1
|
Malik S, Singh J, Saini K, Chaudhary V, Umar A, Ibrahim AA, Akbar S, Baskoutas S. Paper-based sensors: affordable, versatile, and emerging analyte detection platforms. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:2777-2809. [PMID: 38639474 DOI: 10.1039/d3ay02258g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Paper-based sensors, often referred to as paper-based analytical devices (PADs), stand as a transformative technology in the field of analytical chemistry. They offer an affordable, versatile, and accessible solution for diverse analyte detection. These sensors harness the unique properties of paper substrates to provide a cost-effective and adaptable platform for rapid analyte detection, spanning chemical species, biomolecules, and pathogens. This review highlights the key attributes that make paper-based sensors an attractive choice for analyte detection. PADs demonstrate their versatility by accommodating a wide range of analytes, from ions and gases to proteins, nucleic acids, and more, with customizable designs for specific applications. Their user-friendly operation and minimal infrastructure requirements suit point-of-care diagnostics, environmental monitoring, food safety, and more. This review also explores various fabrication methods such as inkjet printing, wax printing, screen printing, dip coating, and photolithography. Incorporating nanomaterials and biorecognition elements promises even more sophisticated and sensitive applications.
Collapse
Affiliation(s)
- Sumit Malik
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Joginder Singh
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Kajal Saini
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Vivek Chaudhary
- Department of Chemistry, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133203, Haryana, India.
| | - Ahmad Umar
- Department of Chemistry, Faculty of Science and Arts, Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia.
- Department of Materials Science and Engineering, The Ohio State University, Columbus 43210, OH, USA
- STEM Pioneers Training Lab, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Ahmed A Ibrahim
- Department of Chemistry, Faculty of Science and Arts, Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran-11001, Kingdom of Saudi Arabia.
- STEM Pioneers Training Lab, Najran University, Najran 11001, Kingdom of Saudi Arabia
| | - Sheikh Akbar
- Department of Materials Science and Engineering, The Ohio State University, Columbus 43210, OH, USA
| | | |
Collapse
|
2
|
Muhammed A, Hussen A, Redi M, Kaneta T. Remote Investigation of Total Chromium Determination in Environmental Samples of the Kombolcha Industrial Zone, Ethiopia, Using Microfluidic Paper-based Analytical Devices. ANAL SCI 2021; 37:585-592. [PMID: 33041309 DOI: 10.2116/analsci.20p325] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Microfluidic paper-based analytical devices (μ-PADs) fabricated in Japan were employed for the determination of total chromium (Cr) in water, soil, and lettuce irrigated with wastewater in Ethiopia. The μ-PADs, which were printed by wax printing in Japan, were transported to Ethiopia and prepared for the determination of total Cr by adding appropriate reagents to the pretreatment and detection zones. Soil and lettuce samples were determined by the μ-PADs and a UV-Vis spectrophotometer in Ethiopia. A paired t-test showed that the mean total Cr concentrations determined in the soil and lettuce samples were not significantly different between μ-PADs and UV-Vis spectrophotometric analysis at the 5% level of significance. This implies that the μ-PADs have good accuracy and reliability, and could be employed to monitor Cr in environmental samples. We found that the total Cr concentrations in all soil and lettuce samples were above the permissible limit. Moreover, evaluating Cr contamination level using the geo-accumulation index indicated that the soils were contaminated with Cr moderately to heavily. Thus, the present work successfully demonstrated the potential of remote investigations of pollution in a less-equipped laboratory by transporting the μ-PADs fabricated in another laboratory.
Collapse
Affiliation(s)
- Abdellah Muhammed
- Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University
| | - Ahmed Hussen
- Center for Environmental Science, College of Natural and Computational Sciences, Addis Ababa University
| | - Mesfin Redi
- Department of Chemistry, College of Natural and Computational Sciences, Addis Ababa University
| | - Takashi Kaneta
- Department of Chemistry, Graduate School of Natural Science and Technology, Okayama University
| |
Collapse
|
3
|
Dubourg G, Radović M, Vasić B. Laser-Tunable Printed ZnO Nanoparticles for Paper-Based UV Sensors with Reduced Humidity Interference. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:E80. [PMID: 33401682 PMCID: PMC7824355 DOI: 10.3390/nano11010080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 12/25/2022]
Abstract
Development of paper-based sensors that do not suffer with humidity interference is desirable for practical environmental applications. In this work, a laser processing method was reported to effectively modulate the cross-sensitivity to humidity of ZnO-based UV (Ultraviolet) sensors printed on paper substrate. The results reveal that the laser induced zinc oxide (ZnO) surface morphology contributes to the super-hydrophobicity of the printed ZnO nanoparticles, reducing humidity interference while enhancing UV sensitivity. Herein, this conducted research highlights for the first time that laser processing is an attractive choice that reduces the cross-sensitivity to water vapor in the UV sensing response of ZnO-based devices printed on paper, paving the way to low-cost and sophisticated paper-based sensors.
Collapse
Affiliation(s)
- Georges Dubourg
- Center for Sensor Technologies, BioSense Institute, University of Novi Sad, Zorana Đinđića, 21101 Novi Sad, Serbia;
| | - Marko Radović
- Center for Sensor Technologies, BioSense Institute, University of Novi Sad, Zorana Đinđića, 21101 Novi Sad, Serbia;
| | - Borislav Vasić
- Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia;
| |
Collapse
|