1
|
Zhu Q, Liu C, Zhou L, Wu L, Bian K, Zeng J, Wang J, Feng Z, Yin Y, Cao Z. Highly sensitive determination of L-tyrosine in pig serum based on ultrathin CuS nanosheets composite electrode. Biosens Bioelectron 2019; 140:111356. [PMID: 31163395 DOI: 10.1016/j.bios.2019.111356] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 05/23/2019] [Accepted: 05/26/2019] [Indexed: 01/02/2023]
Abstract
Nanometer-sized copper sulfide has remarkable properties such as metal like electrical conductivity and electrocatalytic activity. In this work, ultrathin copper sulfide nanosheets (CuS NS) were synthesized and employed to modify on surface of glassy carbon electrode (GCE) combining with chitosan (CS) and acidified multi-walled carbon nanotubes (F-MWCNTs). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) showed that the shape of CuS NS was hexagon with side length of 13.33 ± 0.67 nm and thickness of 4.50 ± 0.58 nm. The electrochemical characteristics of different nanocomposite modified electrodes were examined by using cyclic voltammetry (CV) and differential pulse voltammetry (DPV), indicating that the modified electrode of CuS NS-CS/F-MWCNTs/GCE possessed good electrocatalytic activity towards oxidation of L-tyrosine (L-Tyr). Under the optimal condition, the modified electrode exhibited a wide linear response range for L-Tyr (0.08-1.0 μM) with a detection limit of 4.9 nM. No obvious interferences from coexisted two-fold of L-tryptophan and 50-fold of other amino acids could be observed, indicating its relatively good selectivity. The electrode also had good repeatability, reproducibility and stability. Compared with a commercial instrument analytical method, HPLC, the electrode can be successfully applied to the determination of L-Tyr in pig serums with a recovery rate of 95.7%-102.6%, and its test results are in good agreement with that of HPLC, showing its promising application value.
Collapse
Affiliation(s)
- Qin Zhu
- Collaborative Innovation Center of Micro/nano Bio-sensing and Food Safety Inspection, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Chu Liu
- Collaborative Innovation Center of Micro/nano Bio-sensing and Food Safety Inspection, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Li Zhou
- Collaborative Innovation Center of Micro/nano Bio-sensing and Food Safety Inspection, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Ling Wu
- Collaborative Innovation Center of Micro/nano Bio-sensing and Food Safety Inspection, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China; College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Kejun Bian
- Collaborative Innovation Center of Micro/nano Bio-sensing and Food Safety Inspection, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Julan Zeng
- Collaborative Innovation Center of Micro/nano Bio-sensing and Food Safety Inspection, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China
| | - Jianxiu Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, PR China
| | - Zemeng Feng
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, PR China
| | - Yulong Yin
- Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, 410125, PR China
| | - Zhong Cao
- Collaborative Innovation Center of Micro/nano Bio-sensing and Food Safety Inspection, Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation, School of Chemistry and Biological Engineering, Changsha University of Science and Technology, Changsha, 410114, PR China.
| |
Collapse
|
2
|
Yang X, Shu W, Wang Y, Gong Y, Gong C, Chen Q, Tan X, Peng GD, Fan X, Rao YJ. Turbidimetric inhibition immunoassay revisited to enhance its sensitivity via an optofluidic laser. Biosens Bioelectron 2019; 131:60-66. [DOI: 10.1016/j.bios.2019.02.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 01/25/2019] [Accepted: 02/04/2019] [Indexed: 11/27/2022]
|
3
|
Supercritical methanol synthesis, phase evolution and formation mechanism of Cu1.8S and Cu9S5/CuS complex microcrystal. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Fast synthesis of CuS and Cu9S5 microcrystal using subcritical and supercritical methanol and their application in photocatalytic degradation of dye in water. J Supercrit Fluids 2017. [DOI: 10.1016/j.supflu.2016.12.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
5
|
Coughlan C, Ibáñez M, Dobrozhan O, Singh A, Cabot A, Ryan KM. Compound Copper Chalcogenide Nanocrystals. Chem Rev 2017; 117:5865-6109. [PMID: 28394585 DOI: 10.1021/acs.chemrev.6b00376] [Citation(s) in RCA: 335] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This review captures the synthesis, assembly, properties, and applications of copper chalcogenide NCs, which have achieved significant research interest in the last decade due to their compositional and structural versatility. The outstanding functional properties of these materials stems from the relationship between their band structure and defect concentration, including charge carrier concentration and electronic conductivity character, which consequently affects their optoelectronic, optical, and plasmonic properties. This, combined with several metastable crystal phases and stoichiometries and the low energy of formation of defects, makes the reproducible synthesis of these materials, with tunable parameters, remarkable. Further to this, the review captures the progress of the hierarchical assembly of these NCs, which bridges the link between their discrete and collective properties. Their ubiquitous application set has cross-cut energy conversion (photovoltaics, photocatalysis, thermoelectrics), energy storage (lithium-ion batteries, hydrogen generation), emissive materials (plasmonics, LEDs, biolabelling), sensors (electrochemical, biochemical), biomedical devices (magnetic resonance imaging, X-ray computer tomography), and medical therapies (photochemothermal therapies, immunotherapy, radiotherapy, and drug delivery). The confluence of advances in the synthesis, assembly, and application of these NCs in the past decade has the potential to significantly impact society, both economically and environmentally.
Collapse
Affiliation(s)
- Claudia Coughlan
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick, Ireland
| | - Maria Ibáñez
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain
| | - Oleksandr Dobrozhan
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain.,Department of Electronics and Computing, Sumy State University , 2 Rymskogo-Korsakova st., 40007 Sumy, Ukraine
| | - Ajay Singh
- Materials Physics & Applications Division: Center for Integrated Nanotechnologies, Los Alamos National Laboratory , Los Alamos, New Mexico 87545, United States
| | - Andreu Cabot
- Catalonia Energy Research Institute - IREC, Sant Adria de Besos , Jardins de les Dones de Negre n.1, Pl. 2, 08930 Barcelona, Spain.,ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
| | - Kevin M Ryan
- Department of Chemical Sciences and Bernal Institute, University of Limerick , Limerick, Ireland
| |
Collapse
|
6
|
Ran X, Pu F, Ren J, Qu X. A CuS-based chemical tongue chip for pattern recognition of proteins and antibiotic-resistant bacteria. Chem Commun (Camb) 2015; 51:2675-8. [DOI: 10.1039/c4cc08863h] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A CuS-based sensor array having high stability and selectivity for identifying analytes on a quartz chip.
Collapse
Affiliation(s)
- Xiang Ran
- Laboratory of Chemical Biology
- State Key laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Changchun
- China
| | - Fang Pu
- Laboratory of Chemical Biology
- State Key laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Changchun
- China
| | - Jinsong Ren
- Laboratory of Chemical Biology
- State Key laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Changchun
- China
| | - Xiaogang Qu
- Laboratory of Chemical Biology
- State Key laboratory of Rare Earth Resources Utilization
- Changchun Institute of Applied Chemistry
- Changchun
- China
| |
Collapse
|
7
|
Goel S, Chen F, Cai W. Synthesis and biomedical applications of copper sulfide nanoparticles: from sensors to theranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:631-45. [PMID: 24106015 PMCID: PMC3960363 DOI: 10.1002/smll.201301174] [Citation(s) in RCA: 266] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 06/04/2013] [Indexed: 05/12/2023]
Abstract
Copper sulfide (CuS) nanoparticles have attracted increasing attention from biomedical researchers across the globe, because of their intriguing properties which have been mainly explored for energy- and catalysis-related applications to date. This focused review article aims to summarize the recent progress made in the synthesis and biomedical applications of various CuS nanoparticles. After a brief introduction to CuS nanoparticles in the first section, we will provide a concise outline of the various synthetic routes to obtain different morphologies of CuS nanoparticles, which can influence their properties and potential applications. CuS nanoparticles have found broad applications in vitro, especially in the detection of biomolecules, chemicals, and pathogens which will be illustrated in detail. The in vivo uses of CuS nanoparticles have also been investigated in preclinical studies, including molecular imaging with various techniques, cancer therapy based on the photothermal properties of CuS, as well as drug delivery and theranostic applications. Research on CuS nanoparticles will continue to thrive over the next decade, and tremendous opportunities lie ahead for potential biomedical/clinical applications of CuS nanoparticles.
Collapse
Affiliation(s)
- Shreya Goel
- Materials Science Program, University of Wisconsin - Madison, WI, USA
| | - Feng Chen
- Department of Radiology, University of Wisconsin - Madison, WI, USA
| | - Weibo Cai
- Materials Science Program, University of Wisconsin - Madison, WI, USA
- Department of Radiology, University of Wisconsin - Madison, WI, USA
- Department of Medical Physics, University of Wisconsin - Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, Madison, WI, USA
- Requests for reprints: Weibo Cai, PhD, Departments of Radiology and Medical Physics, University of Wisconsin - Madison, Room 7137, 1111 Highland Avenue, Madison, WI 53705-2275, USA, ; Phone: 608-262-1749; Fax: 608- 265-0614
| |
Collapse
|
8
|
Speight RE, Cooper MA. A Survey of the 2010 Quartz Crystal Microbalance Literature. J Mol Recognit 2012; 25:451-73. [DOI: 10.1002/jmr.2209] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Robert E. Speight
- Institute for Molecular Bioscience; The University of Queensland; St. Lucia; Brisbane; 4072; Australia
| | - Matthew A. Cooper
- Institute for Molecular Bioscience; The University of Queensland; St. Lucia; Brisbane; 4072; Australia
| |
Collapse
|
9
|
Rosales-Rivera LC, Acero-Sánchez JL, Lozano-Sánchez P, Katakis I, O'Sullivan CK. Amperometric immunosensor for the determination of IgA deficiency in human serum samples. Biosens Bioelectron 2012; 33:134-8. [DOI: 10.1016/j.bios.2011.12.040] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2011] [Revised: 12/20/2011] [Accepted: 12/21/2011] [Indexed: 10/14/2022]
|