Kawano H, Takamatsu T, Matsumura Y, Miyahara H, Iwasawa A, Okino A. Influence of Gas Temperature in Atmospheric Non-Equilibrium Plasma on Bactericidal Effect.
Biocontrol Sci 2018;
23:167-175. [PMID:
30584203 DOI:
10.4265/bio.23.167]
[Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In this study, the relationship between plasma gas temperature and the bactericidal effects on five of bacteria (Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Enterococcus faecalis and Bacillus cereus (spore)) in liquid was investigated using a temperature-controllable plasma source. We determined that the bactericidal ability improved as the plasma gas temperature increased. Specifically, the bactericidal ability on E. coli of 80-℃ plasma was enhanced by as much as 6.3 times compared to that of 10-℃ plasma. The relationship between plasma gas temperature and the amount of hydroxyl radical, singlet oxygen, hydrogen peroxide, and ozone introduced into the solution was investigated. Our results also showed that each reactive species production increased by 2.1, 9.0, 1.6, and 17 times, respectively, with 80-℃ compared to 10-℃ plasma. The relationship between the bactericidal ability and amount of reactive species indicated that singlet oxygen and ozone introduced to the solution mostly influenced the bactericidal ability as the plasma gas temperature increased. We conclude that the plasma gas temperature is the crucial parameter for plasma sterilization.
Collapse