1
|
Li Z, Chen X, Zhao F, Miao M. Genomic insights into the cellular specialization of predation in raptorial protists. BMC Biol 2024; 22:107. [PMID: 38715037 PMCID: PMC11077807 DOI: 10.1186/s12915-024-01904-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/26/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Predation is a fundamental mechanism for organisms to acquire energy, and various species have evolved diverse tools to enhance their hunting abilities. Among protozoan predators, raptorial Haptorian ciliates are particularly fascinating as they possess offensive extrusomes known as toxicysts, which are rapidly discharged upon prey contact. However, our understanding of the genetic processes and specific toxins involved in toxicyst formation and discharge is still limited. RESULTS In this study, we investigated the predation strategies and subcellular structures of seven Haptoria ciliate species and obtained their genome sequences using single-cell sequencing technology. Comparative genomic analysis revealed distinct gene duplications related to membrane transport proteins and hydrolytic enzymes in Haptoria, which play a crucial role in the production and discharge of toxicysts. Transcriptomic analysis further confirmed the abundant expression of genes related to membrane transporters and cellular toxins in Haptoria compared to Trichostomatia. Notably, polyketide synthases (PKS) and L-amino acid oxidases (LAAO) were identified as potentially toxin genes that underwent extensive duplication events in Haptoria. CONCLUSIONS Our results shed light on the evolutionary and genomic adaptations of Haptorian ciliates for their predation strategies in evolution and provide insights into their toxic mechanisms.
Collapse
Affiliation(s)
- Zaihan Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao Chen
- Laboratory of Marine Protozoan Biodiversity and Evolution, Marine College, Shandong University, Weihai, 264209, China
| | - Fangqing Zhao
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute of Zoology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100101, China
| | - Miao Miao
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
2
|
Gao Y, Solberg T, Wang R, Yu Y, Al-Rasheid KAS, Gao F. Application of RNA interference and protein localization to investigate housekeeping and developmentally regulated genes in the emerging model protozoan Paramecium caudatum. Commun Biol 2024; 7:204. [PMID: 38374195 PMCID: PMC10876655 DOI: 10.1038/s42003-024-05906-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 02/09/2024] [Indexed: 02/21/2024] Open
Abstract
Unicellular eukaryotes represent tremendous evolutionary diversity. However, the molecular mechanisms underlying this diversity remain largely unexplored, partly due to a limitation of genetic tools to only a few model species. Paramecium caudatum is a well-known unicellular eukaryote with an unexpectedly large germline genome, of which only two percent is retained in the somatic genome following sexual processes, revealing extensive DNA elimination. However, further progress in understanding the molecular mechanisms governing this process is hampered by a lack of suitable genetic tools. Here, we report the successful application of gene knockdown and protein localization methods to interrogate the function of both housekeeping and developmentally regulated genes in P. caudatum. Using these methods, we achieved the expected phenotypes upon RNAi by feeding, and determined the localization of these proteins by microinjection of fusion constructs containing fluorescent protein or antibody tags. Lastly, we used these methods to reveal that P. caudatum PiggyMac, a domesticated piggyBac transposase, is essential for sexual development, and is likely to be an active transposase directly involved in DNA cleavage. The application of these methods lays the groundwork for future studies of gene function in P. caudatum and can be used to answer important biological questions in the future.
Collapse
Affiliation(s)
- Yunyi Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Therese Solberg
- Department of Molecular Biology, Keio University School of Medicine, Tokyo, 160-8582, Japan
- Human Biology Microbiome Quantum Research Center (WPI-Bio2Q), Keio University, Tokyo, 108-8345, Japan
| | - Rui Wang
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Yueer Yu
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China
| | - Khaled A S Al-Rasheid
- Zoology Department, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Feng Gao
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education), and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, 266003, China.
- Laoshan Laboratory, Qingdao, 266237, China.
| |
Collapse
|
3
|
Wallace RL, Dash KM, Araújo TQ, Walsh EJ, Das S, Hochberg R. Ultrastructural characterization of the putative defensive glands (warts) in the sessile, colonial rotifer Sinantherina socialis (Gnesiotrocha; Flosculariidae). ZOOL ANZ 2023; 304:10-20. [PMID: 37484813 PMCID: PMC10361403 DOI: 10.1016/j.jcz.2023.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Female Sinantherina socialis are freshwater, sessile, colonial rotifers that possess two pairs of distinctive glands (warts) located below the corona. Previous studies demonstrated that colonies are unpalatable to many invertebrate and vertebrate predators; those authors suggested that the warts were a possible source of a chemical deterrent to predation. Here we explore wart ultrastructure and cytochemisty to determine whether the warts function as exocrine glands and if their contents display any allomone-like chemistry, respectively. Externally, the warts appear as elevated bulges without pores. Internally, the warts are specialized regions of the integumental syncytium and therefore acellular. The lipid stain Nile Red labels all four warts. Two lipid membrane probes (sphingomyelin and phosphatidylinositol) also bind the warts and may be staining internal secretion vesicle membranes. In fact, wart ultrastructure is defined by hundreds of membrane-bound secretion vesicles packed tightly together. The vesicles are mostly electron-lucent and crowded into a well-defined cytoplasmic space. The cytoplasm also contains abundant ribosomes, rough endoplasmic reticulum, mitochondria, and Golgi, but nuclei are generally positioned peripheral to the packed vesicles. Absence of muscles around the warts or any signs of direct innervation suggests expulsion of gland contents is forced by general body contraction. A single specimen with 'empty' warts implies that secretions are released en masse from all glands simultaneously. The identity of the chemical secretion remains to be determined, but the lack of osmium and uranyl acetate staining suggests a low abundance or absence of phenols, unsaturated lipids, or NH2 and -COOH groups. This absence, combined with the positive Nile Red staining, is interpreted as evidence that vesicles contain saturated fatty acids such as lactones that are unpalatable to predators.
Collapse
Affiliation(s)
| | | | | | | | | | - Rick Hochberg
- University of Massachusetts Lowell, Lowell, MA, 01854, USA
| |
Collapse
|
4
|
Valentine M, Yano J, Lodh S, Nabi A, Deng B, Van Houten J. Methods for Paramecium tetraurelia ciliary membrane protein identification and function. Methods Cell Biol 2023; 175:177-219. [PMID: 36967141 DOI: 10.1016/bs.mcb.2022.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
In this chapter we provide some tools to study the ciliary proteins that make it possible for Paramecium cells to swim by beating their cilia. These proteins include many ion channels, accessory proteins, peripheral proteins, structural proteins, rootlets of cilia, and enzymes. Some of these proteins are also found in the soma membrane, but their distinct and critical functions are in the cilia. Paramecium has 4000 or more cilia per cell, giving it an advantage for biochemical studies over cells that have one primarily cilium per cell. Nonetheless, a challenge for studies of many ciliary proteins in Paramecium is their low abundance. We discuss here several strategies to overcome this challenge and other challenges such as working with very large channel proteins. We also include for completeness other techniques that are critical to the study of swimming behavior, such as genetic crosses, recording of swimming patterns, electrical recordings, expression of very large channel proteins, RNA Interference, among others.
Collapse
Affiliation(s)
- Megan Valentine
- State University of New York, Plattsburgh, NY, United States
| | - Junji Yano
- University of Vermont, Burlington, VT, United States
| | - Sukanya Lodh
- Marquette University, Milwaukee, WI, United States
| | | | - Bin Deng
- Vermont Biomedical Research Network, University of Vermont, Burlington, VT, United States
| | | |
Collapse
|
5
|
Vallesi A, Pucciarelli S, Buonanno F, Fontana A, Mangiagalli M. Bioactive molecules from protists: Perspectives in biotechnology. Eur J Protistol 2020; 75:125720. [PMID: 32569992 DOI: 10.1016/j.ejop.2020.125720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 05/11/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022]
Abstract
For hundreds of years, mankind has benefited from the natural metabolic processes of microorganisms to obtain basic products such as fermented foods and alcoholic beverages. More recently, microorganisms have been exploited for the production of antibiotics, vitamins and enzymes to be used in medicine and chemical industries. Additionally, several modern drugs, including those for cancer therapy, are natural products or their derivatives. Protists are a still underexplored source of natural products potentially of interest for biotechnological and biomedical applications. This paper focuses on some examples of bioactive molecules from protists and associated bacteria and their possible use in biotechnology.
Collapse
Affiliation(s)
- Adriana Vallesi
- School of Biosciences and Veterinary Medicine, Università degli Studi di Camerino, Camerino (MC), Italy.
| | - Sandra Pucciarelli
- School of Biosciences and Veterinary Medicine, Università degli Studi di Camerino, Camerino (MC), Italy.
| | - Federico Buonanno
- Laboratory of Protistology and Biology Education, Department of E.C.H.T. Università degli Studi di Macerata, Macerata, Italy
| | - Angelo Fontana
- Bio-Organic Chemistry Unit, CNR-Institute of Biomolecular Chemistry, Pozzuoli, Napoli, Italy
| | - Marco Mangiagalli
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
6
|
Buonanno F, Catalani E, Cervia D, Cimarelli C, Marcantoni E, Ortenzi C. Natural Function and Structural Modification of Climacostol, a Ciliate Secondary Metabolite. Microorganisms 2020; 8:E809. [PMID: 32471240 PMCID: PMC7356801 DOI: 10.3390/microorganisms8060809] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 05/25/2020] [Indexed: 11/16/2022] Open
Abstract
The review highlights the main results of two decades of research on climacostol (5-[(2Z)-non-2-en-1-yl]benzene-1,3-diol), the resorcinolic lipid produced and used by the ciliated protozoan Climacostomum virens for chemical defense against a wide range of predators, and to assist its carnivorous feeding. After the first studies on the physiological function of climacostol, the compound and some analogues were chemically synthesized, thus allowing us to explore both its effect on different prokaryotic and eukaryotic biological systems, and the role of its relevant structural traits. In particular, the results obtained in the last 10 years indicate climacostol is an effective antimicrobial and anticancer agent, bringing new clues to the attempt to design and synthesize additional novel analogues that can increase or optimize its pharmacological properties.
Collapse
Affiliation(s)
- Federico Buonanno
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage, and Tourism (ECHT), Università degli Studi di Macerata, 62100 Macerata, Italy;
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy; (E.C.); (D.C.)
| | - Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy; (E.C.); (D.C.)
| | - Cristina Cimarelli
- School of Science and Technology, Section of Chemistry, Università degli Studi di Camerino, 62032 Camerino, Italy; (C.C.); (E.M.)
| | - Enrico Marcantoni
- School of Science and Technology, Section of Chemistry, Università degli Studi di Camerino, 62032 Camerino, Italy; (C.C.); (E.M.)
| | - Claudio Ortenzi
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage, and Tourism (ECHT), Università degli Studi di Macerata, 62100 Macerata, Italy;
| |
Collapse
|
7
|
Catalani E, Buonanno F, Lupidi G, Bongiorni S, Belardi R, Zecchini S, Giovarelli M, Coazzoli M, De Palma C, Perrotta C, Clementi E, Prantera G, Marcantoni E, Ortenzi C, Fausto AM, Picchietti S, Cervia D. The Natural Compound Climacostol as a Prodrug Strategy Based on pH Activation for Efficient Delivery of Cytotoxic Small Agents. Front Chem 2019; 7:463. [PMID: 31316972 PMCID: PMC6609918 DOI: 10.3389/fchem.2019.00463] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/11/2019] [Indexed: 12/20/2022] Open
Abstract
We synthesized and characterized MOMO as a new small molecule analog of the cytotoxic natural product climacostol efficiently activated in mild extracellular acidosis. The synthesis of MOMO had a key step in the Wittig olefination for the construction of the carbon-carbon double bond in the alkenyl moiety of climacostol. The possibility of obtaining the target (Z)-alkenyl MOMO derivative in very good yield and without presence of the less active (E)-diastereomer was favored from the methoxymethyl ether (MOM)-protecting group of hydroxyl functions in aromatic ring of climacostol aldehyde intermediate. Of interest, the easy removal of MOM-protecting group in a weakly acidic environment allowed us to obtain a great quantity of climacostol in biologically active (Z)-configuration. Results obtained in free-living ciliates that share the same micro-environment of the climacostol natural producer Climacostomum virens demonstrated that MOMO is well-tolerated in a physiological environment, while its cytotoxicity is rapidly and efficiently triggered at pH 6.3. In addition, the cytostatic vs. cytotoxic effects of acidified-MOMO can be modulated in a dose-dependent manner. In mouse melanoma cells, MOMO displayed a marked pH-sensitivity since its cytotoxic and apoptotic effects become evident only in mild extracellular acidosis. Data also suggested MOMO being preferentially activated in the unique extra-acidic microenvironment that characterizes tumoural cells. Finally, the use of the model organism Drosophila melanogaster fed with an acidic diet supported the efficient activity and oral delivery of MOMO molecule in vivo. MOMO affected oviposition of mating adults and larvae eclosion. Reduced survival of flies was due to lethality during the larval stages while emerging larvae retained their ability to develop into adults. Interestingly, the gut of eclosed larvae exhibited an extended damage (cell death by apoptosis) and the brain tissue was also affected (reduced mitosis), demonstrating that orally activated MOMO efficiently targets different tissues of the developing fly. These results provided a proof-of-concept study on the pH-dependence of MOMO effects. In this respect, MOM-protection emerges as a potential prodrug strategy which deserves to be further investigated for the generation of efficient pH-sensitive small organic molecules as pharmacologically active cytotoxic compounds.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Department for Innovation in Biological, Agro-Food and Forest Systems, Università degli Studi della Tuscia, Viterbo, Italy
| | - Federico Buonanno
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage and Tourism, Università degli Studi di Macerata, Macerata, Italy
| | - Gabriele Lupidi
- School of Sciences and Technologies, Section of Chemistry, Università degli Studi di Camerino, Camerino, Italy
| | - Silvia Bongiorni
- Department of Ecological and Biological Sciences, Università degli Studi della Tuscia, Viterbo, Italy
| | - Riccardo Belardi
- Department for Innovation in Biological, Agro-Food and Forest Systems, Università degli Studi della Tuscia, Viterbo, Italy
| | - Silvia Zecchini
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Matteo Giovarelli
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Marco Coazzoli
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Clara De Palma
- Unit of Clinical Pharmacology, University Hospital “Luigi Sacco”-ASST Fatebenefratelli Sacco, Milan, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Emilio Clementi
- Department of Biomedical and Clinical Sciences “Luigi Sacco” (DIBIC), Università degli Studi di Milano, Milan, Italy
- Scientific Institute IRCCS “Eugenio Medea”, Bosisio Parini, Italy
| | - Giorgio Prantera
- Department of Ecological and Biological Sciences, Università degli Studi della Tuscia, Viterbo, Italy
| | - Enrico Marcantoni
- School of Sciences and Technologies, Section of Chemistry, Università degli Studi di Camerino, Camerino, Italy
| | - Claudio Ortenzi
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage and Tourism, Università degli Studi di Macerata, Macerata, Italy
| | - Anna Maria Fausto
- Department for Innovation in Biological, Agro-Food and Forest Systems, Università degli Studi della Tuscia, Viterbo, Italy
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-Food and Forest Systems, Università degli Studi della Tuscia, Viterbo, Italy
| | - Davide Cervia
- Department for Innovation in Biological, Agro-Food and Forest Systems, Università degli Studi della Tuscia, Viterbo, Italy
| |
Collapse
|
8
|
Buonanno F, Catalani E, Cervia D, Proietti Serafini F, Picchietti S, Fausto AM, Giorgi S, Lupidi G, Rossi FV, Marcantoni E, Petrelli D, Ortenzi C. Bioactivity and Structural Properties of Novel Synthetic Analogues of the Protozoan Toxin Climacostol. Toxins (Basel) 2019; 11:toxins11010042. [PMID: 30650514 PMCID: PMC6356496 DOI: 10.3390/toxins11010042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/07/2019] [Accepted: 01/08/2019] [Indexed: 12/31/2022] Open
Abstract
Climacostol (5-[(2Z)-non-2-en-1-yl]benzene-1,3-diol) is a resorcinol produced by the protozoan Climacostomum virens for defence against predators. It exerts a potent antimicrobial activity against bacterial and fungal pathogens, inhibits the growth of several human and rodent tumour cells, and is now available by chemical synthesis. In this study, we chemically synthesized two novel analogues of climacostol, namely, 2-methyl-5 [(2Z)-non-2-en-1-yl]benzene-1,3-diol (AN1) and 5-[(2Z)-non-2-en-1-yl]benzene-1,2,3-triol (AN2), with the aim to increase the activity of the native toxin, evaluating their effects on prokaryotic and free-living protists and on mammalian tumour cells. The results demonstrated that the analogue bearing a methyl group (AN1) in the aromatic ring exhibited appreciably higher toxicity against pathogen microbes and protists than climacostol. On the other hand, the analogue bearing an additional hydroxyl group (AN2) in the aromatic ring revealed its ability to induce programmed cell death in protistan cells. Overall, the data collected demonstrate that the introduction of a methyl or a hydroxyl moiety to the aromatic ring of climacostol can effectively modulate its potency and its mechanism of action.
Collapse
Affiliation(s)
- Federico Buonanno
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage, and Tourism (ECHT), Università degli Studi di Macerata, 62100 Macerata, Italy.
| | - Elisabetta Catalani
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy.
| | - Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy.
| | - Francesca Proietti Serafini
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy.
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy.
| | - Anna Maria Fausto
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, 01100 Viterbo, Italy.
| | - Simone Giorgi
- School of Sciences and Technologies, Section of Chemistry, Università degli Studi di Camerino, 62032 Camerino, Italy.
| | - Gabriele Lupidi
- School of Sciences and Technologies, Section of Chemistry, Università degli Studi di Camerino, 62032 Camerino, Italy.
| | - Federico Vittorio Rossi
- School of Sciences and Technologies, Section of Chemistry, Università degli Studi di Camerino, 62032 Camerino, Italy.
| | - Enrico Marcantoni
- School of Sciences and Technologies, Section of Chemistry, Università degli Studi di Camerino, 62032 Camerino, Italy.
| | - Dezemona Petrelli
- School of Biosciences and Veterinary Medicine, Università degli Studi di Camerino, 62032 Camerino, Italy.
| | - Claudio Ortenzi
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage, and Tourism (ECHT), Università degli Studi di Macerata, 62100 Macerata, Italy.
| |
Collapse
|
9
|
Abstract
Imagine that in 1678 you are Christiaan Huygens or Antonie van Leeuwenhoek seeing paramecia swim gracefully across the field of view of your new microscope. These unicellular, free-living, and swimming cells might have remained a curiosity if not for the ability of H.S. Jennings (Behavior of the lower organisms. Indiana University Press, Bloomington, 1906) and T.M. Sonneborn (Proc Natl Acad Sci USA 23:378-385, 1937) to recognize them for their behavior and genetics, both Mendelian and non-Mendelian. Following many years of painstaking work by Sonneborn and other researchers, Paramecium now serves as a modern model organism that has made specific contributions to cell and molecular biology and development. We will review the continuing usefulness and contributions of Paramecium species in this chapter.Even without a microscope, Paramecium species is visible to the naked eye because of their size (50-300 μ long). Paramecia are holotrichous ciliates, that is, unicellular organisms in the phylum Ciliophora that are covered with cilia. It was the beating of these cilia that propelled them across the slides of the first microscopes and continue to fascinate us today. Over time, Paramecium became a favorite model organism for a large variety of studies. Denis Lyn has called Paramecium the "white rat" of the Ciliophora for their manipulability and amenity to research. We will touch upon the use of Paramecium species to examine swimming behavior, ciliary structure and function, ion channel function, basal body duplication and patterning, non-Mendelian cortical inheritance, programmed DNA rearrangements, regulated secretion and exocytosis, and cell trafficking. In particular, we will focus on the use of P. tetraurelia and P. caudatum.
Collapse
|
10
|
Buonanno F, Anesi A, Guella G, Ortenzi C. Blepharismins used for chemical defense in two ciliate species of the genus Blepharisma, B. stoltei and B. undulans (Ciliophora: Heterotrichida). THE EUROPEAN ZOOLOGICAL JOURNAL 2017. [DOI: 10.1080/24750263.2017.1353145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- F. Buonanno
- Laboratory of Protistology and Biology Education, Department of ECHT, University of Macerata , Italy
| | - A. Anesi
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento , Italy
| | - G. Guella
- Bioorganic Chemistry Laboratory, Department of Physics, University of Trento , Italy
- Biophysical Institute, CNR , Italy
| | - C. Ortenzi
- Laboratory of Protistology and Biology Education, Department of ECHT, University of Macerata , Italy
| |
Collapse
|
11
|
Buonanno F, Anesi A, Giuseppe GD, Guella G, Ortenzi C. Chemical Defense by Erythrolactones in the Euryhaline Ciliated Protist, Pseudokeronopsis erythrina. Zoolog Sci 2017; 34:42-51. [PMID: 28148211 DOI: 10.2108/zs160123] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pseudokeronopsis erythrina produces three new secondary metabolites, erythrolactones A2, B2 and C2, and their respective sulfate esters (A1, B1, C1), the structures of which have been recently elucidated on the basis of NMR spectroscopic data coupled to high resolution mass measurements (HR-MALDI-TOF). An analysis of the discharge of the protozoan pigment granules revealed that the non-sulfonated erythrolactones are exclusively stored in these cortical organelles, which are commonly used by a number of ciliates as chemical weapons in offense/defense interactions with prey and predators. We evaluated the toxic activity of pigment granule discharge on a panel of free-living ciliates and micro-invertebrates, and the activity of each single purified erythrolactone on three ciliate species. We also observed predator-prey interactions of P. erythrina with unicellular and multicellular predators. Experimental results confirm that only P. erythrina cells with discharged pigment granules were preferentially or exclusively hunted and eaten by at least some of its predators, whereas almost all intact (fully pigmented) cells remained alive. Our results indicate that erythrolactones are very effective as a chemical defense in P. erythrina.
Collapse
Affiliation(s)
- Federico Buonanno
- 1 Laboratory of Protistology and Biology Education, Department of ECHT, University of Macerata, Piazzale Bertelli, 1, 62100 Macerata, Italy
| | - Andrea Anesi
- 2 Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (Trento), Italy
| | - Graziano Di Giuseppe
- 3 Department of Biology, University of Pisa, Via Alessandro Volta 4, 56126, Pisa, Italy
| | - Graziano Guella
- 2 Bioorganic Chemistry Laboratory, Department of Physics, University of Trento, Via Sommarive 14, 38123 Povo (Trento), Italy.,4 Biophysical Institute, CNR, Via alla Cascata 56/C, 38123 Povo (Trento), Italy
| | - Claudio Ortenzi
- 1 Laboratory of Protistology and Biology Education, Department of ECHT, University of Macerata, Piazzale Bertelli, 1, 62100 Macerata, Italy
| |
Collapse
|
12
|
Catalani E, Proietti Serafini F, Zecchini S, Picchietti S, Fausto AM, Marcantoni E, Buonanno F, Ortenzi C, Perrotta C, Cervia D. Natural products from aquatic eukaryotic microorganisms for cancer therapy: Perspectives on anti-tumour properties of ciliate bioactive molecules. Pharmacol Res 2016; 113:409-420. [PMID: 27650755 DOI: 10.1016/j.phrs.2016.09.018] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 09/12/2016] [Accepted: 09/16/2016] [Indexed: 11/27/2022]
Abstract
Several modern drugs, including those for cancer therapy, have been isolated from natural sources, are based on natural products and its derivatives, or mime natural products. Some of them are in clinical use, others in clinical trials. The success of natural products in drug discovery is related to their biochemical characteristics and to the technologic methods used to study their feature. Natural compounds may acts as chemo-preventive agents and as factors that increase therapeutic efficacy of existing drugs, thus overcoming cancer cell drug resistance that is the main factor determining the failure in conventional chemotherapy. Water environment, because of its physical and chemical conditions, shows an extraordinary collection of natural biological substances with an extensive structural and functional diversity. The isolation of bioactive molecules has been reported from a great variety of aquatic organisms; however, the therapeutic application of molecules from eukaryotic microorganisms remains inadequately investigated and underexploited on a systematic basis. Herein we describe the biological activities in mammalian cells of selected substances isolated from ciliates, free-living protozoa common almost everywhere there is water, focusing on their anti-tumour actions and their possible therapeutic activity. In particular, we unveil the cellular and molecular machine mediating the effects of cell type-specific signalling protein pheromone Er-1 and secondary metabolites, i.e. euplotin C and climacostol, in cancer cells. To support the feasibility of climacostol-based approaches, we also present novel findings and report additional mechanisms of action using both in vitro and in vivo models of mouse melanomas, with the scope of highlighting new frontiers that can be explored also in a therapeutic perspective. The high skeletal chemical difference of ciliate compounds, their sustainability and availability, also through the use of new organic synthesis/modifications processes, and the results obtained so far in biological studies provide a rationale to consider some of them a potential resource for the design of new anti-cancer drugs.
Collapse
Affiliation(s)
- Elisabetta Catalani
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Francesca Proietti Serafini
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Silvia Zecchini
- Unit of Clinical Pharmacology, University Hospital "Luigi Sacco"-ASST Fatebenefratelli Sacco, Milano, Italy
| | - Simona Picchietti
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Anna Maria Fausto
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Enrico Marcantoni
- School of Sciences and Technologies, Section of Chemistry, Università degli Studi di Camerino, Italy
| | - Federico Buonanno
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage and Tourism, Università degli Studi di Macerata, Italy
| | - Claudio Ortenzi
- Laboratory of Protistology and Biology Education, Department of Education, Cultural Heritage and Tourism, Università degli Studi di Macerata, Italy
| | - Cristiana Perrotta
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, Italy.
| | - Davide Cervia
- Department for Innovation in Biological, Agro-food and Forest systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy; Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, Italy.
| |
Collapse
|
13
|
Plattner H. Trichocysts-Paramecium'sProjectile-like Secretory Organelles. J Eukaryot Microbiol 2016; 64:106-133. [DOI: 10.1111/jeu.12332] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 05/09/2016] [Accepted: 05/21/2016] [Indexed: 12/31/2022]
Affiliation(s)
- Helmut Plattner
- Department of Biology; University of Konstanz; PO Box M625 78457 Konstanz Germany
| |
Collapse
|
14
|
Climacostol reduces tumour progression in a mouse model of melanoma via the p53-dependent intrinsic apoptotic programme. Sci Rep 2016; 6:27281. [PMID: 27271364 PMCID: PMC4895139 DOI: 10.1038/srep27281] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 05/17/2016] [Indexed: 12/12/2022] Open
Abstract
Climacostol, a compound produced by the ciliated protozoan Climacostomum virens, displayed cytotoxic properties in vitro. This study demonstrates that it has anti-tumour potential. Climacostol caused a reduction of viability/proliferation of B16-F10 mouse melanoma cells, a rapidly occurring DNA damage, and induced the intrinsic apoptotic pathway characterised by the dissipation of the mitochondrial membrane potential, the translocation of Bax to the mitochondria, the release of Cytochrome c from the mitochondria, and the activation of Caspase 9-dependent cleavage of Caspase 3. The apoptotic mechanism of climacostol was found to rely on the up-regulation of p53 and its targets Noxa and Puma. In vivo analysis of B16-F10 allografts revealed a persistent inhibition of tumour growth rate when melanomas were treated with intra-tumoural injections of climacostol. In addition, it significantly improved the survival of transplanted mice, decreased tumour weight, induced a remarkable reduction of viable cells inside the tumour, activated apoptosis and up-regulated the p53 signalling network. Importantly, climacostol toxicity was more selective against tumour than non-tumour cells. The anti-tumour properties of climacostol and the molecular events associated with its action indicate that it is a powerful agent that may be considered for the design of pro-apoptotic drugs for melanoma therapy.
Collapse
|
15
|
Plattner H. Signalling in ciliates: long- and short-range signals and molecular determinants for cellular dynamics. Biol Rev Camb Philos Soc 2015; 92:60-107. [PMID: 26487631 DOI: 10.1111/brv.12218] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 07/28/2015] [Accepted: 08/21/2015] [Indexed: 12/30/2022]
Abstract
In ciliates, unicellular representatives of the bikont branch of evolution, inter- and intracellular signalling pathways have been analysed mainly in Paramecium tetraurelia, Paramecium multimicronucleatum and Tetrahymena thermophila and in part also in Euplotes raikovi. Electrophysiology of ciliary activity in Paramecium spp. is a most successful example. Established signalling mechanisms include plasmalemmal ion channels, recently established intracellular Ca2+ -release channels, as well as signalling by cyclic nucleotides and Ca2+ . Ca2+ -binding proteins (calmodulin, centrin) and Ca2+ -activated enzymes (kinases, phosphatases) are involved. Many organelles are endowed with specific molecules cooperating in signalling for intracellular transport and targeted delivery. Among them are recently specified soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), monomeric GTPases, H+ -ATPase/pump, actin, etc. Little specification is available for some key signal transducers including mechanosensitive Ca2+ -channels, exocyst complexes and Ca2+ -sensor proteins for vesicle-vesicle/membrane interactions. The existence of heterotrimeric G-proteins and of G-protein-coupled receptors is still under considerable debate. Serine/threonine kinases dominate by far over tyrosine kinases (some predicted by phosphoproteomic analyses). Besides short-range signalling, long-range signalling also exists, e.g. as firmly installed microtubular transport rails within epigenetically determined patterns, thus facilitating targeted vesicle delivery. By envisaging widely different phenomena of signalling and subcellular dynamics, it will be shown (i) that important pathways of signalling and cellular dynamics are established already in ciliates, (ii) that some mechanisms diverge from higher eukaryotes and (iii) that considerable uncertainties still exist about some essential aspects of signalling.
Collapse
Affiliation(s)
- Helmut Plattner
- Department of Biology, University of Konstanz, PO Box M625, 78457, Konstanz, Germany
| |
Collapse
|
16
|
Gosselin FP, Neetzow P, Paak M. Buckling of a beam extruded into highly viscous fluid. PHYSICAL REVIEW. E, STATISTICAL, NONLINEAR, AND SOFT MATTER PHYSICS 2014; 90:052718. [PMID: 25493827 DOI: 10.1103/physreve.90.052718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Indexed: 06/04/2023]
Abstract
Inspired by microscopic Paramecia which use trichocyst extrusion to propel themselves away from thermal aggression, we propose a macroscopic experiment to study the stability of a slender beam extruded in a highly viscous fluid. Piano wires were extruded axially at constant speed in a tank filled with corn syrup. The force necessary to extrude the wire was measured to increase linearly at first until the compressive viscous force causes the wire to buckle. A numerical model, coupling a lengthening elastica formulation with resistive-force theory, predicts a similar behavior. The model is used to study the dynamics at large time when the beam is highly deformed. It is found that at large time, a large deformation regime exists in which the force necessary to extrude the beam at constant speed becomes constant and length independent. With a proper dimensional analysis, the beam can be shown to buckle at a critical length based on the extrusion speed, the bending rigidity, and the dynamic viscosity of the fluid. Hypothesizing that the trichocysts of Paramecia must be sized to maximize their thrust per unit volume as well as avoid buckling instabilities, we predict that their bending rigidity must be about 3×10^{-9}Nμm^{2}. The verification of this prediction is left for future work.
Collapse
Affiliation(s)
- F P Gosselin
- Departement of Mechanical Engineering, École Polytechnique de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, Canada H3T 1J4
| | - P Neetzow
- Departement of Mechanical Engineering, École Polytechnique de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, Canada H3T 1J4
| | - M Paak
- Departement of Mechanical Engineering, École Polytechnique de Montréal, 2900 Boulevard Edouard-Montpetit, Montréal, Québec, Canada H3T 1J4
| |
Collapse
|
17
|
Zhang X, Yang L, Wang Y, Ni B, Al-Farraj SA, Fan X, Gu F. Observations on the ultrastructure of extrusomes in the hypotrichous ciliateArchitricha indica(Protist, Ciliophora). Anim Cells Syst (Seoul) 2014. [DOI: 10.1080/19768354.2014.906500] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
18
|
Buonanno F, Anesi A, Guella G, Kumar S, Bharti D, La Terza A, Quassinti L, Bramucci M, Ortenzi C. Chemical Offense by Means of Toxicysts in the Freshwater Ciliate, Coleps hirtus. J Eukaryot Microbiol 2014; 61:293-304. [DOI: 10.1111/jeu.12106] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 01/02/2014] [Accepted: 01/02/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Federico Buonanno
- Laboratory of Protistology and Biology Education; University of Macerata; P.le Bertelli 1 62100 Macerata Italy
| | - Andrea Anesi
- Department of Physics; Bioorganic Chemistry Laboratory; University of Trento; 38123 Povo Trento Italy
| | - Graziano Guella
- Department of Physics; Bioorganic Chemistry Laboratory; University of Trento; 38123 Povo Trento Italy
| | - Santosh Kumar
- School of Environmental Sciences; Section of Animal and Molecular Ecology; University of Camerino; Via Gentile III da Varano 62032 Camerino (MC) Italy
- Ciliate Biology Laboratory; Sri Guru Tegh Bahadur Khalsa College; University of Delhi; Delhi 110007 India
| | - Daizy Bharti
- School of Environmental Sciences; Section of Animal and Molecular Ecology; University of Camerino; Via Gentile III da Varano 62032 Camerino (MC) Italy
- Ciliate Biology Laboratory; Sri Guru Tegh Bahadur Khalsa College; University of Delhi; Delhi 110007 India
| | - Antonietta La Terza
- School of Environmental Sciences; Section of Animal and Molecular Ecology; University of Camerino; Via Gentile III da Varano 62032 Camerino (MC) Italy
| | - Luana Quassinti
- Section of Physiology; School of Pharmacy; University of Camerino; Via Gentile III da Varano 62032 Camerino (MC) Italy
| | - Massimo Bramucci
- Section of Physiology; School of Pharmacy; University of Camerino; Via Gentile III da Varano 62032 Camerino (MC) Italy
| | - Claudio Ortenzi
- Laboratory of Protistology and Biology Education; University of Macerata; P.le Bertelli 1 62100 Macerata Italy
| |
Collapse
|