1
|
Ueno S, Liu H, Kishino R, Oshikiri Y, Kawaguchi Y, Watanabe A, Kobayashi W, Shimada R. Effects of High Hydrostatic Pressure on the Distribution of Oligosaccharides, Pinitol, Soysapapogenol A, and Fatty Acids in Soybean. Foods 2024; 13:2214. [PMID: 39063298 PMCID: PMC11275377 DOI: 10.3390/foods13142214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/11/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
The effects of high hydrostatic pressure (HHP) treatment (100-600 MPa for 10-60 min) and thermal treatment (boiling for 10-60 min) on oligosaccharides, pinitol, and soyasapogenol A as taste ingredients in soybean (Glycine max (L.) Merr.) (cv. Yukihomare) were evaluated. Additionally, soybean-derived fatty acids such as α-linolenic acid, linoleic acid, oleic acid, palmitic acid, and stearic acid in pressurized soybeans were quantitatively analyzed. Sucrose, stachyose, and raffinose concentrations were decreased in all tested pressure and time combinations; however, pinitol concentrations were increased by specific pressure and time combinations at 100-400 MPa for 10-60 min. While the soyasapogenol A content in boiled soybeans decreased with increasing boiling time, that of pressurized soybeans was altered by specific pressure and time combinations. At the lower pressure and shorter time combinations, the essential fatty acids such as α-linolenic acid and linoleic acid showed higher contents. Stearic acid and oleic acid contents of pressurized soybeans increased at mild pressure levels (300-500 MPa). In contrast, the combination of higher pressure and longer time results in lower essential fatty acid contents. Non-thermal-pressurized soybeans have the potential to be a high-value food source with better taste due to the enrichment of low molecular weight components such as pinitol, free amino acids, and the reduction of isoflavones and Group A soyasapogenol.
Collapse
Affiliation(s)
- Shigeaki Ueno
- Faculty of Education, Saitama University, Saitama 3300061, Japan
| | - Hsiuming Liu
- Department of Food Science, National Taiwan Ocean University, Keelung 202301, Taiwan
| | - Risa Kishino
- Faculty of Education, Saitama University, Saitama 3300061, Japan
| | - Yuka Oshikiri
- Faculty of Education, Saitama University, Saitama 3300061, Japan
| | - Yuki Kawaguchi
- Faculty of Education, Saitama University, Saitama 3300061, Japan
| | - Akio Watanabe
- Department of Food Science, Jumonji University, Saitama 3528510, Japan;
| | - Wataru Kobayashi
- Department of Health and Nutrition Sciences, Komazawa Woman’s University, Tokyo 2068511, Japan;
| | - Reiko Shimada
- Faculty of Education, Saitama University, Saitama 3300061, Japan
| |
Collapse
|
2
|
Wong A, Santos AM, Feitosa MHA, Fatibello-Filho O, Moraes FC, Sotomayor MDPT. Simultaneous Determination of Uric Acid and Caffeine by Flow Injection Using Multiple-Pulse Amperometry. BIOSENSORS 2023; 13:690. [PMID: 37504089 PMCID: PMC10377323 DOI: 10.3390/bios13070690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/25/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
The present study reports the development and application of a flow injection analysis (FIA) system for the simultaneous determination of uric acid (UA) and caffeine (CAF) using cathodically pretreated boron-doped diamond electrode (CPT-BDD) and multiple-pulse amperometry (MPA). The electrochemical profiles of UA and CAF were analyzed via cyclic voltammetry in the potential range of 0.20-1.7 V using 0.10 mol L-1 H2SO4 solution as supporting electrolyte. Under optimized conditions, two oxidation peaks at potentials of 0.80 V (UA) and 1.4 V (CAF) were observed; the application of these potentials using multiple-pulse amperometry yielded concentration linear ranges of 5.0 × 10-8-2.2 × 10-5 mol L-1 (UA) and 5.0 × 10-8-1.9 × 10-5 mol L-1 (CAF) and limits of detection of 1.1 × 10-8 and 1.3 × 10-8 mol L-1 for UA and CAF, respectively. The proposed method exhibited good repeatability and stability, and no interference was detected in the electrochemical signals of UA and CAF in the presence of glucose, NaCl, KH2PO4, CaCl2, urea, Pb, Ni, and Cd. The application of the FIA-MPA method for the analysis of environmental samples resulted in recovery rates ranging between 98 and 104%. The results obtained showed that the BDD sensor exhibited a good analytical performance when applied for CAF and UA determination, especially when compared to other sensors reported in the literature.
Collapse
Affiliation(s)
- Ademar Wong
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14801-970, SP, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara 14801-970, SP, Brazil
| | - Anderson M Santos
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos 13560-970, SP, Brazil
| | - Maria H A Feitosa
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos 13560-970, SP, Brazil
| | - Orlando Fatibello-Filho
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos 13560-970, SP, Brazil
| | - Fernando C Moraes
- Department of Chemistry, Federal University of São Carlos (UFSCar), São Carlos 13560-970, SP, Brazil
| | - Maria D P T Sotomayor
- Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14801-970, SP, Brazil
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Araraquara 14801-970, SP, Brazil
| |
Collapse
|
3
|
Baluchová S, Daňhel A, Dejmková H, Ostatná V, Fojta M, Schwarzová-Pecková K. Recent progress in the applications of boron doped diamond electrodes in electroanalysis of organic compounds and biomolecules – A review. Anal Chim Acta 2019; 1077:30-66. [DOI: 10.1016/j.aca.2019.05.041] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/01/2019] [Accepted: 05/18/2019] [Indexed: 02/08/2023]
|
4
|
Freitas JM, Oliveira TDC, Munoz RAA, Richter EM. Boron Doped Diamond Electrodes in Flow-Based Systems. Front Chem 2019; 7:190. [PMID: 31024886 PMCID: PMC6463006 DOI: 10.3389/fchem.2019.00190] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/12/2019] [Indexed: 01/14/2023] Open
Abstract
Boron-doped diamond (BDD) electrodes present several notable properties, such as the largest potential window of all electrode materials (especially in anodic potentials), low background and capacitive currents, reduced fouling compared to other electrodes, mechanical robustness, and good stability over time. On the other hand, flow-based systems are known as well-established approaches to minimize reagent consumption and waste generation and with good compromise between sample throughput and analytical performance (mechanization of chemical assays). This review focuses on the use of BDD electrodes for electrochemical detection in flow systems, such as flow injection analysis (FIA), batch injection analysis (BIA), high performance liquid chromatography (HPLC), and capillary electrophoresis (CE). The discussion deals with the historical evolution of BDD, types of electrochemical pre-treatments (cathodically/H-terminated or anodically/O-terminated), cell configurations, and analytical performance. Articles are discussed in chronological order and subdivided according to the type of flow system: FIA, BIA, HPLC, and CE.
Collapse
|
5
|
Wada T, Sumardika IW, Saito S, Ruma IMW, Kondo E, Shibukawa M, Sakaguchi M. Identification of a novel component leading to anti-tumor activity besides the major ingredient cordycepin in Cordyceps militaris extract. J Chromatogr B Analyt Technol Biomed Life Sci 2017; 1061-1062:209-219. [PMID: 28750234 DOI: 10.1016/j.jchromb.2017.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 06/12/2017] [Indexed: 02/07/2023]
Abstract
In accordance with our previous study that was carried out to identify novel anti-tumor ingredients, chromatographic separation in combination with an anti-tumor activity assay was used for analysis of Cordyceps militaris extract in this study. Various modes of chromatography including reversed-phase, cation-exchange and anion-exchange were used to separate components of Cordyceps militaris, which showed various chemical properties. Anti-tumor activity of each fraction was assessed by a Hoechst staining-based apoptosis assay using malignant melanoma MeWo cells. By these repeated approaches through chromatographic segregation and cell biological assay, we finally succeeded in identifying the target substance from a certain fraction that included neutral hydrophilic components using a pre-column and post-column chlorine adduct ionization LC-APCI-MS method. The target substance was a mono-carbohydrate, xylitol, that induced apoptotic cell death in MeWo cells but not in normal human OUMS-24 fibroblasts. This is the first study showing that Cordyceps militaris extract contains a large amount of xylitol. Thus, our results will contribute greatly to uncovering the mysterious multifunctional herbal drug Cordyceps militaris as an anti-tumor agent.
Collapse
Affiliation(s)
- Takeharu Wada
- Chemicals Evaluation and Research Institute, Japan (CERI), CERI Tokyo, Environmental Technology Department, 1600, Shimotakano, Sugito-machi, Kitakatsushika-gun, Saitama 345-0043, Japan; Graduate School of Science and Engineering, Saitama University, 255, Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - I Wayan Sumardika
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan; Faculty of Medicine, Udayana University, Denpasar 80232, Bali, Indonesia
| | - Shingo Saito
- Graduate School of Science and Engineering, Saitama University, 255, Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - I Made Winarsa Ruma
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan; Faculty of Medicine, Udayana University, Denpasar 80232, Bali, Indonesia
| | - Eisaku Kondo
- Division of Molecular and Cellular Pathology, Niigata University Graduate School of Medical and Dental Sciences, 757 Ichiban-cho, Asahimachi-dori, Chuo-ku, Niigata-shi, Niigata 951-8510, Japan
| | - Masami Shibukawa
- Graduate School of Science and Engineering, Saitama University, 255, Shimo-Okubo, Sakura, Saitama 338-8570, Japan
| | - Masakiyo Sakaguchi
- Department of Cell Biology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama-shi, Okayama 700-8558, Japan.
| |
Collapse
|
6
|
Guo L, Jing Y, Chaplin BP. Development and Characterization of Ultrafiltration TiO2 Magnéli Phase Reactive Electrochemical Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1428-1436. [PMID: 26735740 DOI: 10.1021/acs.est.5b04366] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
This research focused on the synthesis, characterization, and performance testing of a novel Magnéli phase (TinO2n-1), n = 4 to 6, reactive electrochemical membrane (REM) for water treatment. The REMs were synthesized from tubular asymmetric TiO2 ultrafiltration membranes, and optimal reactivity was achieved for REMs composed of high purity Ti4O7. Probe molecules were used to assess outer-sphere charge transfer (Fe(CN)6(4-)) and organic compound oxidation through both direct oxidation (oxalic acid) and formation of OH(•) (coumarin, terephthalic acid). High membrane fluxes (3208 L m(-2) h(-1) bar(-1) (LMH bar(-1))) were achieved and resulted in a convection-enhanced rate constant for Fe(CN)6(4-) oxidation of 1.4 × 10(-4) m s(-1), which is the highest reported in an electrochemical flow-through reactor and approached the kinetic limit. The optimal removal rate for oxalic acid was 401.5 ± 18.1 mmol h(-1) m(-2) at 793 LMH, with approximately 84% current efficiency. Experiments indicate OH(•) were produced only on the Ti4O7 REM and not on less reduced phases (e.g., Ti6O11). REMs were also tested for oxyanion separation. Approximately 67% removal of a 1 mM NO3(-) solution was achieved at 58 LMH, with energy consumption of 0.22 kWh m(-3). These results demonstrate the extreme promise of REMs for water treatment applications.
Collapse
Affiliation(s)
- Lun Guo
- Department of Chemical Engineering, University of Illinois at Chicago , 810 S. Clinton Street, Chicago, Illinois 60607
| | - Yin Jing
- Department of Chemical Engineering, University of Illinois at Chicago , 810 S. Clinton Street, Chicago, Illinois 60607
| | - Brian P Chaplin
- Department of Chemical Engineering, University of Illinois at Chicago , 810 S. Clinton Street, Chicago, Illinois 60607
| |
Collapse
|
7
|
The dissolution of palladium as a function of glucose concentration in chloride containing solutions of acidic pH. J Electroanal Chem (Lausanne) 2015. [DOI: 10.1016/j.jelechem.2015.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Sharma VK, Oturan M, Kim H. Oxidation of artificial sweetener sucralose by advanced oxidation processes: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:8525-8533. [PMID: 24687789 DOI: 10.1007/s11356-014-2786-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Accepted: 03/10/2014] [Indexed: 06/03/2023]
Abstract
Sucralose, a chlorinated carbohydrate, has shown its increased use as an artificial sweetener and persistently exists in wastewater treatment plant effluents and aquatic environment. This paper aims to review possible degradation of sucralose and related carbohydrates by biological, electrochemical, chemical, and advanced oxidation processes. Biodegradation of sucralose in waterworks did not occur significantly. Electrochemical oxidation of carbohydrates may be applied to seek degradation of sucralose. The kinetics of the oxidation of sucralose and the related carbohydrates by different oxidative species is compared. Free chlorine, ozone, and ferrate did not show any potential to degrade sucralose in water. Advanced oxidation processes, generating highly strong oxidizing agent hydroxyl radicals ((•)OH), have demonstrated effectiveness in transforming sucralose in water. The mechanism of oxidation of sucralose by (•)OH is briefly discussed.
Collapse
Affiliation(s)
- Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX, 77843, USA,
| | | | | |
Collapse
|