1
|
Wasim M, Khan HN, Ayesha H, Iqbal M, Tawab A, Irfan M, Kanhai W, Goorden SMI, Stroomer L, Salomons G, Vaz FM, Karnebeek CDMV, Awan FR. Identification of three novel pathogenic mutations in cystathionine beta-synthase gene of Pakistani intellectually disabled patients. J Pediatr Endocrinol Metab 2022; 35:325-332. [PMID: 34905667 DOI: 10.1515/jpem-2021-0508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 11/19/2021] [Indexed: 11/15/2022]
Abstract
BACKGROUND Classical homocystinuria (HCU) is an autosomal recessive inborn error of metabolism, which is caused by the cystathionine-β-synthase (CBS: encoded by CBS) deficiency. Symptoms of untreated classical HCU patients include intellectual disability (ID), ectopia lentis and long limbs, along with elevated plasma methionine, and homocysteine. METHODS A total of 429 ID patients (age range: 1.6-23 years) were sampled from Northern areas of Punjab, Pakistan. Biochemical and genetic analyses were performed to find classical HCU disease in ID patients. RESULTS Biochemically, nine patients from seven unrelated families were identified with high levels of plasma methionine and homocysteine. Targeted exonic analysis of CBS confirmed seven causative homozygous mutations; of which three were novel missense mutations (c.451G>T; p.Gly151Trp, c.975G>C; p.Lys325Asn and c.1039 + 1G>T splicing), and four were recurrent variants (c.451 + 1G>A; IVS4 + 1 splicing, c.770C>T; p.Thr257Met, c.808_810del GAG; p.Glu270del and c.752T>C; p.Leu251Pro). Treatment of patients was initiated without further delay with pyridoxine, folic acid, cobalamin, and betaine as well as dietary protein restriction. The immediate impact was noticed in behavioral improvement, decreased irritability, improved black hair color, and socialization. Overall, health outcomes in this disorder depend on the age and symptomatology at the time of treatment initiation. CONCLUSIONS With personalized treatment and care, such patients can reach their full potential of living as healthy a life as possible. This screening study is one of the pioneering initiatives in Pakistan which would help to minimize the burden of such treatable inborn errors of metabolism in the intellectually disabled patients.
Collapse
Affiliation(s)
- Muhammad Wasim
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- NIBGE-College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Haq N Khan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- NIBGE-College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
- Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan
| | - Hina Ayesha
- Department of Pediatrics, Allied & DHQ Hospitals, Faisalabad Medical University (FMU/PMC), Faisalabad, Pakistan
| | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- NIBGE-College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Abdul Tawab
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- NIBGE-College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| | - Muhammad Irfan
- Department of Pediatrics, Allied & DHQ Hospitals, Faisalabad Medical University (FMU/PMC), Faisalabad, Pakistan
| | - Warsha Kanhai
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Duivendrecht, The Netherlands
| | - Susanna M I Goorden
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Duivendrecht, The Netherlands
| | - Lida Stroomer
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Duivendrecht, The Netherlands
| | - Gajja Salomons
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Duivendrecht, The Netherlands
| | - Frederic M Vaz
- Department of Clinical Chemistry, Laboratory Genetic Metabolic Diseases, Amsterdam University Medical Centers, Duivendrecht, The Netherlands
- Departments of Pediatrics and Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Clara D M van Karnebeek
- Departments of Pediatrics and Clinical Genetics, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Fazli R Awan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- NIBGE-College, Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Islamabad, Pakistan
| |
Collapse
|
2
|
Márquez-Caraveo ME, Ibarra-González I, Rodríguez-Valentín R, Ramírez-García MÁ, Pérez-Barrón V, Lazcano-Ponce E, Vela-Amieva M. Brief Report: Delayed Diagnosis of Treatable Inborn Errors of Metabolism in Children with Autism and Other Neurodevelopmental Disorders. J Autism Dev Disord 2021; 51:2124-2131. [PMID: 32880084 DOI: 10.1007/s10803-020-04682-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The objective of our study was to evaluate the frequency of treatable inborn errors of metabolism (IEM) in a clinical sample of Mexican children and adolescents with neurodevelopmental disorders (NDD). Amino acids and acylcarnitines in blood samples of 51 unrelated children and adolescents were analyzed by tandem mass spectrometry to detect treatable IEM of small molecules. One patient with isovaleric acidemia and autism spectrum disorder (ASD) and another with beta-ketothiolase deficiency and ASD/intellectual disability/attention-deficit/hyperactivity disorder (ADHD) were diagnosed, indicating an IEM frequency of 3.9% (1:26 subjects). The high frequency of treatable IEM indicates the need to perform a minimum metabolic screening as part of the diagnostic approach for patient with NDD, particularly when newborn screening programs are limited to a few disorders.
Collapse
Affiliation(s)
- María Elena Márquez-Caraveo
- Hospital Psiquiátrico Infantil "Dr. Juan N. Navarro", Secretaría de Salud, San Buenaventura 86, Col. Belisario Domínguez, CP 14080, Mexico, Mexico
| | - Isabel Ibarra-González
- Unidad de Genética de la Nutrición, Instituto de Investigaciones Biomédicas, UNAM- Instituto Nacional de Pediatría, Av. IMAN 1, Col. Insurgentes-Cuicuilco, Coyoacán, CP 04530, Mexico, Mexico
| | - Rocío Rodríguez-Valentín
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Universidad 655, Col. Santa María Ahuacatitlán, Cerrada los Pinos y Caminera, CP 62100, Cuernavaca Morelos, Mexico
| | - Miguel Ángel Ramírez-García
- Hospital Psiquiátrico Infantil "Dr. Juan N. Navarro", Secretaría de Salud, San Buenaventura 86, Col. Belisario Domínguez, CP 14080, Mexico, Mexico.,Departamento de Genética, Instituto Nacional de Neurología y Neurocirugía, Secretaría de Salud, Av. Insurgentes Sur 3877, Col. La Fama, CP 14269, Mexico, Mexico
| | - Verónica Pérez-Barrón
- Hospital Psiquiátrico Infantil "Dr. Juan N. Navarro", Secretaría de Salud, San Buenaventura 86, Col. Belisario Domínguez, CP 14080, Mexico, Mexico
| | - Eduardo Lazcano-Ponce
- Centro de Investigación en Salud Poblacional, Instituto Nacional de Salud Pública, Universidad 655, Col. Santa María Ahuacatitlán, Cerrada los Pinos y Caminera, CP 62100, Cuernavaca Morelos, Mexico
| | - Marcela Vela-Amieva
- Laboratorio de Errores Innatos del Metabolismo y Tamiz, Instituto Nacional de Pediatría, Secretaría de Salud, Av. IMAN #1, piso 9, Col. Insurgentes-Cuicuilco, Coyoacán, CP 04530, Mexico, Mexico.
| |
Collapse
|
3
|
Wasim M, Khan HN, Ayesha H, Tawab A, Habib FE, Asi MR, Iqbal M, Awan FR. High levels of blood glutamic acid and ornithine in children with intellectual disability. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2020; 68:609-614. [PMID: 36210897 PMCID: PMC9542416 DOI: 10.1080/20473869.2020.1858520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/28/2020] [Accepted: 11/28/2020] [Indexed: 06/16/2023]
Abstract
Objectives: Aminoacidopathies are inborn errors of metabolism (IEMs) that cause intellectual disability in children. Luckily, aminoacidopathies are potentially treatable, if diagnosed earlier in life. The focus of this study was the screening of aminoacidopathies in a cohort of patients suspected for IEMs. Methods: Blood samples from healthy (IQ > 90; n = 391) and intellectually disabled (IQ < 70; n = 409) children (suspected for IEMs) were collected from different areas of Northern Punjab, Pakistan. An analytical HPLC assay was used for the screening of plasma amino acids. Results: All the samples (n = 800) were analyzed on HPLC and forty-three out of 409 patient samples showed abnormal amino acid profiles mainly in the levels of glutamic acid, ornithine and methionine. Plasma concentration (Mean ± SD ng/mL) were significantly high in 40 patients for glutamic acid (patients: 165 ± 38 vs. controls: 57 ± 8, p < 0.00001) and ornithine (patients: 3177 ± 937 vs. controls: 1361 ± 91, p < 0.0001). Moreover, 3 patients showed abnormally high (53.3 ± 8.6 ng/mL) plasma levels of methionine. Conclusion: In conclusion, biochemical analysis of samples from such patients at the metabolites level could reveal the underlying diseases which could be confirmed through advanced biochemical and genetic analyses. Thus, treatment to some of such patients could be offered. Thus burden of intellectual disability caused by such rare metabolic diseases could be reduced from the target populations.
Collapse
Affiliation(s)
- Muhammad Wasim
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Pakistan
| | - Haq Nawaz Khan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Pakistan
| | - Hina Ayesha
- Department of Pediatrics, DHQ/Allied Hospitals, Punjab Medical College (PMC, Faisalabad Medical University (FMU), Faisalabad, Pakistan
| | - Abdul Tawab
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Pakistan
| | - Fazal e Habib
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | | | - Mazhar Iqbal
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Pakistan
| | - Fazli Rabbi Awan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Nilore, Pakistan
| |
Collapse
|
4
|
Wasim M, Khan HN, Ayesha H, Goorden SMI, Vaz FM, van Karnebeek CDM, Awan FR. Biochemical Screening of Intellectually Disabled Patients: A Stepping Stone to Initiate a Newborn Screening Program in Pakistan. Front Neurol 2019; 10:762. [PMID: 31379716 PMCID: PMC6650569 DOI: 10.3389/fneur.2019.00762] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 07/01/2019] [Indexed: 12/30/2022] Open
Abstract
Inborn errors of metabolism (IEMs) are rare group of genetic disorders comprising of more than 1,000 different types. Around 200 of IEMs are potentially treatable through diet, pharmacological and other therapies, if diagnosed earlier in life. IEMs can be diagnosed early through newborn screening (NBS) programs, which are in place in most of the developed countries. However, establishing a NBS in a developing country is a challenging task due to scarcity of disease related data, large population size, poor economy, and burden of other common disorders. Since, not enough data is available for the prevalence of IEMs in Pakistan; therefore, in this study, we set out to find the prevalence of various treatable IEMs in a cohort of intellectually disabled patients suspected for IEMs, which will help us to initiate a NBS program for the most frequent IEMs in Pakistan. Therefore, a total of 429 intellectually disabled (IQ <70) patient samples were collected from Pakistan. A subset of 113 patient samples was selected based on the clinical information for the detailed biochemical screening. Advance analytical techniques like, Amino Acid Analyzer, GC-MS, UHPLC-MS, and MS/MS were used to screen for different treatable IEMs like aminoacidopathies, fatty acid β-oxidation disorders and mucopolysaccharidoses (MPS) etc. A total of 14 patients were diagnosed with an IEM i.e., 9 with homocystinuria, 2 with MPS, 2 with Guanidinoacetate methyltransferase (GAMT) deficiency and 1 with sitosterolemia. These IEMs are found frequent in the collected patient samples from Pakistan. Thus, present study can help to take an initiative step to start a NBS program in Pakistan, especially for the homocystinuria having highest incidence among aminoacidopathies in the studied patients, and which is amenable to treatment. This endeavor will pave the way for a healthier life of affected patients and will lessen the burden on their families and society.
Collapse
Affiliation(s)
- Muhammad Wasim
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Haq Nawaz Khan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| | - Hina Ayesha
- Department of Pediatrics, DHQ and Allied Hospitals, Faisalabad Medical University (FMU/PMC), Faisalabad, Pakistan
| | - Susanna M I Goorden
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Frederic M Vaz
- Laboratory Genetic Metabolic Diseases, Department of Clinical Chemistry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Clara D M van Karnebeek
- Departments of Pediatrics and Clinical Genetics, Emma Children's Hospital, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Fazli Rabbi Awan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Pakistan Institute of Engineering and Applied Sciences, Islamabad, Pakistan
| |
Collapse
|
5
|
Santiago-Olivares C, Rivera-Toledo E, Gómez B. Nitric oxide production is downregulated during respiratory syncytial virus persistence by constitutive expression of arginase 1. Arch Virol 2019; 164:2231-2241. [DOI: 10.1007/s00705-019-04259-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 03/24/2019] [Indexed: 12/25/2022]
|
6
|
Wasim M, Khan HN, Ayesha H, Awan FR. Biochemical screening of intellectually disabled and healthy children in Punjab, Pakistan: differences in liver function test and lipid profiles. INTERNATIONAL JOURNAL OF DEVELOPMENTAL DISABILITIES 2019; 66:190-195. [PMID: 34141381 PMCID: PMC8142844 DOI: 10.1080/20473869.2018.1533084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/28/2018] [Accepted: 09/28/2018] [Indexed: 06/12/2023]
Abstract
Objectives: Inborn errors of metabolism (IEMs) are rare genetic disorders. Generally, IEMs are untreatable; however, some IEMs causing intellectual disability are potentially treatable if diagnosed earlier. In this study, levels of some clinically important biochemical parameters in intellectually disabled children suspected for IEMs were tested to see their association with intellectual disability, which could be helpful in preliminary screening. Methods: This comparative cross-sectional observational study was carried out from 2014 to 2017. Blood samples from 800 boys and girls (aged 4-24 years) were collected, of which 391 were healthy (IQ >90) and 409 were intellectually disabled (IQ <70) children with unknown cause. Clinically important (Liver and kidney enzymes etc.) biochemical parameters were analyzed in sera samples using commercial kits on semi-automated clinical chemistry analyzer. Results: Serum analysis showed the levels of ALP (p < 0.00001), ASAT (p = 0.001), ALAT (p = 0.016), albumin (p < 0.001), uric acid (p < 0.001), cholesterol (p < 0.001), triglycerides (p < 0.001), and hemoglobin (p = 0.005) were significantly different between healthy and intellectually disabled children. Conclusion: Changes in the liver function test and lipid profile parameters were significantly different in children with intellectual disability; however, it requires further detailed analysis for complete characterization of these diseases.
Collapse
Affiliation(s)
- Muhammad Wasim
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Haq Nawaz Khan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Hina Ayesha
- Department of Pediatrics, DHQ Hospital, Faisalabad Medical University, Faisalabad, Pakistan
| | - Fazli Rabbi Awan
- Health Biotechnology Division, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
- Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| |
Collapse
|