1
|
Su L, Zhang X, Su Y, Liu B. A simple colorimetric method based on "on-off-on" mode for detection of H 2S and Hg 2+ in water. ANAL SCI 2022; 38:1407-1416. [PMID: 35974229 DOI: 10.1007/s44211-022-00171-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 07/24/2022] [Indexed: 11/01/2022]
Abstract
It is of great significance to develop efficient platforms for the detection of hypertoxic Hg2+ and H2S. Colorimetric have received much attention for the detection of H2S and Hg2+ in the last decades. In this work, an "on-off-on" mode colorimetric method based on MnO2/multi-wall carbon nanotubes (MnO2/MWCNTs) composite was constructed. MnO2/MWCNTs composite can oxidize TMB directly to form blue product (ox TMB) with a good simulated oxidase activity. In the presence of H2S, it can decompose the MnO2/MWCNTs composite causing the absorbance of the chromogenic system to decrease. When Hg2+ is introduced, the formation of Hg-S bond between Hg2+ and H2S inhibited the decomposition ability of H2S toward MnO2 composite, thus resulting in a color change from colorless to blue. Based on this phenomenon, the proposed "on-off-on" colorimetric sensor can be used for detection of H2S (off) and Hg2+ (on). Under optimized experimental conditions, this sensor showed a satisfactory linear relationship of H2S and Hg2+ with pleasant repeatability, acceptable method accuracy and stability. More importantly, the proposed colorimetric sensor has been successfully applied to the detection of H2S and Hg2+ in real samples, which not only provides a simple and cost-effective method to detect H2S and Hg2+ but also hopefully makes a certain contribution to environmental protection.
Collapse
Affiliation(s)
- Lixia Su
- Guizhou Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province), College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Xue Zhang
- Guizhou Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province), College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Yonghuan Su
- Guizhou Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province), College of Pharmacy, Guizhou University, Guiyang, 550025, China
| | - Bingqian Liu
- Guizhou Engineering Laboratory for Synthetic Drugs (Ministry of Education of Guizhou Province), College of Pharmacy, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
2
|
Chen L, Cheng Z, Luo M, Wang T, Zhang L, Wei J, Wang Y, Li P. Fluorescent noble metal nanoclusters for contaminants analysis in food matrix. Crit Rev Food Sci Nutr 2021:1-19. [PMID: 34658279 DOI: 10.1080/10408398.2021.1990010] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recently, food safety issues caused by contaminants have aroused great public concern. The development of innovative and efficient sensing techniques for contaminants detection in food matrix is in urgent demand. As fluorescent nanomaterials, noble metal nanoclusters have attracted much attention because of their ease of synthesis, enhanced catalytic activity and biocompatibility, and most importantly, excellent photoluminescence property that provides promising analytical applications. This review comprehensively introduced the synthesis method of noble metal nanoclusters, and summarized the application of metal nanoclusters as fluorescent sensing materials in the detection of pollutants, including pesticides, heavy metal, mycotoxin, food additives, and other contaminants in food. The detection mechanism of pesticide residues mostly relies on the inhibition of natural enzymes. For heavy metals, the detection mechanism is mainly related to the interaction between metal ions and nanoclusters or ligands. It is evidenced that metal nanoclusters have great potential application in the field of food safety monitoring. Moreover, challenges and future trends of nanoclusters were discussed. We hope that this review can provide insights and directions for the application of nanoclusters in contaminants detection.
Collapse
Affiliation(s)
- Ling Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Zehua Cheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Mai Luo
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Ting Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Lei Zhang
- Laboratory Animal Center, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China
| | - Jinchao Wei
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Yitao Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Peng Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| |
Collapse
|
3
|
Cytotoxicity studies of protein-stabilized fluorescent gold nanoclusters on human lymphocytes. Colloids Surf B Biointerfaces 2021; 200:111593. [DOI: 10.1016/j.colsurfb.2021.111593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 12/30/2020] [Accepted: 01/22/2021] [Indexed: 02/08/2023]
|
4
|
A novel gold nanocluster-based fluorometric biosensor for measuring prooxidant activity with a large Stokes shift. Talanta 2019; 208:120425. [PMID: 31816696 DOI: 10.1016/j.talanta.2019.120425] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/24/2019] [Accepted: 10/01/2019] [Indexed: 12/31/2022]
Abstract
A chicken egg white protein-protected gold nanocluster (CEW-AuNC) based fluorogenic biosensor, where protein was used as both reducing and protecting agent, was developed to determine the Cu(II)-induced prooxidant activity of natural antioxidants abundant in food and biological samples. Gold nanoclusters, prepared using egg white proteins, exhibited strong fluorescence. The prooxidant activity of the tested antioxidants was indirectly measured by their reducing action on Cu(II) to Cu(I), and the reduced cuprous ion was bound to the thiol groups in the CEW-AuNC structure, causing a decrease in fluorescence intensity. Epicatechin, catechin, epigallocatechin gallate, morin, rutin, quercetin, gallic, chlorogenic, and rosmarinic acids, glutathione, cysteine, N-acetyl cysteine, bilirubin, resveratrol, and α-tocopherol were studied as natural antioxidants. A fluorometric method showing a large Stokes shift with excitation/emission maxima at 360∕640 nm was developed to sensitively measure the decrease in the fluorescence of CEW-AuNC associated with the binding of copper(I) to the protein structure. Total prooxidant activities of the binary, ternary, and quaternary synthetic mixtures and of some food and synthetic serum samples were determined. The biosensor response was statistically compared to that of its spectrophotometric counterpart. This method can be used for the control of the oxidative stability of foods with a prolonged shelf life.
Collapse
|
5
|
Akyüz E, Şen FB, Bener M, Başkan KS, Tütem E, Apak R. Protein-Protected Gold Nanocluster-Based Biosensor for Determining the Prooxidant Activity of Natural Antioxidant Compounds. ACS OMEGA 2019; 4:2455-2462. [PMID: 31459484 PMCID: PMC6648775 DOI: 10.1021/acsomega.8b03286] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 01/22/2019] [Indexed: 05/21/2023]
Abstract
In this work, chicken egg white protein (CEW)-protected gold nanoclusters (CEW-AuNCs) were prepared from CEW and HAuCl4 to measure the Cu(II)-induced prooxidant activity of antioxidant compounds such as epicatechin, epigallocatechin gallate, catechin, rosmarinic acid, resveratrol, ascorbic acid, and glutathione. These compounds reduced Cu(II) to Cu(I), and the latter was mainly bound to thiol groups in the CEW-AuNC structure. As the protein-bound Cu(I) may act as a catalytic center for generating reactive oxygen species, the Cu(II) reducing ability of antioxidants is an indirect measure of their prooxidant potency. The bound Cu(I) may be released with the cuprous-selective ligand neocuproine (Nc), forming the basis of a spectrophotometric method measuring absorbance at 450 nm wavelength of the Cu(I)-Nc chelate. The developed method involved a one-pot synthesis and determination without preseparation and was applied to binary synthetic mixtures of studied antioxidant compounds and to certain herbal plant (green tea, linden, echinacea, and artichoke leaf) extracts to determine the total prooxidant activities. The obtained results were statistically compared with those of the literature Cu(II)-Nc assay using a calcium proteinate-based solid biosensor. The developed biosensor was durable, reliable, easily applicable, and of low cost and wide linear range and could determine the prooxidant activities of natural antioxidant samples with high reproducibility.
Collapse
Affiliation(s)
- Esin Akyüz
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Furkan Burak Şen
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Mustafa Bener
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Kevser Sözgen Başkan
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Esma Tütem
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
| | - Reşat Apak
- Department
of Chemistry, Faculty of Engineering, Istanbul
University-Cerrahpasa, Avcilar, 34320 Istanbul, Turkey
- Turkish
Academy of Sciences (TUBA), Piyade St. No: 27, Çankaya, Ankara 06690, Turkey
| |
Collapse
|
6
|
MA X, WU G, ZHAO Y, YUAN Z, XIA N, YANG M, LIU L. A Benzothiazole-based Ratiometric Fluorescent Probe for Benzoyl Peroxide and Its Applications for Living Cells Imaging. ANAL SCI 2019; 35:91-97. [DOI: 10.2116/analsci.18sdp09] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Xiaohua MA
- School of Chemical Engineering and Technology, China University of Mining and Technology
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University
| | - Guoguang WU
- School of Chemical Engineering and Technology, China University of Mining and Technology
| | - Yuehua ZHAO
- School of Chemical Engineering and Technology, China University of Mining and Technology
| | - Zibo YUAN
- School of Chemical Engineering and Technology, China University of Mining and Technology
| | - Ning XIA
- Key Laboratory of New Optoelectronic Functional Materials (Henan Province), College of Chemistry and Chemical Engineering, Anyang Normal University
| | - Mengnan YANG
- School of Chemical Engineering and Technology, China University of Mining and Technology
| | - Lin LIU
- Key Laboratory of New Optoelectronic Functional Materials (Henan Province), College of Chemistry and Chemical Engineering, Anyang Normal University
| |
Collapse
|
7
|
Zhang H, Guan Y, Li X, Lian L, Wang X, Gao W, Zhu B, Liu X, Lou D. Ultrasensitive Biosensor for Detection of Mercury(II) Ions Based on DNA-Cu Nanoclusters and Exonuclease III-assisted Signal Amplification. ANAL SCI 2019; 34:1155-1161. [PMID: 30305592 DOI: 10.2116/analsci.18p124] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This paper describes a novel method for label-free mercury(II) ion detection based on exonuclease III-induced target signal recycling amplification using double-stranded DNA templated copper nanoclusters. The synthesized DNA-Cu nanoclusters were used with exonuclease III loop amplification technology for ultra-high sensitivity detection of mercury(II) ions, which were detected by significantly decreased fluorescence intensity. Under the optimal experimental conditions, there was a clear linear relationship between Hg2+ concentration in the range of 0.04 to 8 nM and fluorescence intensity. The detection limit for Hg2+ was 4 pM. In addition, the interference of other metal ions on the mercury(II) ion detection was also studied. To confirm the application of the fluorescent sensor, it was applied to determine the concentrations of mercury(II) ions in tap water, and the results showed that the method can be used to detect mercury(II) ions in water samples successfully.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology
| | - Yanan Guan
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology
| | - Xiaoshuang Li
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology
| | - Lili Lian
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology
| | - Xiyue Wang
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology
| | - Wenxiu Gao
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology
| | - Bo Zhu
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology
| | - Xuying Liu
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology
| | - Dawei Lou
- Department of Analytical Chemistry, Jilin Institute of Chemical Technology
| |
Collapse
|
8
|
Thakur N, Mandal N, Banerjee UC. Esterase-Mediated Highly Fluorescent Gold Nanoclusters and Their Use in Ultrasensitive Detection of Mercury: Synthetic and Mechanistic Aspects. ACS OMEGA 2018; 3:18553-18562. [PMID: 31458426 PMCID: PMC6643912 DOI: 10.1021/acsomega.8b02505] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 12/17/2018] [Indexed: 06/10/2023]
Abstract
The fast, accurate, and ultrasensitive detection of toxic mercury in real water samples is still challenging without the use of expensive sophisticated instruments. Herein, highly fluorescent gold nanoclusters (AuNCs) were synthesized using a newer protein templet, esterase (EST). The EST-AuNCs consisted of ∼25 Au atoms in the nanocluster having ∼2 nm size. EST-AuNCs were found to be highly stable in aqueous buffer with a wide range of pH (pH 4-12) and were also stable in powdered form. The fluorescence quantum yield of EST-AuNCs in deionized water was 6.2% which had increased to 7.8% upon the addition of 1 M NaCl (an increase of 23%). The EST-AuNCs selectively sense the toxic Hg2+ ions with higher sensitivity (limit of detection; 0.88 nM) with the linear range 1-30 nM. The test strips for rapid sensing of Hg2+ in real water samples were developed on the polymeric surface. The validation of sensing ability of EST-AuNCs suggested 94-98% recovery with linearity. Moreover, because of the widely reported applications of EST, the developed EST-AuNCs could also be used for another sensing, catalytic, and biomedical applications.
Collapse
Affiliation(s)
| | | | - Uttam C. Banerjee
- Department of Pharmaceutical Technology
(Biotechnology), National Institute of Pharmaceutical
Education and Research (NIPER), Sector-67, S.A.S. Nagar 160062, Punjab, India
| |
Collapse
|
9
|
Chicken egg white and L-cysteine as cooperative ligands for effective encapsulation of Zn-doped silver nanoclusters for sensing and imaging applications. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.09.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
10
|
|
11
|
DUAN Q, ZHANG M, SHENG C, LIU C, WU L, MA Z, ZHAO Q, WANG Z, ZHU B. Rhodol-derived Colorimetric and Fluorescent Probe with the Receptor of Carbonothioate for the Specific Detection of Mercury Ions. ANAL SCI 2017; 33:1169-1173. [DOI: 10.2116/analsci.33.1169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Qingxia DUAN
- School of Resources and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
| | - Meng ZHANG
- School of Resources and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
| | | | - Caiyun LIU
- School of Resources and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
| | - Liu WU
- School of Resources and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
| | - Zhenmin MA
- School of Resources and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
| | - Qiang ZHAO
- School of Resources and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
| | - Zhongpeng WANG
- School of Resources and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
| | - Baocun ZHU
- School of Resources and Environment, University of Jinan, Shandong Provincial Engineering Technology Research Center for Ecological Carbon Sink and Capture Utilization
| |
Collapse
|
12
|
|