1
|
Amirian H, Dalvand K, Ghiasvand A. Seamless integration of Internet of Things, miniaturization, and environmental chemical surveillance. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:582. [PMID: 38806872 DOI: 10.1007/s10661-024-12698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/30/2024] [Indexed: 05/30/2024]
Abstract
IoT is a game-changer across all fields, including chemistry. Embracing sustainable practices and green chemistry, the miniaturization and automation of systems, and their integration into IoT is key to achieving these principles, as a rising trend with momentum. Particularly, IoT and analytical chemistry are linked in the rapid exchange of analytical data for environmental, industrial, healthcare, and educational applications. Meanwhile, cooperation with other fields of science is evident, and there is a prompt and subjective analysis of information related to analytical systems and methodologies. This paper will review the concepts, requirements, and architecture of IoT and its role in the miniaturization and automation of analytical tools using electronic modules and sensors. The aim is to explore the standards and perspectives of IoT and its interaction with different aspects of analytical chemistry. Additionally, it aimed to explain the basics and applications of IoT for chemists, and its relevance to different subfields of analytical chemistry, particularly in the field of environmental chemical surveillance. The article also covers updating IoT devices and creating DIY-based degradation devices to enhance the educational aspect of chemistry and reduce barriers to lab facilities and equipment. Lastly, it will explore how IoT is really important and how it's going to significantly impact analytical chemistry.
Collapse
Affiliation(s)
- Hamzeh Amirian
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran
| | - Kolsoum Dalvand
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran
| | - Alireza Ghiasvand
- Department of Analytical Chemistry, Faculty of Chemistry, Lorestan University, Khorramabad, Iran.
| |
Collapse
|
2
|
Lal K, Jaywant SA, Arif KM. Electrochemical and Optical Sensors for Real-Time Detection of Nitrate in Water. SENSORS (BASEL, SWITZERLAND) 2023; 23:7099. [PMID: 37631636 PMCID: PMC10457996 DOI: 10.3390/s23167099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/06/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023]
Abstract
The health and integrity of our water sources are vital for the existence of all forms of life. However, with the growth in population and anthropogenic activities, the quality of water is being impacted globally, particularly due to a widespread problem of nitrate contamination that poses numerous health risks. To address this issue, investigations into various detection methods for the development of in situ real-time monitoring devices have attracted the attention of many researchers. Among the most prominent detection methods are chromatography, colorimetry, electrochemistry, and spectroscopy. While all these methods have their pros and cons, electrochemical and optical methods have emerged as robust and efficient techniques that offer cost-effective, accurate, sensitive, and reliable measurements. This review provides an overview of techniques that are ideal for field-deployable nitrate sensing applications, with an emphasis on electrochemical and optical detection methods. It discusses the underlying principles, recent advances, and various measurement techniques. Additionally, the review explores the current developments in real-time nitrate sensors and discusses the challenges of real-time implementation.
Collapse
Affiliation(s)
| | | | - Khalid Mahmood Arif
- Department of Mechanical and Electrical Engineering, SF&AT, Massey University, Auckland 0632, New Zealand; (K.L.); (S.A.J.)
| |
Collapse
|
3
|
Han J, Ishigaki M, Takahashi Y, Watanabe H, Umebayashi Y. Analytical chemistry toward on-site diagnostics. ANAL SCI 2023; 39:133-137. [PMID: 36653697 DOI: 10.1007/s44211-023-00271-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/05/2023] [Indexed: 01/20/2023]
Abstract
Analytical Chemistry, through quantitative and/or qualitative analysis (identification), is a discipline that involves the development of methodologies and the exploration of new principles to obtain answers to given problems. In situ analysis techniques have attracted attention for its ability to elucidate phenomena occurring and to evaluate amount of a certain component in substances at real time and biological samples as applications of such analysis technology. Lots of techniques have been performed to understand the fundamental phenomena in varied fields such as X-ray, vibrational, and electrochemical impedance spectroscopies and also analytical reagents that enable to semi-quantitative analysis just observation. In fact, applying various in situ techniques in analytical chemistry expands to the medical diagnosis, which leads to be able to detect early diseases. Here, we describe some of previous researches in many fields such as electrochemical device for energy storage, biology, environment, and pathology and briefly introduce our recent challenges to analytical chemistry toward the on-site diagnosis.
Collapse
Affiliation(s)
- Jihae Han
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-No-Cho, Nishi-Ku, Niigata, Niigata, 950-2181, Japan
| | - Mika Ishigaki
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, 1060 Nishikawatsu, Matsue, Shimane, 690-8504, Japan
| | - Yukiko Takahashi
- Materials Science and Bioengineering, Nagaoka University of Technology, 1603-1 Kamitomioka, Nagaoka, Niigata, 940-2188, Japan
| | - Hikari Watanabe
- Department of Pure and Applied Chemistry, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yasuhiro Umebayashi
- Graduate School of Science and Technology, Niigata University, 8050 Ikarashi 2-No-Cho, Nishi-Ku, Niigata, Niigata, 950-2181, Japan.
| |
Collapse
|
4
|
Recent development of ion-selective electrodes. ANAL SCI 2022; 38:1007-1008. [PMID: 35867265 DOI: 10.1007/s44211-022-00145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
5
|
Balkanli NE, Isildak I, Inan B, Ozer T, Ozcimen D. Monitoring Microalgal Growth of Chlorella minutissima with a New All Solid-state Contact Nitrate Selective Sensor. Biotechnol Prog 2022; 38:e3247. [PMID: 35202519 DOI: 10.1002/btpr.3247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/09/2022] [Accepted: 02/15/2022] [Indexed: 11/07/2022]
Abstract
As third generation feedstock, microalgae are microorganisms that can grow only in the optimum conditions. There are parameters including the concentration of macro and microelements in nutrient solution, pH, temperature, and light intensity that have significant impact on microalgal growth. In recent years, various sensing devices has been developed for sensitive measurement of these parameters during microalgal growth. In this study, a new potentiometric nitrate selective sensor was developed to indicate the nitrate uptake of microalgae and the effect of nitrate nutrient on microalgal growth, specifically, and this sensor was successfully applied to determine nitrate concentration in medium during microalgal growth. Moreover, the effects of nitrate, carbonate and phosphate concentration in the growth medium on biomass production of Chlorella minutissima were investigated by using Box-Behnken design method, and optimum conditions were determined for the highest biomass production of microalgae. As a result of the experiments, it was seen that the highest C. minutissima production was achieved using the medium consist of 2.63 g/L NaNO3 , 0.35 g/L Na2 CO3 and 0.4 g/L KH2 PO4. Statistically, it was observed that there was a proportional relationship between the microalgae production and investigated parameters such as carbon, nitrogen and phosphate amounts of culture mediums. The electrode showed a wide linear range between 1.0×10-1 and 5.0×10-5 M with a detection limit of the 5×10-6 M and the response time was found as 10 s. The results showed that developed nitrate selective sensor could be successfully applied for continuous measurement of nitrate in microalgal productions at reduced cost. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Nihat Erdem Balkanli
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa, Esenler, Istanbul, Turkey
| | - Ibrahim Isildak
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa, Esenler, Istanbul, Turkey
| | - Benan Inan
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa, Esenler, Istanbul, Turkey
| | - Tugba Ozer
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa, Esenler, Istanbul, Turkey
| | - Didem Ozcimen
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, Davutpasa, Esenler, Istanbul, Turkey
| |
Collapse
|
6
|
Nigde M, Agir I, Yıldırım R, Isildak I. Development and comparison of various rod-shaped mini-reference electrode compositions based on Ag/AgCl for potentiometric applications. Analyst 2022; 147:516-526. [PMID: 35044380 DOI: 10.1039/d1an01754c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Several fundamentally similar, miniaturized solid-state reference electrode designs, and their fabrication and comparison are described in this article. All electrodes were based on Ag/AgCl as their reference element. The best electrode (a three-layer assembly with graphite oxide, epoxy, and hardener as the framework providers and with well-mixed micro-Ag particles in the bottom layer, AgCl in the middle layer, and fine KCl powder in the top layer) exhibited satisfactory short-term performance to replace a commercial reference electrode in many cases and was rigorously tested in terms of pH response, long-term leakage, and the effect of oxygen to better evaluate its characteristics. To assess the electrode's performance in medically important studies, cytotoxicity experiments and tests in artificial saliva were also conducted. All tests demonstrated that our best reference electrode was stable and had a long shelf life.
Collapse
Affiliation(s)
- Mustafa Nigde
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220, Istanbul, Turkey.
| | - Ismail Agir
- Faculty of Engineering and Natural Sciences, Department of Bioengineering, Istanbul Medeniyet University, 34720, Istanbul, Turkey
| | - Rıdvan Yıldırım
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220, Istanbul, Turkey.
| | - Ibrahim Isildak
- Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Yildiz Technical University, 34220, Istanbul, Turkey.
| |
Collapse
|
7
|
ÖZER T. Low-cost Pencil-Graphite Multi-electrodes for Simultaneous Detection of Iron and Copper. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2021. [DOI: 10.18596/jotcsa.949831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|