1
|
Sajjadi M, Nasrollahzadeh M, Sattari MR, Ghafuri H, Jaleh B. Sulfonic acid functionalized cellulose-derived (nano)materials: Synthesis and application. Adv Colloid Interface Sci 2024; 328:103158. [PMID: 38718629 DOI: 10.1016/j.cis.2024.103158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 03/01/2024] [Accepted: 04/10/2024] [Indexed: 05/26/2024]
Abstract
The preparation/application of heterogeneous (nano)materials from natural resources has currently become increasingly fascinating for researchers. Cellulose is the most abundant renewable polysaccharide on earth. The unique physicochemical, structural, biological, and environmental properties of this natural biopolymer have led to its increased application in many fields. The more desirable features of cellulose-based (nano)materials such as biodegradability, renewability, biocompatibility, cost-effectiveness, simplicity of preparation, environmentally friendly nature, and widespread range of applications have converted them into promising compounds in medicine, catalysis, biofuel cells, and water/wastewater treatment processes. Functionalized cellulose-based (nano)materials containing sulfonic acid groups may prove to be one of the most promising sustainable bio(nano)materials of modern times in the field of cellulose science and (nano)technology owing to their intrinsic features, high crystallinity, high specific surface area, abundance, reactivity, and recyclability. In this review, the developments in the application of sulfonated cellulose-based (nano)materials containing sulfonic acid (-SO3H) groups in catalysis, water purification, biological/biomedical, environmental, and fuel cell applications have been reported. This review provides an overview of the methods used to chemically modify cellulose and/or cellulose derivatives in different forms, including nanocrystals, hydrogels, films/membranes, and (nano)composites/blends by introducing sulfonate groups on the cellulose backbone, focusing on diverse sulfonating agents utilized and substitution regioselectivity, and highlights their potential applications in different industries for the generation of alternative energies and products.
Collapse
Affiliation(s)
- Mohaddeseh Sajjadi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | | | | - Hossein Ghafuri
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Babak Jaleh
- Department of Physics, Faculty of Science, Bu-Ali Sina University, Hamedan 65174, Iran
| |
Collapse
|
2
|
Zhang M, Liu Y, Yin Z, Feng D, Lv H. Preparation and adsorption properties of magnetic chitosan/sludge biochar composites for removal of Cu 2+ ions. Sci Rep 2023; 13:20937. [PMID: 38017022 PMCID: PMC10684598 DOI: 10.1038/s41598-023-46815-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/06/2023] [Indexed: 11/30/2023] Open
Abstract
The magnetic chitosan/sludge biochar composite adsorbent was prepared using chitosan, Fe3O4, and sludge biochar as raw materials. The composite adsorbent was able to achieve rapid solid-liquid separation under an applied magnetic field. The morphology and microstructure of the composite adsorbent were characterized by FTIR, XRD, SEM, VSM, and BET analysis. The adsorption performance of the composite adsorbent on Cu2+ was investigated through static adsorption experiments, and the effects of adsorbent dosage, initial concentration of Cu2+, initial pH of the solution, and adsorption temperature on the adsorption efficiency of Cu2+ were discussed. The results showed that chitosan and Fe3O4 were successfully loaded on sludge biochar. When the initial concentration of Cu2+ was 30 mg/L, the dosage of the magnetic chitosan/sludge biochar composite material was 0.05 g, the adsorption time was 180 min, pH was 5, and the temperature was room temperature, the maximum removal rate of Cu2+ reached 99.77%, and the maximum adsorption capacity was 55.16 mg/g. The adsorption kinetics and adsorption isotherm data fitted well with the pseudo-second-order kinetic model and Langmuir adsorption isotherm model, indicating that the adsorption process was chemisorption with monolayer coverage.
Collapse
Affiliation(s)
- Meng Zhang
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, School of Resources and Environment, Yili Normal University, Xinjiang, 835000, Yining, China
| | - Yunqing Liu
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, School of Resources and Environment, Yili Normal University, Xinjiang, 835000, Yining, China.
| | - Zhizhen Yin
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, School of Resources and Environment, Yili Normal University, Xinjiang, 835000, Yining, China.
| | - Dan Feng
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, School of Resources and Environment, Yili Normal University, Xinjiang, 835000, Yining, China
| | - Hui Lv
- Key Laboratory of Pollutant Chemistry and Environmental Treatment, School of Resources and Environment, Yili Normal University, Xinjiang, 835000, Yining, China
| |
Collapse
|
3
|
Hamza MF, Guibal E, Althumayri K, Vincent T, Yin X, Wei Y, Li W. New Process for the Sulfonation of Algal/PEI Biosorbent for Enhancing Sr(II) Removal from Aqueous Solutions-Application to Seawater. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27207128. [PMID: 36296719 PMCID: PMC9611074 DOI: 10.3390/molecules27207128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 01/24/2023]
Abstract
Sulfonic resins are highly efficient cation exchangers widely used for metal removal from aqueous solutions. Herein, a new sulfonation process is designed for the sulfonation of algal/PEI composite (A*PEI, by reaction with 2-propylene-1-sulfonic acid and hydroxylamine-O-sulfonic acid). The new sulfonated functionalized sorbent (SA*PEI) is successfully tested in batch systems for strontium recovery first in synthetic solutions before investigating with multi-component solutions and final validation with seawater samples. The chemical modification of A*PEI triples the sorption capacity for Sr(II) at pH 4 with a removal rate of up to 7% and 58% for A*PEI and SA*PEI, respectively (with SD: 0.67 g L-1). FTIR shows the strong contribution of sulfonate groups for the functionalized sorbent (in addition to amine and carboxylic groups from the support). The sorption is endothermic (increase in sorption with temperature). The sulfonation improves thermal stability and slightly enhances textural properties. This may explain the fast kinetics (which are controlled by the pseudo-first-order rate equation). The sulfonated sorbent shows a remarkable preference for Sr(II) over competitor mono-, di-, and tri-valent metal cations. Sorption properties are weakly influenced by the excess of NaCl; this can explain the outstanding sorption properties in the treatment of seawater samples. In addition, the sulfonated sorbent shows excellent stability at recycling (for at least 5 cycles), with a loss in capacity of around 2.2%. These preliminary results show the remarkable efficiency of the sorbent for Sr(II) removal from complex solutions (this could open perspectives for the treatment of contaminated seawater samples).
Collapse
Affiliation(s)
- Mohammed F. Hamza
- School of Nuclear Science and Technology, University of South China, HengYang 421001, China
- Nuclear Materials Authority, P.O. Box 530, El-Maadi, Cairo 4710030, Egypt
| | - Eric Guibal
- Polymers Composites and Hybrids, IMT—Mines Ales, F-30360 Ales, France
- Correspondence: (E.G.); (W.L.); Tel.: +33-0-466782734 (E.G.); +86-18845568076 (W.L.)
| | - Khalid Althumayri
- Department of Chemistry, College of Science, Taibah University, Al-Madinah Al-Munawarah 30002, Saudi Arabia
| | - Thierry Vincent
- Polymers Composites and Hybrids, IMT—Mines Ales, F-30360 Ales, France
| | - Xiangbiao Yin
- School of Nuclear Science and Technology, University of South China, HengYang 421001, China
| | - Yuezhou Wei
- School of Nuclear Science and Technology, University of South China, HengYang 421001, China
| | - Wenlong Li
- School of Nuclear Science and Technology, University of South China, HengYang 421001, China
- Correspondence: (E.G.); (W.L.); Tel.: +33-0-466782734 (E.G.); +86-18845568076 (W.L.)
| |
Collapse
|
4
|
Liu J, Chen Y, Jiang S, Huang J, Lv Y, Liu Y, Liu M. Rapid removal of Cr(III) from high-salinity wastewater by cellulose-g-poly-(acrylamide-co-sulfonic acid) polymeric bio-adsorbent. Carbohydr Polym 2021; 270:118356. [PMID: 34364601 DOI: 10.1016/j.carbpol.2021.118356] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 05/22/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
A cellulose-g-poly-(acrylamide-co-sulfonic acid) polymeric bio-adsorbent (CASA) was prepared by grafting copolymerization, and used to adsorb Cr(III) from leather wastewater. The SEM, XRD, FTIR, and XPS results showed that CASA contains many spherical particles and functional groups such as NH2, CO, and HSO3. The adsorption experiments revealed that CASA presented excellent adsorption performance for Cr(III) (274.69 mg/g of max adsorption capacity) from high-salinity wastewater, which was much better than other reported adsorbents with different structures. Meanwhile, adsorption equilibrium could be reached within 10 min due to the introduction of abundant sulfonic acid groups on its surface. In addition, the adsorption process followed the Langmuir adsorption isotherm, and the experimental data conformed to the pseudo-second-order kinetics model. Moreover, the main adsorption mechanisms include chelation, electrostatic interactions, and cation exchange, which provide an important theoretical basis for the removal of toxic inorganic pollutants from leather wastewater.
Collapse
Affiliation(s)
- Jianting Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Resources, Fuzhou University, Fuzhou 350116, Fujian, China; Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, Fujian, China
| | - Yicong Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Resources, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Shuyu Jiang
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Resources, Fuzhou University, Fuzhou 350116, Fujian, China
| | - Jianhui Huang
- Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, Fujian, China
| | - Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Resources, Fuzhou University, Fuzhou 350116, Fujian, China.
| | - Yifan Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Resources, Fuzhou University, Fuzhou 350116, Fujian, China; Fujian Provincial Key Laboratory of Ecology-Toxicological Effects and Control for Emerging Contaminants, College of Environmental and Biological Engineering, Putian University, Putian 351100, Fujian, China
| | - Minghua Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Resources, Fuzhou University, Fuzhou 350116, Fujian, China.
| |
Collapse
|