1
|
Color-tunable bioluminescence imaging portfolio for cell imaging. Sci Rep 2021; 11:2219. [PMID: 33500496 PMCID: PMC7838199 DOI: 10.1038/s41598-021-81430-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 01/07/2021] [Indexed: 11/29/2022] Open
Abstract
The present study describes a color-tunable imaging portfolio together with twelve novel coelenterazine (CTZ) analogues. The three groups of CTZ analogues create diverse hues of bioluminescence (BL) ranging from blue to far red with marine luciferases. We found that the hue completes the whole color palette in the visible region and shows red-shifted BL with a marine luciferase: for example, Renilla luciferase 8 (RLuc8) and Artificial Luciferase 16 (ALuc16) show 187 nm- and 105 nm-redshifted spectra, respectively, by simply replacing the substrate CTZ with 1d. The optical properties of the new CTZ analogues were investigated such as the kinetic parameters, dose dependency, and luciferase specificity. The 2-series CTZ analogues interestingly have specificity to ALucs and are completely dark with RLuc derivatives, and 3d is highly specific to only NanoLuc. We further determined the theoretical background of the red-shifted BL maximum wavelengths (λBL) values according to the extended π conjugation of the CTZ backbone using Density Functional Theory (DFT) calculations. This color-tunable BL imaging system provides a useful multicolor imaging portfolio that efficiently images molecular events in mammalian cells.
Collapse
|
2
|
Kim SB, Fujii R, Nishihara R, Bose RJC, Citterio D, Suzuki K, Massoud TF, Paulmurugan R. Molecular Imaging of Retinoic Acids in Live Cells Using Single-Chain Bioluminescence Probes. ACS COMBINATORIAL SCIENCE 2019; 21:473-481. [PMID: 31034200 DOI: 10.1021/acscombsci.9b00035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Retinoic acid (RA) is a key metabolite necessary for embryonic development and differentiation in vertebrates. We demonstrate the utility of genetically encoded, ligand-activatable single-chain bioluminescence probes for detecting RAs from different biological sources. We examined 13 different molecular designs to identify an efficient single-chain probe that can quantify RA with significant sensitivity. The optimal probe consisted of four components: the N- and C-terminal fragments of artificial luciferase variant-16 (ALuc16), the ligand binding domain of retinoic acid receptor α (RARα LBD), and an LXXLL interaction motif. This probe showed a 5.2-fold greater bioluminescence intensity in response to RA when compared to the vehicle control in live mammalian cells. The probe was highly selective to all-trans-RA (at-RA), and highly sensitive in determining at-RA levels in cells derived from tumor xenografts created using MDA-MB-231 cells engineered to stably express the probe. We also detected RA levels in serum and cerebrospinal fluid. Using this probe, the detection limit for at-RA was ∼10-9.5 M, with a linear range of two orders. We present a highly useful technique to quantitatively image endogenous at-RA levels in live mammalian cells expressing novel single-chain bioluminescence probes.
Collapse
Affiliation(s)
- Sung Bae Kim
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California 94304, United States
| | - Rika Fujii
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST), 16-1 Onogawa, Tsukuba 305-8569, Japan
| | - Ryo Nishihara
- Department of Applied Chemistry, Faculty of Science and Technology, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Rajendran JC Bose
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California 94304, United States
| | - Daniel Citterio
- Department of Applied Chemistry, Faculty of Science and Technology, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Koji Suzuki
- Department of Applied Chemistry, Faculty of Science and Technology, Graduate School of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Tarik F Massoud
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California 94304, United States
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine, Stanford, California 94304, United States
| |
Collapse
|
3
|
Kim SB, Nishihara R, Fujii R, Paulmurugan R, Citterio D, Suzuki K. In vitro Determination of Rapamycin-triggered FKBP-FRB Interactions Using a Molecular Tension Probe. ANAL SCI 2019; 35:71-78. [PMID: 30504653 DOI: 10.2116/analsci.18sdp08] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
As protein-protein interactions (PPI) have been mostly investigated in cellulo or in vivo, it is unclear whether the PPI-based imaging schemes are practically valid in a bioanalytical means in vitro. The present study exemplifies the PPI in vitro inside a unique single-chain probe, named TP2.4, which carries a full-length artificial luciferase (ALuc) sandwiched in between two model proteins of interest, e.g., FKBP and FRB, expressed in E. coli, and purified. We found that the TP2.4 efficiently recognizes its ligand in vitro and varies its molecular kinetics: i.e., rapamycin boosts the enzymatic affinities (Km) of TP2.4 to its substrates, but does not or only weakly influences the turnover rates (Kcat) and the maximal velocity (Vmax). The corresponding circular dichroism (CD) study shows that rapamycin weakly contributes to the enhancement of the α-helical contents in TP2.4. Kinetic constants according to the substrates revealed that a coelenterazine derivative, 6-N3-CTZ, exerted the best catalytic efficiency and the greatest variance in the total photon counts. The present study is the first in vitro example that demonstrates how intramolecular PPI works in a purified single-chain bioluminescent probe and what factors practically influence the biochemistry.
Collapse
Affiliation(s)
- Sung Bae Kim
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST).,Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine
| | - Ryo Nishihara
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University
| | - Rika Fujii
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Ramasamy Paulmurugan
- Molecular Imaging Program at Stanford, Bio-X Program, Stanford University School of Medicine
| | - Daniel Citterio
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University
| | - Koji Suzuki
- Department of Applied Chemistry, Faculty of Science and Technology, Keio University
| |
Collapse
|
4
|
Nishihara R, Hoshino E, Kakudate Y, Kishigami S, Iwasawa N, Sasaki SI, Nakajima T, Sato M, Nishiyama S, Citterio D, Suzuki K, Kim SB. Azide- and Dye-Conjugated Coelenterazine Analogues for a Multiplex Molecular Imaging Platform. Bioconjug Chem 2018; 29:1922-1931. [PMID: 29767512 DOI: 10.1021/acs.bioconjchem.8b00188] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Native coelenterazine (nCTZ) is a common substrate to most marine luciferases and photoproteins. In this study, nine novel dye- and azide-conjugated CTZ analogues were synthesized by conjugating a series of fluorescent dyes or an azide group to the C-2 or C-6 position of the nCTZ backbone to obtain bulkiness-driven substrate specificity and potential chemiluminescence/bioluminescence resonance energy transfer (C/BRET). The investigation on the optical properties revealed that azide-conjugated CTZs emit greatly biased bioluminescence to ALucs and ca. 130 nm blue-shifted bioluminescence with RLuc8.6 in living animal cells or lysates. The corresponding kinetic study explains that azide-conjugated CTZ exerts higher catalytic efficiency than nCTZ. Nile red-conjugated CTZ completely showed red-shifted CRET spectra and characteristic BRET spectra with artificial luciferase 16 (ALuc16). No or less spectral overlap occurs among [Furimazine-NanoLuc], [6-N3-CTZ-ALuc26], [6-pi-OH-CTZ-RLuc8.6], and [6-N3-CTZ-RLuc8.6] pairs, because of the substrate-driven luciferase specificity and color shifts, providing a crosstalk-free multiplex bioassay platform. The unique bioluminescence system appends a new toolbox to bioassays and multiplex molecular imaging platforms. This study is the first example that systematically synthesized fluorescent dye-conjugated CTZs and applied them for a bioluminescence assay system.
Collapse
Affiliation(s)
- Ryo Nishihara
- Department of Applied Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama , Kanagawa 223-8522 , Japan
| | - Emi Hoshino
- Department of Applied Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama , Kanagawa 223-8522 , Japan
| | - Yoshiki Kakudate
- Department of Applied Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama , Kanagawa 223-8522 , Japan
| | - Satoshi Kishigami
- Department of Applied Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama , Kanagawa 223-8522 , Japan
| | - Naoko Iwasawa
- Department of Applied Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama , Kanagawa 223-8522 , Japan
| | - Shin-Ichi Sasaki
- Nagahama Institute of Bio-Science and Technology , Nagahama, Kusatsu , Shiga 525-8577 , Japan
| | - Takahiro Nakajima
- Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro-ku, Tokyo 153-8902 , Japan
| | - Moritoshi Sato
- Graduate School of Arts and Sciences , The University of Tokyo , 3-8-1 Komaba , Meguro-ku, Tokyo 153-8902 , Japan
| | - Shigeru Nishiyama
- Department of Applied Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama , Kanagawa 223-8522 , Japan
| | - Daniel Citterio
- Department of Applied Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama , Kanagawa 223-8522 , Japan
| | - Koji Suzuki
- Department of Applied Chemistry, Faculty of Science and Technology , Keio University , 3-14-1 Hiyoshi , Kohoku-ku, Yokohama , Kanagawa 223-8522 , Japan
| | - Sung Bae Kim
- Research Institute for Environmental Management Technology , National Institute of Advanced Industrial Science and Technology (AIST) , 16-1 Onogawa , Tsukuba 305-8569 , Japan
| |
Collapse
|
5
|
A Bioluminescence Assay System for Imaging Metal Cationic Activities in Urban Aerosols. Methods Mol Biol 2016. [PMID: 27424913 DOI: 10.1007/978-1-4939-3813-1_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
A bioluminescence-based assay system was fabricated for an efficient determination of the activities of air pollutants. The following four components were integrated into this assay system: (1) an 8-channel assay platform uniquely designed for simultaneously sensing multiple optical samples, (2) single-chain probes illuminating toxic chemicals or heavy metal cations from air pollutants, (3) a microfluidic system for circulating medium mimicking the human body, and (4) the software manimulating the above system. In the protocol, we briefly introduce how to integrate the components into the system and the application to the illumination of the metal cationic activities in air pollutants.
Collapse
|
6
|
KIM SB, FUJII R. Splitting-free Bioluminescence Imaging Probes and Their Applications. BUNSEKI KAGAKU 2016. [DOI: 10.2116/bunsekikagaku.65.361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Sung Bae KIM
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Rika FUJII
- Research Institute for Environmental Management Technology, National Institute of Advanced Industrial Science and Technology (AIST)
| |
Collapse
|