1
|
Zhang F, Tan M, Hu ZE, Zhang YT, Qi XW, Che YT, Li J, Zhang S, Li BJ. A hyaluronic acid-modified cyclodextrin self-assembly system for the delivery of β-carotene in the treatment of dry eye disease. Int J Biol Macromol 2024; 287:138428. [PMID: 39647723 DOI: 10.1016/j.ijbiomac.2024.138428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 11/24/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Dry eye disease (DED) is a multifactorial ocular disease, the core mechanism of which is the tear film instability caused by ocular oxidative stress damage and inflammation. Although various pharmaceutical agents are available for DED treatment, their effectiveness is often limited by the eyes' unique biological barriers, and the long-term use of steroid hormones can lead to several adverse effects. This study reported a nano-supramolecular delivery system consisting of a polycyclodextrin (PCD), hyaluronic acid (HA) and the natural compound β-carotene (BC) for the DED treatment. Our findings indicate that the HA/PCD@BC eye drops effectively distribute on the ocular surface, retain BC, and significantly enhance the corneal penetration of BC. The excellent biocompatibility of HA/PCD@BC was demonstrated through viability testing on different cell lines, the Draize eye test, as well as the hematoxylin-eosin staining (H&E) sections of cornea and conjunctiva. Both in vitro oxidative stress assays and in vivo DED model evaluations demonstrated that the HA/PCD@BC delivery system significantly reduced abnormal oxidative stress levels on the ocular surface, inhibited the secretion of inflammatory factors, and increased the secretion of tear film stabilizing mucin. These effects collectively improved pathological changes in eye tissues and minimized damage to the ocular surface. It is of particular importance to note that HA/PCD@BC eye drops showed superior efficacy in comparison to cyclosporine A (CsA), an FDA-approved first-line drug. To sum up, the HA/PCD@BC nanodelivery system provides a natural, safe and effective therapeutic strategy for the treatment of DED and various ocular diseases.
Collapse
Affiliation(s)
- Fuzhong Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Tan
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zu-E Hu
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ye-Tao Zhang
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Wei Qi
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Ting Che
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Li
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China
| | - Sheng Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Sichuan University, Chengdu 610065, China.
| | - Bang-Jing Li
- Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
2
|
Bera S, Mitra R, Singh J. Recent advancement in protected delivery methods for carotenoid: a smart choice in modern nutraceutical formulation concept. Biotechnol Genet Eng Rev 2024; 40:4532-4588. [PMID: 37198919 DOI: 10.1080/02648725.2023.2213988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Abstract
Carotenoids are fat-soluble bio pigments often responsible for red, orange, pink and yellow coloration of fruits and vegetables. They are commonly referred as nutraceutical which is an alternative to pharmaceutical drugs claiming to have numerous physiological benefits. However their activity often get disoriented by photonic exposure, temperature and aeration rate thus leading to low bioavailability and bio accessibility. Most of the market value for carotenoids revolves around food and cosmetic industries as supplement where they have been continuously exposed to rigorous physico-chemical treatment. Though several encapsulation techniques are now in practice to improve stability of carotenoids, the factors like shelf life during storage and controlled release from the delivery vehicle always appeared to be a bottleneck in this field. In this situation, different technologies in nanoscale is showing promising result for carotenoid encapsulation and delivery as they provide greater mass per surface area and protects most of their bioactivities. However, safety concerns related to carrier material and process must be evaluated crucially. Thus, the aim of this review was to collect and correlate technical information concerning the parameters playing pivotal role in characterization and stabilization of designed vehicles for carotenoids delivery. This comprehensive study predominantly focused on experiments carried out in past decade explaining how researchers have fabricated bioprocess engineering in amalgamation with nano techniques to improve the bioavailability for carotenoids. Furthermore, it will help the readers to understand the cognisance of carotenoids in nutraceutical market for their trendy application in food, feed and cosmeceutical industries in contemporary era.
Collapse
Affiliation(s)
- Surojit Bera
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| | - Ruchira Mitra
- International College, University of Chinese Academy of Sciences, Beijing, P.R. China
| | - Joginder Singh
- Department of Microbiology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, India
| |
Collapse
|
3
|
Celitan E, Gruskiene R, Kavleiskaja T, Sereikaite J. β-Carotene - 2-hydroxypropyl-β-cyclodextrin complexes coated with pectin. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Lakshmanan M, Moses JA, Chinnaswamy A. Encapsulation of β‐carotene in 2‐hydroxypropyl‐β‐cyclodextrin/carrageenan/soy protein using a modified spray drying process. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mahalakshmi Lakshmanan
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management‐Thanjavur Ministry of Food Processing Industries, Govt. of India Thanjavur Tamil Nadu 613005 India
- PhD student affiliated to Bharathidasan University Tiruchirappalli Tamil Nadu 620024 India
| | - Jeyan A. Moses
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management‐Thanjavur Ministry of Food Processing Industries, Govt. of India Thanjavur Tamil Nadu 613005 India
| | - Anandharamakrishnan Chinnaswamy
- Computational Modeling and Nanoscale Processing Unit National Institute of Food Technology, Entrepreneurship and Management‐Thanjavur Ministry of Food Processing Industries, Govt. of India Thanjavur Tamil Nadu 613005 India
| |
Collapse
|
5
|
Cao A, Liu W, Mei-Zhen Z, Qin SY, Cheng YJ, Zhang AQ. A nanodevice with lifetime-improved singlet oxygen for enhanced photodynamic therapy. Chem Commun (Camb) 2022; 58:6227-6230. [DOI: 10.1039/d2cc01487d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The short lifetime of singlet oxygn reduces its accumulation in the ehdoplasmic reticulum, which limited the output of photodynamic therapy. A nanodevice with functions of singlet oxygen production, storage and...
Collapse
|
6
|
Magnaye MJFA, Mopera LE, Flores FP. Effect of rice bran protein concentrate as wall material adjunct on selected physicochemical and release properties of microencapsulated β-carotene. FOOD SCI TECHNOL INT 2021; 28:653-662. [PMID: 34747261 DOI: 10.1177/10820132211049609] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Rice bran protein is an emerging protein source from rice milling that possesses health benefits and emulsifying capacity suitable for hypoallergenic encapsulation applications, especially for lipophilic compounds such as β-carotene. The purpose of this study is to develop and characterize β-carotene encapsulates with maltodextrin and rice bran protein. Rice bran protein was prepared using conventional alkali extraction. β-carotene was added to the composite wall materials (50:50 of 4%, 8%, 12%, and 16% solids content) and spray-dried. Encapsulation efficiency (85-98%) and radical scavenging activity (11-43%) varied proportionally with rice bran protein. Across increasing maltodextrin and rice bran protein content of the feed, carbohydrate content of the microcapsules varied proportionally (50-66%) but protein content was uniform (10-13%). Scanning electron microscopy, differential scanning calorimetry, and Fourier transform infrared spectroscopy data suggested successful encapsulation. Release profiles showed decreasing trend with increasing rice bran protein content; co-digestion with rice mitigated negative impacts of rice bran protein. Microcapsules with nutritive potential and health-promoting properties were developed as potential carotenoid delivery systems.
Collapse
Affiliation(s)
- Maria Jannell Feliz A Magnaye
- Institute of Food Science and Technology, 54729University of the Philippines Los Baños, Laguna, Philippines.,Philippine Rice Research Institute, Los Baños, Laguna, Philippines
| | - Lotis E Mopera
- Institute of Food Science and Technology, 54729University of the Philippines Los Baños, Laguna, Philippines
| | - Floirendo P Flores
- Institute of Food Science and Technology, 54729University of the Philippines Los Baños, Laguna, Philippines
| |
Collapse
|