Zhong T, Guo Q, Zhu X, Liu R, Huang S. Based on Gold Nanoparticles-L-Tyr-Amino Functionalized Mesoporous Materials-Polyphenol Oxidase Modified Biosensor for the Detection of Resorcinol.
ANAL SCI 2021;
37:817-823. [PMID:
33012757 DOI:
10.2116/analsci.20p288]
[Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Nowadays, resorcinol (RC) has been widely applied in the chemical and pharmaceutical industries. However, the electrochemical detection technique of RC still features some significant drawbacks, for instance, a low sensitivity. Hence, in the present work, a glass carbon electrode was developed for the electrochemical detection of RC with good specificity and stability, through modifying the glass carbon electrode (GCE) by polyphenol oxidase (PPO), an NH2-SBA-15 mesoporous material (NH2-SBA-15), L-tyrosine (L-Tyr) and gold nano-particles (AuNPs). After being successively modified by AuNPs, L-Tyr, NH2-SBA-15 and PPO, the constructed PPO/NH2-SBA-15/L-Tyr/AuNPs/GCE was used to discriminate RC from ions and other common micromolecules, which showed a fairly good specificity and stability. The proposed electrochemical detection method features a linear range of from 0.5 to 21.0 μM with a LOD down to 0.15 μM, revealing a better sensitivity than the existing methods. It is worth mentioning that the proposed PPO/NH2-SBA-15/L-Tyr/AuNPs/GCE has been successfully used as an electrochemical probe for the RC assay in domestic sewage.
Collapse