogenesis. Additionally, the expression profiles of genes such as famet, igfbp and gpcr in brain tissues suggest an interaction between the insulin/insulin-like growth factor signaling pathway (IIS) and methyl farnesoate (MF) biosynthesis for control of reproduction. Furthermore, the specific expression pattern of farnesoic acid O-methyltransferase suggests that final synthesis of MF is carried out in different target tissues, where it is regulated by esterase enzymes under a tissue-specific hormonal control. Finally, the presence of a vertebrate type steroid receptor in hepatopancreas and intestine besides being highly expressed in female gonads, suggest a role of that receptor during sexual maturation.
Collapse
Affiliation(s)
- Claudia Ventura-López
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional No.195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur 23096, Mexico.
| | - Pavel E Galindo-Torres
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional No.195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur 23096, Mexico.
| | - Fabiola G Arcos
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional No.195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur 23096, Mexico.
| | - Clara Galindo-Sánchez
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Carretera Ensenada-Tijuana No. 3918, Zona Playitas, Ensenada, Baja California CP 22860, Mexico.
| | - Ilie S Racotta
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional No.195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur 23096, Mexico.
| | - Cristina Escobedo-Fregoso
- Consejo Nacional de Ciencia y Tecnología (CONACYT) - Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional 195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur C.P. 23096, Mexico.
| | - Raúl Llera-Herrera
- Consejo Nacional de Ciencia y Tecnología (CONACYT) - Centro de Investigación en Alimentación y Desarrollo A.C. (CIAD) Unidad Mazatlán, Av. Sábalo-Cerritos s/n. Estero del Yugo, Mazatlán, Sinaloa 82000, Mexico.
| | - Ana M Ibarra
- Centro de Investigaciones Biológicas del Noroeste, S.C. (CIBNOR), Av. Instituto Politécnico Nacional No.195, Col. Playa Palo de Santa Rita, La Paz, Baja California Sur 23096, Mexico.
| |
Collapse
|
3
|
Bai H, Qiao H, Li F, Fu H, Jiang S, Zhang W, Yan Y, Xiong Y, Sun S, Jin S, Gong Y, Wu Y. Molecular and functional characterization of the vitellogenin receptor in oriental river prawn, Macrobrachium nipponense. Comp Biochem Physiol A Mol Integr Physiol 2016; 194:45-55. [PMID: 26773480 DOI: 10.1016/j.cbpa.2015.12.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 07/20/2015] [Accepted: 12/30/2015] [Indexed: 11/24/2022]
Abstract
A complementary DNA (cDNA) that encodes the vitellogenin receptor (VgR) in the oriental river prawn, Macrobrachium nipponense, was cloned using expressed sequence tag analysis and a rapid amplification of cDNA ends approach. The coding region consists of 5920 base pairs (bp) that encode a 1902 amino acid protein, with a predicted molecular mass of 209 kDa. The coding region is flanked by a 45 bp 5'-untranslated region (UTR) and a 166 bp 3'-UTR. The deduced amino acid sequence of the M. nipponense VgR cDNA had typically conserved domains, such as an extracellular, lipoprotein-binding domain, epidermal growth factor-like and O-glycosylation domains, a transmembrane domain and a short C-terminal, cytosolic tail. Quantitative real-time PCR (qPCR) indicated that Mn-VgR is highly expressed in the female ovary. Expression analysis by qPCR demonstrated the larval and ovarian developmental stage-specific expression pattern. As the ovaries developed, the expression level of Mn-VgR gradually increased during the reproductive cycle (stage I), to reach a peak in stage III. Levels then dropped as a new development cycle was entered after reproduction molting. Eyestalk ablation led to a significant increase in the expression of Mn-VgR during the ovarian development stages (P<0.05), when compared with the eyestalk-intact group. The investigation revealed that eyestalk ablation initially affected Mn-VgR expression and then influenced vitellogenesis. In adult females, VgR RNA interference (RNAi) dramatically delayed the maturation of the ovary, in accordance with the gonad somatic index. In addition, Mn-VgR RNAi led to vitellin depletion in the oocytes and the accumulation of vitellin in the hepatopancreas.
Collapse
Affiliation(s)
- Hongkun Bai
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Fajun Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Weifang University of Science and Technology, Shouguang 262700, China
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yuedi Yan
- Shanghai Ocean University, Shanghai 201306, China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Shubo Jin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yongsheng Gong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Yan Wu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| |
Collapse
|
4
|
Bai H, Qiao H, Li F, Fu H, Sun S, Zhang W, Jin S, Gong Y, Jiang S, Xiong Y. Molecular characterization and developmental expression of vitellogenin in the oriental river prawn Macrobrachium nipponense and the effects of RNA interference and eyestalk ablation on ovarian maturation. Gene 2014; 562:22-31. [PMID: 25499697 DOI: 10.1016/j.gene.2014.12.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 11/17/2014] [Accepted: 12/05/2014] [Indexed: 10/24/2022]
Abstract
Vitellogenin (Vg) is the precursor of yolk protein, which functions as a nutritive resource that is important for embryonic growth and gonad development. In this study, the cDNA encoding the Vg gene from the oriental river prawn Macrobrachium nipponense was cloned using expressed sequence tag (EST) analysis and the rapid amplification of cDNA ends (RACE) approach. The transcript encoded 2536 amino acids with an estimated molecular mass of 286.810 kDa. Quantitative real-time PCR indicated high expression of Mn-Vg in the female ovary, hemocytes, and hepatopancreas. As ovaries developed, the expression level of Mn-Vg increased in both the hepatopancreas and ovary. In the hepatopancreas, the expression level rose more slowly at the early stage of vitellogenesis and reached the peak more rapidly compared to the expression pattern in ovary. The observed changes in Mn-Vg expression level at different development stages suggest the role of nutrient source in embryonic and larval development. Eyestalk ablation caused the Mn-Vg expression level to increase significantly compared to eyestalk-intact groups during the ovary development stages. Ablation accelerated ovary maturation by removing hormone inhibition of Mn-Vg in the hepatopancreas and ovary. In adult females, Mn-Vg dsRNA injection resulted in decreased expression of Mn-Vg in both the hepatopancreas and ovary, and two injection treatment dramatically delayed ovary maturation. Vg RNA interference down-regulated the vitellogenin receptor (VgR) expression level in the ovary, which illustrates the close relationship between Vg and VgR in the process of vitellogenesis.
Collapse
Affiliation(s)
- Hongkun Bai
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China
| | - Hui Qiao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Fajun Li
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China; Weifang University of Science and Technology, Shouguang 262700, China
| | - Hongtuo Fu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China.
| | - Shengming Sun
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Wenyi Zhang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Shubo Jin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China; Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yongsheng Gong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, PR China
| | - Sufei Jiang
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| | - Yiwei Xiong
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, PR China
| |
Collapse
|
5
|
Lee JH, Kim BK, Seo YI, Choi JH, Kang SW, Kang CK, Park WG, Kim HW. Four cDNAs encoding lipoprotein receptors from shrimp (Pandalopsis japonica): structural characterization and expression analysis during maturation. Comp Biochem Physiol B Biochem Mol Biol 2013; 169:51-62. [PMID: 24389120 DOI: 10.1016/j.cbpb.2013.12.005] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Revised: 12/18/2013] [Accepted: 12/19/2013] [Indexed: 10/25/2022]
Abstract
As in all other oviparous animals, lipoprotein receptors play a critical role in lipid metabolism and reproduction in decapod crustaceans. Four full-length cDNAs encoding lipoprotein receptors (Paj-VgR, Paj-LpR1, Paj-LpR2A, and Paj-LpR2B) were identified from Pandalopsis japonica through a combination of EST screening and PCR-based cloning. Paj-LpR1 appears to be the first crustacean ortholog of insect lipophorin receptors, and its two paralogs, Paj-LpR2A and Paj-LpR2B, exhibited similar structural characteristics. Several transcriptional isoforms were also identified for all three Paj-LpRs. Each expression pattern was unique, suggesting different physiological roles for these proteins. Paj-VgR is an ortholog of vitellogenin (Vg) receptors from other decapod crustaceans. A phylogenetic analysis of lipoproteins and their receptors suggested that the nomenclature of Vgs from decapod crustaceans may need to be changed. A PCR-based transcriptional analysis showed that Paj-VgR and Paj-LpR2B are expressed almost exclusively in the ovary, whereas Paj-LpR1 and Paj-LpR2A are expressed in multiple tissues. The various transcriptional isoforms of the three Paj-LpRs exhibited unique tissue distribution profiles. A transcriptional analysis of each receptor using tissues with different GSI values showed that the change in transcription of Paj-VgRs, Paj-LpR2A and Paj-LpR1 was not as significant as that of Vgs during maturation. However, the transcriptional levels of Paj-LpR2B decreased in ovary at maturation, suggesting that their transcriptional regulation is involved in reproduction.
Collapse
Affiliation(s)
- Ji-Hyun Lee
- Interdisciplinary program of Biomedical Engineering, Pukyong National University, Busan, 608-737, South Korea
| | - Bo Kwang Kim
- Interdisciplinary program of Biomedical Engineering, Pukyong National University, Busan, 608-737, South Korea
| | - Young-Il Seo
- Fisheries Resources Research Division, National Fisheries Research and Development Institute, Busan, 619-902, South Korea
| | - Jung Hwa Choi
- Fisheries Resources Research Division, National Fisheries Research and Development Institute, Busan, 619-902, South Korea
| | - Seung-Wan Kang
- Gyeongsangnam-do Fisheries Resources Research Institute, South Korea
| | - Chang-Keun Kang
- POSTECH Ocean Science and Technology Institute, Pohang University of Science and Technology (POSTECH), Pohang 790-784, South Korea
| | - Won-gyu Park
- Department of Marine Biology, Pukyong National University, Busan 608-737, South Korea
| | - Hyun-Woo Kim
- Department of Marine Biology, Pukyong National University, Busan 608-737, South Korea; Interdisciplinary program of Biomedical Engineering, Pukyong National University, Busan, 608-737, South Korea.
| |
Collapse
|
6
|
Roth Z, Khalaila I. Identification and characterization of the vitellogenin receptor in Macrobrachium rosenbergii and its expression during vitellogenesis. Mol Reprod Dev 2013; 79:478-87. [PMID: 22674884 DOI: 10.1002/mrd.22055] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In oviparous organisms, oocyte maturation depends on massive production of the egg yolk-precursor protein, vitellogenin (Vg). Vg is taken up by the developing oocytes through receptor-mediated endocytosis (RME), a process essential to successful reproduction. The aims of this study were to identify and characterize the yet-unknown vitellogenin receptor (VgR) from the pleocyamate crustacean Macrobrachium rosenbergii, and to investigate its expression levels during vitellogenesis and its interaction with Vg. The VgR gene was cloned, and its translated protein was specifically located at the oocyte membrane. Moreover, for the first time, a VgR protein was identified and sequenced by mass spectrometry. The putative MrVgR displayed high sequence similarity to VgRs from crustaceans, insects, and vertebrates, and its structure includes typical elements, such as an extracellular, lipoprotein-binding domain (LBD), EGF-like, and O-glycosylation domains, a transmembrane domain, and a short, C-terminal, cytosolic tail. In this article, we identify the first crustacean VgR protein, and present data demonstrating its high affinity for a Vg column followed by elution with suramin and EDTA. Additionally we demonstrate that VgR expression in the oocyte is elevated during vitellogenesis. Our results contribute to the fundamental understanding of oocyte maturation in crustaceans, and particularly elucidate Vg uptake through RME via the VgR.
Collapse
Affiliation(s)
- Ziv Roth
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | | |
Collapse
|
7
|
Dalvin S, Frost P, Biering E, Hamre LA, Eichner C, Krossøy B, Nilsen F. Functional characterisation of the maternal yolk-associated protein (LsYAP) utilising systemic RNA interference in the salmon louse (Lepeophtheirus salmonis) (Crustacea: Copepoda). Int J Parasitol 2009; 39:1407-15. [PMID: 19445947 DOI: 10.1016/j.ijpara.2009.04.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 04/15/2009] [Accepted: 04/16/2009] [Indexed: 10/20/2022]
Abstract
The salmon louse (Lepeophtheirus salmonis) is an important pathogen in salmon aquaculture and a serious threat to wild populations of salmon. Knowledge of its basic biological processes such as reproduction is crucial for the control of this parasite and can facilitate development of a vaccine. Here, a novel yolk-associated protein, LsYAP, was characterised. Quantitative PCR and in situ analysis demonstrated that transcription of LsYAP takes place in the subcuticular tissue of adult females in the reproductive phase. LsYAP protein is transported and deposited in the developing eggs in the genital segment, where further processing takes place. The sequence characteristics, histological localisation and transcript regulation suggest that LsYAP is a yolk-associated protein. In addition, the use of RNA interference is, to our knowledge, demonstrated for the first time in a copepod. Treatment of adult females with double-stranded RNA led to lethality and deformations of offspring only. This result confirms that the LsYAP protein is produced in adult females but is utilised by the offspring.
Collapse
|