1
|
Sánchez-Posada J, Derrick CJ, Noël ES. morphoHeart: A quantitative tool for integrated 3D morphometric analyses of heart and ECM during embryonic development. PLoS Biol 2025; 23:e3002995. [PMID: 39879226 PMCID: PMC11778784 DOI: 10.1371/journal.pbio.3002995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 12/20/2024] [Indexed: 01/31/2025] Open
Abstract
Heart development involves the complex structural remodelling of a linear heart tube into an asymmetrically looped and ballooned organ. Previous studies have associated regional expansion of extracellular matrix (ECM) space with tissue morphogenesis during development. We have developed morphoHeart, a 3D tissue segmentation and morphometry software with a user-friendly graphical interface (GUI) that delivers the first integrated 3D visualisation and multiparametric analysis of both heart and ECM morphology in live embryos. morphoHeart reveals that the ECM undergoes regional dynamic expansion and reduction during cardiac development, concomitant with chamber-specific morphological maturation. We use morphoHeart to demonstrate that regionalised ECM expansion driven by the ECM crosslinker Hapln1a promotes atrial lumen expansion during heart development. Finally, morphoHeart's GUI expands its use beyond that of cardiac tissue, allowing its segmentation and morphometric analysis tools to be applied to z-stack images of any fluorescently labelled tissue.
Collapse
Affiliation(s)
- Juliana Sánchez-Posada
- School of Biosciences and Bateson Centre, University of Sheffield, Western Bank, Sheffield, United Kingdom
| | - Christopher J. Derrick
- Biosciences Institute, Faculty of Biomedical Sciences, Newcastle University, International Centre for Life, Central Parkway, Newcastle upon Tyne, United Kingdom
| | - Emily S. Noël
- School of Biosciences and Bateson Centre, University of Sheffield, Western Bank, Sheffield, United Kingdom
| |
Collapse
|
2
|
Yang Y, Wang X, Wang P. Signaling mechanisms underlying lymphatic vessel dysfunction in skin aging and possible anti-aging strategies. Biogerontology 2023; 24:727-740. [PMID: 36680698 DOI: 10.1007/s10522-023-10016-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/11/2023] [Indexed: 01/22/2023]
Abstract
Aging-related skin diseases are gradually increasing due to the imbalance of cutaneous homeostasis in the aging population. Skin aging-induced inflammation promotes systemic inflammation and may lead to whole-body aging. Lymphatic vessels play an important role in maintaining fluid and homeostasis balance. In intrinsically aged skin, the number of lymphatic vessels decrease and their functions decline, which is related to the reduced adhesion junctions between lymphatic endothelial cells, particularly VE-cadherin. VEGFC/VEGFR-3 signal pathway plays an important role in remodeling and expansion of lymphatic vessels; the downregulation of this pathway contributes to the dysfunction of lymphatic vessels. Meanwhile, we proposed some additional mechanisms. Decline of the pumping activity of lymphatic vessels might be related to age-related changes in extracellular matrix, ROS increase, and eNOS/iNOS disturbances. In extrinsically aged skin, the hyperpermeability of lymphatic vessels results from a decrease in endothelial-specific tight junction molecules, upregulation of VEGF-A, and downregulation of the VEGFC/VEGFR-3 signaling pathway. Furthermore, some of the Phyto therapeutics could attenuate skin aging by modulating the lymphatic vessels. This review summarized the lymphatic vessel dysfunction in skin aging and anti-aging strategies based on lymphatic vessel modulation.
Collapse
Affiliation(s)
- Yuling Yang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiuli Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Peiru Wang
- Institute of Photomedicine, Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China.
| |
Collapse
|
3
|
Cancer-associated fibroblasts-derived HAPLN1 promotes tumour invasion through extracellular matrix remodeling in gastric cancer. Gastric Cancer 2022; 25:346-359. [PMID: 34724589 PMCID: PMC8882084 DOI: 10.1007/s10120-021-01259-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/20/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cancer-associated fibroblasts (CAFs) are the most principal cells of depositing and remodeling extracellular matrix (ECM) within solid tumours. Both CAFs and ECM have been demonstrated to play critical roles in tumour development. However, the functional roles of CAFs-associated ECM or ECM remodeling in the pathogenesis of gastric cancer remain unclear. METHODS Bioinformatics analysis of the differentially expressed genes between CAFs and corresponding normal fibroblasts (NFs) in gastric cancer was performed. The clinical relevance of hyaluronan and proteoglycan link protein 1 (HAPLN1) was investigated using TCGA data and human gastric cancer specimens. Spheroid cell invasion assay and nude mouse xenograft model were introduced to assay cell invasion. Second harmonic generation (SHG) was used to image and analyze the changes of collagen fibers in ECM. RESULTS HAPLN1 was identified as the most significantly up-regulated gene in CAFs of gastric cancer, and higher HAPLN1 levels were associated with shorter overall survival. HAPLN1 was prominently produced by CAFs, and its levels were correlated positively with tumor T staging (P < 0.0001), lymph node metastasis (P = 0.0006) and TNM stage (P = 0.0063). Mechanically, gastric cancer cells activate fibroblasts to up-regulate HAPLN1 expression via activation of TGF-β1/Smad2/3 signaling, which in turn promotes tumour migration and invasion. Importantly, SHG assays with mouse xenograft models and human samples further demonstrated CAFs-derived HAPLN1 increased tumour invasiveness through ECM remodeling. CONCLUSIONS This study sheds light on the role of CAFs-derived HAPLN1 in the pathogenesis of gastric cancer, and provides insights for the development of novel strategies for prevention and treatment of gastric carcinoma.
Collapse
|
4
|
Pakravan K, Razmara E, Mahmud Hussen B, Sattarikia F, Sadeghizadeh M, Babashah S. SMAD4 contributes to chondrocyte and osteocyte development. J Cell Mol Med 2022; 26:1-15. [PMID: 34841647 PMCID: PMC8742202 DOI: 10.1111/jcmm.17080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/25/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Different cellular and molecular mechanisms contribute to chondrocyte and osteocyte development. Although vital roles of the mothers against decapentaplegic homolog 4 (also called 'SMAD4') have been discussed in different cancers and stem cell-related studies, there are a few reviews summarizing the roles of this protein in the skeletal development and bone homeostasis. In order to fill this gap, we discuss the critical roles of SMAD4 in the skeletal development. To this end, we review the different signalling pathways and also how SMAD4 defines stem cell features. We also elaborate how the epigenetic factors-ie DNA methylation, histone modifications and noncoding RNAs-make a contribution to the chondrocyte and osteocyte development. To better grasp the important roles of SMAD4 in the cartilage and bone development, we also review the genotype-phenotype correlation in animal models. This review helps us to understand the importance of the SMAD4 in the chondrocyte and bone development and the potential applications for therapeutic goals.
Collapse
Affiliation(s)
- Katayoon Pakravan
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Ehsan Razmara
- Department of Medical GeneticsFaculty of Medical SciencesTarbiat Modares UniversityTehranIran
| | - Bashdar Mahmud Hussen
- Department of PharmacognosyCollege of PharmacyHawler Medical UniversityKurdistan RegionIraq
| | - Fatemeh Sattarikia
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Majid Sadeghizadeh
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| | - Sadegh Babashah
- Department of Molecular GeneticsFaculty of Biological SciencesTarbiat Modares UniversityTehranIran
| |
Collapse
|
5
|
Razmara E, Bitaraf A, Karimi B, Babashah S. Functions of the SNAI family in chondrocyte-to-osteocyte development. Ann N Y Acad Sci 2021; 1503:5-22. [PMID: 34403146 DOI: 10.1111/nyas.14668] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 06/22/2021] [Accepted: 07/02/2021] [Indexed: 12/12/2022]
Abstract
Different cellular mechanisms contribute to osteocyte development. And while critical roles for members of the zinc finger protein SNAI family (SNAIs) have been discussed in cancer-related models, there are few reviews summarizing their importance for chondrocyte-to-osteocyte development. To help fill this gap, we review the roles of SNAIs in the development of mature osteocytes from chondrocytes, including the regulation of chondro- and osteogenesis through different signaling pathways and in programmed cell death. We also discuss how epigenetic factors-including DNA methylation, histone methylation and acetylation, and noncoding RNAs-contribute differently to both chondrocyte and osteocyte development. To better grasp the important roles of SNAIs in bone development, we also review genotype-phenotype correlations in different animal models. We end with comments about the possible importance of the SNAI family in cartilage/bone development and the potential applications for therapeutic goals.
Collapse
Affiliation(s)
- Ehsan Razmara
- Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Behnaz Karimi
- Hematology/Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Science, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
6
|
Zhang S, Liu B, Wang W, Lv L, Gao D, Chai M, Li M, Wu Z, Zhu Y, Ma J, Leng L. The "Matrisome" reveals the characterization of skin keloid microenvironment. FASEB J 2021; 35:e21237. [PMID: 33715180 DOI: 10.1096/fj.202001660rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/29/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023]
Abstract
Keloids are fibroproliferative dermal tumors of unknown origin that are characterized by the overabundant accumulation of extracellular matrix (ECM) components. The mechanism of keloid formation has remained unclear because of a poor understanding of its molecular basis. In this study, the dermal ECM components of keloids were identified and the pathological features of keloid formation were characterized using large-scale quantitative proteomic analyses of decellularized keloid biomatrix scaffolds. We identified a total of 267 dermal core ECM and ECM-associated proteins that were differentially expressed between patients with keloids and healthy controls. Skin mechanical properties and biological processes including protease activity, wound healing, and adhesion were disordered in keloids. The integrated network analysis of the upregulated ECM proteins revealed multiple signaling pathways involved in these processes that may lead to keloid formation. Our findings may improve the scientific basis of keloid treatment and provide new ideas for the establishment of keloid models.
Collapse
Affiliation(s)
- Shikun Zhang
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.,Department of Stem Cell and Regenerative Medicine Laboratory, Institute of Health Service and Transfusion Medicine, Beijing, China
| | - Binghui Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Wenjuan Wang
- Department of Dermatology, Chinese PLA General Hospital, Beijing, China
| | - Luye Lv
- Institute of NBC Defense, Beijing, China
| | - Dunqin Gao
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Mi Chai
- Department of Plastic and Reconstruction Surgery, Chinese PLA General Hospital, Beijing, China
| | - Mansheng Li
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Zhihong Wu
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yunping Zhu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China.,Basic Medical School, Anhui Medical University, Anhui, China
| | - Jie Ma
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Life Omics, Beijing, China
| | - Ling Leng
- Stem Cell and Regenerative Medicine Lab, Department of Medical Science Research Center, Translational Medicine Center, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Wen Y, Jin L, Zhang D, Zhang L, Xie C, Guo D, Wang Y, Wang L, Zhu M, Tong J, Shen Y. Quantitative proteomic analysis of scleras in guinea pig exposed to wavelength defocus. J Proteomics 2021; 243:104248. [PMID: 33964483 DOI: 10.1016/j.jprot.2021.104248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 12/14/2022]
Abstract
Myopia is the most common optical disorder in the world, and wavelength defocus induced ametropia and myopia have attracted great attention. The objective was to identify and quantify scleral proteins involved in the response to the wavelength defocus. Guinea pigs were randomly divided into 3 groups that received different lighting conditions for 8 weeks: white light, short wavelength light, and long wavelength light. Refraction and axial length were measured, Hematoxylin-Eosin staining and transmission electron microscope were adopted to observe the scleral structure, and scleral proteome was also detected to analyze protein abundance by employing TMT labeling method. After light stimulation, the long- and short -wavelength light induced myopic and hyperopic effect on the guinea pig's eye and induced distinct protein signature, respectively. 186 dyregulated proteins between the short- and long-wavelength group were identified, which were mainly located in extracellular region and involved in metabolic process. We also found that 5 proteins in the guinea pigs scleras in response to wavelength defocus were also human myopic candidate targets, suggesting functional overlap between dyregulated proteins in scleral upon exposure to wavelength defocus and genes causing myopia in humans. SIGNIFICANCE: Wavelength defocus induces refractive errors and leads to myopia or hyperopia. However, sclera proteomics respond to wavelength defocus is lacking, which is crucial to understanding how wavelength defocus influences refractive development and induces myopia. In this proteome analysis, we identified unique protein signatures response to wavelength defocus in sclera of guinea pigs, identified potential mechanisms contributing to myopia formation, and found that several human myopia-related genes may involve in response to wavelength defocus. The results of this study provide a foundation to understand the mechanisms of myopia and wavelength defocus induced ametropia.
Collapse
Affiliation(s)
- Yingying Wen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Le Jin
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Dongyan Zhang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Liyue Zhang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Chen Xie
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Dongyu Guo
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Yang Wang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Liyin Wang
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Miaomiao Zhu
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China
| | - Jianping Tong
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.
| | - Ye Shen
- Department of Ophthalmology, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China; Clinical Research Center, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310003, China.
| |
Collapse
|
8
|
Blanco I, Conant K. Extracellular matrix remodeling with stress and depression: Studies in human, rodent and zebrafish models. Eur J Neurosci 2020; 53:3879-3888. [PMID: 32673433 DOI: 10.1111/ejn.14910] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 01/17/2023]
Abstract
Emerging evidence suggests that extracellular matrix (ECM) alterations occur with stress. Specifically, increases in perineuronal net (PNN) deposition have been observed in rodents exposed to chronic corticosterone or persistent social defeat stress. The PNN is a specific form of ECM that is predominantly localized to parvalbumin (PV)-expressing inhibitory interneurons where it modulates neuronal excitability and brain oscillations that are influenced by the same. Consistent with a role for ECM changes in contributing to the depressive phenotype, recent studies have demonstrated that monoamine reuptake inhibitor type antidepressants can reduce PNN deposition, improve behavior and stimulate changes in gamma oscillatory power that may be important to mood and memory. The present review will highlight studies in humans, rodents and zebrafish that have examined stress, PNN deposition and/or gamma oscillations with a focus on potential cellular and molecular underpinnings.
Collapse
Affiliation(s)
- Ismary Blanco
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| | - Katherine Conant
- Department of Neuroscience, Georgetown University Medical Center, Washington, DC, USA.,Interdisciplinary Program in Neuroscience, Georgetown University Medical Center, Washington, DC, USA
| |
Collapse
|
9
|
|
10
|
Kaur A, Ecker BL, Douglass SM, Kugel CH, Webster MR, Almeida FV, Somasundaram R, Hayden J, Ban E, Ahmadzadeh H, Franco-Barraza J, Shah N, Mellis IA, Keeney F, Kossenkov A, Tang HY, Yin X, Liu Q, Xu X, Fane M, Brafford P, Herlyn M, Speicher DW, Wargo JA, Tetzlaff MT, Haydu LE, Raj A, Shenoy V, Cukierman E, Weeraratna AT. Remodeling of the Collagen Matrix in Aging Skin Promotes Melanoma Metastasis and Affects Immune Cell Motility. Cancer Discov 2019; 9:64-81. [PMID: 30279173 PMCID: PMC6328333 DOI: 10.1158/2159-8290.cd-18-0193] [Citation(s) in RCA: 270] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/23/2018] [Accepted: 09/19/2018] [Indexed: 01/30/2023]
Abstract
Physical changes in skin are among the most visible signs of aging. We found that young dermal fibroblasts secrete high levels of extracellular matrix (ECM) constituents, including proteoglycans, glycoproteins, and cartilage-linking proteins. The most abundantly secreted was HAPLN1, a hyaluronic and proteoglycan link protein. HAPLN1 was lost in aged fibroblasts, resulting in a more aligned ECM that promoted metastasis of melanoma cells. Reconstituting HAPLN1 inhibited metastasis in an aged microenvironment, in 3-D skin reconstruction models, and in vivo. Intriguingly, aged fibroblast-derived matrices had the opposite effect on the migration of T cells, inhibiting their motility. HAPLN1 treatment of aged fibroblasts restored motility of mononuclear immune cells, while impeding that of polymorphonuclear immune cells, which in turn affected regulatory T-cell recruitment. These data suggest that although age-related physical changes in the ECM can promote tumor cell motility, they may adversely affect the motility of some immune cells, resulting in an overall change in the immune microenvironment. Understanding the physical changes in aging skin may provide avenues for more effective therapy for older patients with melanoma. SIGNIFICANCE: These data shed light on the mechanochemical interactions that occur between aged skin, tumor, and immune cell populations, which may affect tumor metastasis and immune cell infiltration, with implications for the efficacy of current therapies for melanoma.See related commentary by Marie and Merlino, p. 19.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Amanpreet Kaur
- Department of Biological Sciences, University of the Sciences, Philadelphia, Pennsylvania
- The Wistar Institute, Philadelphia, Pennsylvania
- School of Engineering and Applied Science, Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | | | | | - James Hayden
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Ehsan Ban
- School of Engineering and Applied Science, Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Hossein Ahmadzadeh
- School of Engineering and Applied Science, Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Neelima Shah
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Ian A Mellis
- School of Engineering and Applied Science, Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | - Xiangfan Yin
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Qin Liu
- The Wistar Institute, Philadelphia, Pennsylvania
| | - Xiaowei Xu
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | | | | | - Jennifer A Wargo
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Lauren E Haydu
- The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Arjun Raj
- School of Engineering and Applied Science, Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Vivek Shenoy
- School of Engineering and Applied Science, Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Edna Cukierman
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | | |
Collapse
|
11
|
Ecker BL, Kaur A, Douglass SM, Webster MR, Almeida FV, Marino GE, Sinnamon AJ, Neuwirth MG, Alicea GM, Ndoye A, Fane M, Xu X, Sim MS, Deutsch GB, Faries MB, Karakousis GC, Weeraratna AT. Age-Related Changes in HAPLN1 Increase Lymphatic Permeability and Affect Routes of Melanoma Metastasis. Cancer Discov 2018; 9:82-95. [PMID: 30279172 DOI: 10.1158/2159-8290.cd-18-0168] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 07/31/2018] [Accepted: 09/19/2018] [Indexed: 01/08/2023]
Abstract
Older patients with melanoma have lower rates of sentinel lymph node (LN) metastases yet paradoxically have inferior survival. Patient age correlated with an inability to retain Technetium radiotracer during sentinel LN biopsy in more than 1,000 patients, and high Technetium counts correlated to better survival. We hypothesized that loss of integrity in the lymphatic vasculature due to extracellular matrix (ECM) degradation might play a role. We have implicated HAPLN1 in age-dependent ECM degradation in the dermis. Here, we queried whether HAPLN1 could be altered in the lymphatic ECM. Lymphatic HAPLN1 expression was prognostic of long-term patient survival. Adding recombinant HAPLN1 to aged fibroblast ECMs in vitro reduced endothelial permeability via modulation of VE-cadherin junctions, whereas endothelial permeability was increased following HAPLN1 knockdown in young fibroblasts. In vivo, reconstitution of HAPLN1 in aged mice increased the number of LN metastases, but reduced visceral metastases. These data suggest that age-related changes in ECM can contribute to impaired lymphatics. SIGNIFICANCE: Our studies reveal that changes in the stroma during aging may influence the way tumor cells traffic through the lymphatic vasculature. Aging may dictate the route of metastatic dissemination of tumor cells, and understanding these changes may help to reveal targetable moieties in the aging tumor microenvironment.See related commentary by Marie and Merlino, p. 19.This article is highlighted in the In This Issue feature, p. 1.
Collapse
Affiliation(s)
- Brett L Ecker
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania.,The Wistar Institute, Philadelphia, Pennsylvania
| | - Amanpreet Kaur
- The Wistar Institute, Philadelphia, Pennsylvania.,University of the Sciences, Philadelphia, Pennsylvania
| | | | | | | | - Gloria E Marino
- The Wistar Institute, Philadelphia, Pennsylvania.,Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Andrew J Sinnamon
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Madalyn G Neuwirth
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gretchen M Alicea
- The Wistar Institute, Philadelphia, Pennsylvania.,University of the Sciences, Philadelphia, Pennsylvania
| | - Abibatou Ndoye
- The Wistar Institute, Philadelphia, Pennsylvania.,University of the Sciences, Philadelphia, Pennsylvania
| | | | - Xiaowei Xu
- Department of Pathology, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | | | - Mark B Faries
- The Angeles Clinic and Research Institute, Cedars Sinai, Los Angeles, California
| | | | | |
Collapse
|
12
|
Rambeau P, Faure E, Théron A, Avierinos JF, Jopling C, Zaffran S, Faucherre A. Reduced aggrecan expression affects cardiac outflow tract development in zebrafish and is associated with bicuspid aortic valve disease in humans. Int J Cardiol 2017; 249:340-343. [DOI: 10.1016/j.ijcard.2017.09.174] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 08/21/2017] [Accepted: 09/18/2017] [Indexed: 11/16/2022]
|
13
|
Govindan J, Iovine MK. Hapln1a is required for connexin43-dependent growth and patterning in the regenerating fin skeleton. PLoS One 2014; 9:e88574. [PMID: 24533114 PMCID: PMC3922931 DOI: 10.1371/journal.pone.0088574] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 01/08/2014] [Indexed: 01/23/2023] Open
Abstract
Cell–cell communication, facilitating the exchange of small metabolites, ions and second messengers, takes place via aqueous proteinaceous channels called gap junctions. Connexins (cx) are the subunits of a gap junction channel. Mutations in zebrafish cx43 produces the short fin (sof b123) phenotype and is characterized by short fins due to reduced segment length of the bony fin rays and reduced cell proliferation. Previously established results from our lab demonstrate that Cx43 plays a dual role regulating both cell proliferation (growth) and joint formation (patterning) during the process of skeletal morphogenesis. In this study, we show that Hapln1a (Hyaluronan and Proteoglycan Link Protein 1a) functions downstream of cx43. Hapln1a belongs to the family of link proteins that play an important role in stabilizing the ECM by linking the aggregates of hyaluronan and proteoglycans. We validated that hapln1a is expressed downstream of cx43 by in situ hybridization and quantitative RT-PCR methods. Moreover, in situ hybridization at different time points revealed that hapln1a expression peaks at 3 days post amputation. Expression of hapln1a is located in the medial mesenchyme and the in the lateral skeletal precursor cells. Furthermore, morpholino mediated knock-down of hapln1a resulted in reduced fin regenerate length, reduced bony segment length and reduced cell proliferation, recapitulating all the phenotypes of cx43 knock-down. Moreover, Hyaluronic Acid (HA) levels are dramatically reduced in hapln1a knock-down fins, attesting the importance of Hapln1a in stabilizing the ECM. Attempts to place hapln1a in our previously defined cx43–sema3d pathway suggest that hapln1a functions in a parallel genetic pathway. Collectively, our data suggest that Cx43 mediates independent Sema3d and Hapln1a pathways in order to coordinate skeletal growth and patterning.
Collapse
Affiliation(s)
- Jayalakshmi Govindan
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - M. Kathryn Iovine
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
14
|
Geng FS, Abbas L, Baxendale S, Holdsworth CJ, Swanson AG, Slanchev K, Hammerschmidt M, Topczewski J, Whitfield TT. Semicircular canal morphogenesis in the zebrafish inner ear requires the function of gpr126 (lauscher), an adhesion class G protein-coupled receptor gene. Development 2013; 140:4362-74. [PMID: 24067352 PMCID: PMC4007713 DOI: 10.1242/dev.098061] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Morphogenesis of the semicircular canal ducts in the vertebrate inner ear is a dramatic example of epithelial remodelling in the embryo, and failure of normal canal development results in vestibular dysfunction. In zebrafish and Xenopus, semicircular canal ducts develop when projections of epithelium, driven by extracellular matrix production, push into the otic vesicle and fuse to form pillars. We show that in the zebrafish, extracellular matrix gene expression is high during projection outgrowth and then rapidly downregulated after fusion. Enzymatic disruption of hyaluronan in the projections leads to their collapse and a failure to form pillars: as a result, the ears swell. We have cloned a zebrafish mutant, lauscher (lau), identified by its swollen ear phenotype. The primary defect in the ear is abnormal projection outgrowth and a failure of fusion to form the semicircular canal pillars. Otic expression of extracellular matrix components is highly disrupted: several genes fail to become downregulated and remain expressed at abnormally high levels into late larval stages. The lau mutations disrupt gpr126, an adhesion class G protein-coupled receptor gene. Expression of gpr126 is similar to that of sox10, an ear and neural crest marker, and is partially dependent on sox10 activity. Fusion of canal projections and downregulation of otic versican expression in a hypomorphic lau allele can be restored by cAMP agonists. We propose that Gpr126 acts through a cAMP-mediated pathway to control the outgrowth and adhesion of canal projections in the zebrafish ear via the regulation of extracellular matrix gene expression.
Collapse
Affiliation(s)
- Fan-Suo Geng
- MRC Centre for Developmental and Biomedical Genetics and Department of Biomedical Science, University of Sheffield, Sheffield, S10 2TN, UK
| | | | | | | | | | | | | | | | | |
Collapse
|