1
|
De Silva S, Cagliero C, Gostel MR, Johnson G, Anderson JL. Versatile DNA extraction from diverse plant taxa using ionic liquids and magnetic ionic liquids: a methodological breakthrough for enhanced sample utility. PLANT METHODS 2024; 20:91. [PMID: 38877523 PMCID: PMC11177442 DOI: 10.1186/s13007-024-01217-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 06/01/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND There is a growing demand for fast and reliable plant biomolecular analyses. DNA extraction is the major bottleneck in plant nucleic acid-based applications especially due to the complexity of tissues in different plant species. Conventional methods for plant cell lysis and DNA extraction typically require extensive sample preparation processes and large quantities of sample and chemicals, elevated temperatures, and multiple sample transfer steps which pose challenges for high throughput applications. RESULTS In a prior investigation, an ionic liquid (IL)-based modified vortex-assisted matrix solid phase dispersion approach was developed using the model plant, Arabidopsis thaliana (L.) Heynh. Building upon this foundational study, the present study established a simple, rapid and efficient protocol for DNA extraction from milligram fragments of plant tissue representing a diverse range of taxa from the plant Tree of Life including 13 dicots and 4 monocots. Notably, the approach was successful in extracting DNA from a century old herbarium sample. The isolated DNA was of sufficient quality and quantity for sensitive molecular analyses such as qPCR. Two plant DNA barcoding markers, the plastid rbcL and nuclear ribosomal internal transcribed spacer (nrITS) regions were selected for DNA amplification and Sanger sequencing was conducted on PCR products of a representative dicot and monocot species. Successful qPCR amplification of the extracted DNA up to 3 weeks demonstrated that the DNA extracted using this approach remains stable at room temperature for an extended time period prior to downstream analysis. CONCLUSIONS The method presented here is a rapid and simple approach enabling cell lysis and DNA extraction from 1.5 mg of plant tissue across a broad range of plant taxa. Additional purification prior to DNA amplification is not required due to the compatibility of the extraction solvents with qPCR. The method has tremendous potential for applications in plant biology that require DNA, including barcoding methods for agriculture, conservation, ecology, evolution, and forensics.
Collapse
Affiliation(s)
- Shashini De Silva
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA
| | - Cecilia Cagliero
- Dipartimento di Scienza e Tecnologia del Farmaco, Università di Torino, Turin, I-10125, Italy
| | - Morgan R Gostel
- Botanical Research Institute of Texas, Fort Worth, TX, 76107-3400, USA
| | | | - Jared L Anderson
- Department of Chemistry, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
2
|
Kikkawa HS, Sato MP, Matsuo A, Sasaki T, Suyama Y, Tsuge K. Discrimination of Camellia cultivars using iD-NA analysis. Sci Rep 2023; 13:17674. [PMID: 37848466 PMCID: PMC10582245 DOI: 10.1038/s41598-023-44404-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/07/2023] [Indexed: 10/19/2023] Open
Abstract
Recently, many new cultivars have been taken abroad illegally, which is now considered an international issue. Botanical evidence found at a crime scene provides valuable information about the origin of the sample. However, botanical resources for forensic evidence remain underutilized because molecular markers, such as microsatellites, are not available without a limited set of species. Multiplexed intersimple sequence repeat (ISSR) genotyping by sequencing (MIG-seq) and its analysis method, identification of not applicable (iD-NA), have been used to determine several genome-wide genetic markers, making them applicable to all plant species, including those with limited available genetic information. Camellia cultivars are popular worldwide and are often planted in many gardens and bred to make new cultivars. In this study, we aimed to analyze Camellia cultivars/species through MIG-seq. MIG-seq could discriminate similar samples, such as bud mutants and closely related samples that could not be distinguished based on morphological features. This discrimination was consistent with that of a previous study that classified cultivars based on short tandem repeat (STR) markers, indicating that MIG-seq has the same or higher discrimination ability as STR markers. Furthermore, we observed unknown phylogenetic relationships. Because MIG-seq can be applied to unlimited species and low-quality DNA, it may be useful in various scientific fields.
Collapse
Affiliation(s)
- Hitomi S Kikkawa
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan.
| | - Mitsuhiko P Sato
- Kazusa DNA Research Institute, 2-6-7 Kazusakamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Ayumi Matsuo
- Kawatabi Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-Onsen, Osaki, Miyagi, 989-6711, Japan
| | - Takanori Sasaki
- Kawatabi Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-Onsen, Osaki, Miyagi, 989-6711, Japan
| | - Yoshihisa Suyama
- Kawatabi Field Science Center, Graduate School of Agricultural Science, Tohoku University, 232-3 Yomogida, Naruko-Onsen, Osaki, Miyagi, 989-6711, Japan
| | - Kouichiro Tsuge
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| |
Collapse
|
3
|
Species identification of white false hellebore (Veratrum album subsp. oxysepalum) by loop-mediated isothermal amplification (LAMP). Forensic Toxicol 2019. [DOI: 10.1007/s11419-018-00461-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
4
|
Kikkawa HS, Tsuge K, Kubota S, Aragane M, Ohta H, Sugita R. Species identification of white false hellebore (Veratrum album subsp. oxysepalum) using real-time PCR. Forensic Sci Int 2017; 275:160-166. [PMID: 28366623 DOI: 10.1016/j.forsciint.2017.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Revised: 12/30/2016] [Accepted: 02/02/2017] [Indexed: 10/19/2022]
Abstract
Food poisoning is frequently caused by the accidental ingestion of toxic plants that possess strong morphological similarities to edible plants. False helleborine (Veratrum album) is one of the most common plants involved in such accidents. In cases of poisoning by toxic plants, rapid and accurate identification, usually based on the morphological or chemical analysis of plant parts, is required for appropriate medical treatment or forensic investigation. However, morphological examinations require experience in systematic botany because the samples are fragmentary, and chemical analysis of natural compounds can be difficult. In this study, we developed a TaqMan real-time PCR method using trnH-psbA and trnL-trnF that could be carried out in 30-60min. The lower detection limit was less than 10pg of DNA and the primer sets were specific to V. album and Veratrum stamineum. Mixed samples, cooked samples, and simulated gastric contents were successfully identified, and a multiplex assay of two regions was also possible. These results indicate that the TaqMan real-time PCR analysis is a very effective method to detect small samples of V. album and V. stamineum accurately and rapidly in poisoning cases.
Collapse
Affiliation(s)
- Hitomi S Kikkawa
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan.
| | - Kouichiro Tsuge
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Satoshi Kubota
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Masako Aragane
- Medical Plant Garden, Tokyo Metropolitan Institute of Public Health, 21-1 Nakajimacho, Kodaira, Tokyo 187-0033, Japan
| | - Hikoto Ohta
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Ritsuko Sugita
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| |
Collapse
|
5
|
Kikkawa HS, Tsuge K, Sugita R. Real-Time PCR Quantification of Chloroplast DNA Supports DNA Barcoding of Plant Species. Mol Biotechnol 2016; 58:212-9. [PMID: 26800992 DOI: 10.1007/s12033-016-9918-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Species identification from extracted DNA is sometimes needed for botanical samples. DNA quantification is required for an accurate and effective examination. If a quantitative assay provides unreliable estimates, a higher quantity of DNA than the estimated amount may be used in additional analyses to avoid failure to analyze samples from which extracting DNA is difficult. Compared with conventional methods, real-time quantitative PCR (qPCR) requires a low amount of DNA and enables quantification of dilute DNA solutions accurately. The aim of this study was to develop a qPCR assay for quantification of chloroplast DNA from taxonomically diverse plant species. An absolute quantification method was developed using primers targeting the ribulose-1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL) gene using SYBR Green I-based qPCR. The calibration curve was generated using the PCR amplicon as the template. DNA extracts from representatives of 13 plant families common in Japan. This demonstrates that qPCR analysis is an effective method for quantification of DNA from plant samples. The results of qPCR assist in the decision-making will determine the success or failure of DNA analysis, indicating the possibility of optimization of the procedure for downstream reactions.
Collapse
Affiliation(s)
- Hitomi S Kikkawa
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan.
| | - Kouichiro Tsuge
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| | - Ritsuko Sugita
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba, 277-0882, Japan
| |
Collapse
|
6
|
|
7
|
Kikkawa HS, Tahara M, Sugita R. Forensic DNA Analysis of Wheat Flour as Commonly Used in White Powder Cases. J Forensic Sci 2015; 60:1316-21. [PMID: 26174661 DOI: 10.1111/1556-4029.12789] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2013] [Revised: 05/31/2014] [Accepted: 08/16/2014] [Indexed: 12/01/2022]
Abstract
In the wake of terrorist attacks using anthrax and ricin, white powder is often encountered in cases of malicious mischief and terrorist threats. Wheat flour is a common white powder encountered in such criminal investigations. We used DNA analysis to investigate wheat flour samples for identification and discrimination as trace evidence. Species identification of commercially available wheat flour was carried out by sequencing a partial region of the ribulose bisphosphate carboxylase large subunit gene (rbcL). Samples were discriminated using short tandem repeat (STR) analysis. The rbcL sequences of all wheat flour samples were identical and showed a high level of similarity to known wheat (Triticum aestivum L.) sequences. Furthermore, flours had characteristic patterns in STR analyses, with specific cultivars showing distinctive patterns. These results suggested that the identification of wheat flour species is possible using rbcL sequencing, and that STR analysis is useful for discriminating between samples.
Collapse
Affiliation(s)
- Hitomi S Kikkawa
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, 277-0882, Japan
| | - Makoto Tahara
- Graduate School of Environmental and life Science Okayama University, 1-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Ritsuko Sugita
- National Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, 277-0882, Japan
| |
Collapse
|