1
|
Nikkey, Swami S, Sharma N, Saini A. Captivating nano sensors for mercury detection: a promising approach for monitoring of toxic mercury in environmental samples. RSC Adv 2024; 14:18907-18941. [PMID: 38873550 PMCID: PMC11167620 DOI: 10.1039/d4ra02787f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024] Open
Abstract
Mercury, a widespread highly toxic environmental pollutant, poses significant risks to both human health and ecosystems. It commonly infiltrates the food chain, particularly through fish, and water resources via multiple pathways, leading to adverse impacts on human health and the environment. To monitor and keep track of mercury ion levels various methods traditionally have been employed. However, conventional detection techniques are often hindered by limitations. In response to challenges, nano-sensors, capitalizing on the distinctive properties of nanomaterials, emerge as a promising solution. This comprehensive review provides insight into the extensive spectrum of nano-sensor development for mercury detection. It encompasses various types of nanomaterials such as silver, gold, silica, magnetic, quantum dot, carbon dot, and electrochemical variants, elucidating their sensing mechanisms and fabrication. The aim of this review is to offer an in-depth exploration to researchers, technologists, and the scientific community, and understanding of the evolving landscape in nano-sensor development for mercury sensing. Ultimately, this review aims to encourage innovation in the pursuit of efficient and reliable solutions for mercury detection, thereby contributing to advancements in environmental protection and public health.
Collapse
Affiliation(s)
- Nikkey
- Department of Chemistry, Chandigarh University NH-05, Ludhiana - Chandigarh State Hwy Mohali Punjab 140413 India
| | - Suman Swami
- Department of Chemistry, Chandigarh University NH-05, Ludhiana - Chandigarh State Hwy Mohali Punjab 140413 India
| | - Neelam Sharma
- Department of Chemistry, Manipal University Jaipur Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza Jaipur Rajasthan 303007 India
| | - Ajay Saini
- Central Analytical Facilities, Manipal University Jaipur Jaipur-Ajmer Express Highway, Dehmi Kalan, Near GVK Toll Plaza Jaipur Rajasthan 303007 India
| |
Collapse
|
2
|
Sarkar DJ, Behera BK, Parida PK, Aralappanavar VK, Mondal S, Dei J, Das BK, Mukherjee S, Pal S, Weerathunge P, Ramanathan R, Bansal V. Aptamer-based NanoBioSensors for seafood safety. Biosens Bioelectron 2023; 219:114771. [PMID: 36274429 DOI: 10.1016/j.bios.2022.114771] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/16/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022]
Abstract
Chemical and biological contaminants are of primary concern in ensuring seafood safety. Rapid detection of such contaminants is needed to keep us safe from being affected. For over three decades, immunoassay (IA) technology has been used for the detection of contaminants in seafood products. However, limitations inherent to antibody generation against small molecular targets that cannot elicit an immune response, along with the instability of antibodies under ambient conditions greatly limit their wider application for developing robust detection and monitoring tools, particularly for non-biomedical applications. As an alternative, aptamer-based biosensors (aptasensors) have emerged as a powerful yet robust analytical tool for the detection of a wide range of analytes. Due to the high specificity of aptamers in recognising targets ranging from small molecules to large proteins and even whole cells, these have been suggested to be viable molecular recognition elements (MREs) in the development of new diagnostic and biosensing tools for detecting a wide range of contaminants including heavy metals, antibiotics, pesticides, pathogens and biotoxins. In this review, we discuss the recent progress made in the field of aptasensors for detection of contaminants in seafood products with a view of effectively managing their potential human health hazards. A critical outlook is also provided to facilitate translation of aptasensors from academic laboratories to the mainstream seafood industry and consumer applications.
Collapse
Affiliation(s)
- Dhruba Jyoti Sarkar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Bijay Kumar Behera
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India.
| | - Pranaya Kumar Parida
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Vijay Kumar Aralappanavar
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Shirsak Mondal
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Jyotsna Dei
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Basanta Kumar Das
- Aquatic Environmental Biotechnology and Nanotechnology Division, ICAR-Central Inland Fisheries Research Institute, Barrackpore, 700120, West Bengal, India
| | - Subhankar Mukherjee
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Souvik Pal
- Centre for Development of Advance Computing, Kolkata, 700091, West Bengal, India
| | - Pabudi Weerathunge
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Rajesh Ramanathan
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia
| | - Vipul Bansal
- Sir Ian Potter NanoBioSensing Facility, NanoBiotechnology Research Laboratory, School of Science, RMIT University, Melbourne, VIC, 3000, Australia.
| |
Collapse
|
3
|
Jiang G, Li Y, Liu J, Liu L, Pi F. Progress on aptamer-based SERS sensors for food safety and quality assessment: methodology, current applications and future trends. Crit Rev Food Sci Nutr 2022; 64:783-800. [PMID: 35943403 DOI: 10.1080/10408398.2022.2108370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
It is well known that food safety has aroused extensive attentions from governments to researchers and to food industries. As a versatile technology based on molecular interactions, aptamer sensors which could specifically identify a wide range of food contaminants have been extensively studied in recent years. Surface-enhanced Raman spectroscopy integrated aptamer combines the advantages of both technologies, not only in the ability to specifically identify a wide range of food contaminants, but also in the ultra-high sensitivity, simplicity, portable and speed. To provide beneficial insights into the evaluation techniques in the field of food safety, we offer a comprehensive review on the design strategies for aptamer-SERS sensors in different scenarios, including non-nucleic acid amplification methods ("on/off" mode, sandwich mode, competition model and catalytic model) and nucleic acid amplification methods (hybridization chain reaction, rolling circle amplification, catalytic hairpin assembly). Meanwhile, a special attention is paid to the application of aptamer-SERS sensors in biological (foodborne pathogenic, bacteria and mycotoxins) and chemical contamination (drug residues, metal ions, and food additives) of food matrix. Finally, the challenges and prospects of developing reliable aptamer-SERS sensors for food safety were discussed, which are expected to offer a strong guidance for further development and extended applications.
Collapse
Affiliation(s)
- Guoyong Jiang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Yu Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Jinghan Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| | - Ling Liu
- Wuxi Institute of Technology, Wuxi, Jiangsu, People's Republic of China
| | - Fuwei Pi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
- Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, Jiangsu, People's Republic of China
| |
Collapse
|
6
|
HAN SQGW, CHEN X, ZHANG C, ZHAO H, LIN S, ZHANG Y, HASI WLJ. Rapid and Sensitive Surface-enhanced Raman Spectroscopy Method for Determination of Ketamine in Urine. ANAL SCI 2019; 35:1209-1213. [DOI: 10.2116/analsci.19p199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Si-qin-gao-wa HAN
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology
- Affiliated Hospital, Inner Mongolia University for the Nationalities
| | - Xinxuan CHEN
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology
| | - Chen ZHANG
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology
| | - Hang ZHAO
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology
| | - Shuang LIN
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology
| | - Yanhua ZHANG
- The Second Affiliated Hospital of Harbin Medical University
| | - Wu-Li-Ji HASI
- National Key Laboratory of Science and Technology on Tunable Laser, Harbin Institute of Technology
| |
Collapse
|