1
|
Guo J, Wang M, Guo H, Chang R, Yu H, Zhang G, Chen A. Simultaneous separation and determination of seven isoflavones in Radix Puerariae by capillary electrophoresis with a dual cyclodextrin system. Biomed Chromatogr 2019; 33:e4646. [PMID: 31291685 DOI: 10.1002/bmc.4646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 06/27/2019] [Accepted: 07/05/2019] [Indexed: 12/15/2022]
Abstract
A simple, comprehensive and efficient capillary electrophoresis method using a dual cyclodextrin system was developed for the simultaneous determination of seven isoflavones (3'-methoxypuerarin, puerarin, 3'-hydroxypuerarin, ononin, daidzin, daidzein and genistin). Baseline separations of the seven isoflavones were achieved within 11 min with the running buffer consisting of 35 mm sodium tetraborate, 9.0 mm sulfobutylether-β-cyclodextrin and 30 mm α-cyclodextrin at pH 9.34, and peaks were detected at 254 nm. Other separation parameters included the separation voltage for 15 kV and the working temperature for 25°C. Under the optimum conditions, good linearities were obtained with linear correlation coefficients of seven isoflavones of 0.9978-0.9992. The limits of detection and the limits of quantification were 0.7-2.9 and 2.5-9.5 μg/mL, respectively. Excellent precision and accuracy were obtained. The intraday and interday precision ranged from 0.7 to 2.0% and from 0.8 to 1.9%, respectively. The recoveries of seven analytes were from 97.7 to 103.1%. This method was successfully applied to determine the seven analytes in Radix Puerariae and its preparations.
Collapse
Affiliation(s)
- Jing Guo
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Mengli Wang
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Haitao Guo
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Ruimiao Chang
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Haixia Yu
- Translational Medicine Research Center, Shanxi Medical University, Taiyuan, P. R. China
| | - Guangbin Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| | - Anjia Chen
- School of Pharmacy, Shanxi Medical University, Taiyuan, P. R. China
| |
Collapse
|
2
|
Ma X, Lin H, He Y, She Y, Wang M, Abd El-Aty AM, Afifi NA, Han J, Zhou X, Wang J, Zhang J. Magnetic molecularly imprinted polymers doped with graphene oxide for the selective recognition and extraction of four flavonoids from Rhododendron species. J Chromatogr A 2019; 1598:39-48. [PMID: 30940357 DOI: 10.1016/j.chroma.2019.03.053] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 03/12/2019] [Accepted: 03/23/2019] [Indexed: 01/16/2023]
Abstract
Herein, a novel magnetic molecularly imprinted polymer doped with reticular graphene oxide (Fe3O4@SiO2-GO@MIPs) was synthesized for the selective recognition and extraction of 4 flavonoids (farrerol, taxifolin, kaempferol, and hyperin) from Rhododendrons species. The Fe3O4@SiO2-GO@MIPs with lamellar membranes showed outstanding adsorption capacity. The 3D cavities complementary to the "shape" of farrerol were "imprinted" on the polymer framework after removal of farrerol template. Competitive binding assays showed that the polymer has a higher selectivity for farrerol compared with other analogues and references. The Fe3O4@SiO2-GO@MIPs as solid-phase extraction adsorbents combined with liquid chromatography-tandem quadrupole mass spectrometry (LC-MS/MS) was used for selective determination of four flavonoids from Rhododendrons samples. The limits of detection (LOD) were 0.07, 0.08, 0.06, and 0.08 μg L-1 for farrerol, taxifolin, kaempferol, and hyperin, respectively. These results suggest that the prepared Fe3O4@SiO2-GO@MIPs have the potential applicability to extract, purify, and enrich flavonoids from herbs, supplements, and other natural products.
Collapse
Affiliation(s)
- Xingbin Ma
- Institute of Quality Standards and Testing Technology for Agri-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Zhanjiang Experimental Station of Chinese Academy of Tropical Sciences, Zhanjiang 524013, China; Institute of Veterinary and Animal Husbandry, Product Quality Standard and Testing Research, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa 850006, China; Lanzhou Institute of Animal Science and Veterinary Pharmaceutics, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu, China
| | - Hongling Lin
- Zhanjiang Experimental Station of Chinese Academy of Tropical Sciences, Zhanjiang 524013, China
| | - Yahui He
- Institute of Quality Standards and Testing Technology for Agri-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yongxin She
- Institute of Quality Standards and Testing Technology for Agri-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Miao Wang
- Institute of Quality Standards and Testing Technology for Agri-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt; Department of Medical Pharmacology, Medical Faculty, Ataturk University, 25240 Erzurum, Turkey
| | - Nehal A Afifi
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, 12211 Giza, Egypt
| | - Jianchen Han
- Zhanjiang Experimental Station of Chinese Academy of Tropical Sciences, Zhanjiang 524013, China
| | - Xuzheng Zhou
- Lanzhou Institute of Animal Science and Veterinary Pharmaceutics, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu, China
| | - Jing Wang
- Institute of Quality Standards and Testing Technology for Agri-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiyu Zhang
- Lanzhou Institute of Animal Science and Veterinary Pharmaceutics, Chinese Academy of Agricultural Sciences, Lanzhou 730050, Gansu, China.
| |
Collapse
|
3
|
Zengin A, Badak MU, Aktas N. Selective separation and determination of quercetin from red wine by molecularly imprinted nanoparticles coupled with HPLC and ultraviolet detection. J Sep Sci 2018; 41:3459-3466. [DOI: 10.1002/jssc.201800437] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Adem Zengin
- Department of Chemical Engineering; Faculty of Engineering; Van Yuzuncu Yil University; Van Turkey
| | - M. Utku Badak
- Department of Chemical Engineering; Faculty of Engineering; Van Yuzuncu Yil University; Van Turkey
| | - Nahit Aktas
- Department of Chemical Engineering; Faculty of Engineering; Van Yuzuncu Yil University; Van Turkey
| |
Collapse
|
4
|
Rabanes HR, Guidote AM, Quirino JP. Capillary electrophoresis of natural products: Highlights of the last five years (2006-2010). Electrophoresis 2011; 33:180-95. [DOI: 10.1002/elps.201100223] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2011] [Revised: 09/22/2011] [Accepted: 09/22/2011] [Indexed: 12/14/2022]
|
5
|
Chen XJ, Zhao J, Wang YT, Huang LQ, Li SP. CE and CEC analysis of phytochemicals in herbal medicines. Electrophoresis 2011; 33:168-79. [DOI: 10.1002/elps.201100347] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/25/2011] [Accepted: 09/27/2011] [Indexed: 12/11/2022]
|