1
|
Strohmaier-Nguyen D, Horn C, Baeumner AJ. Innovations in one-step point-of-care testing within microfluidics and lateral flow assays for shaping the future of healthcare. Biosens Bioelectron 2024; 267:116795. [PMID: 39332251 DOI: 10.1016/j.bios.2024.116795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/31/2024] [Accepted: 09/17/2024] [Indexed: 09/29/2024]
Abstract
Point-of-care testing (POCT) technology, using lateral flow assays and microfluidic systems, facilitates cost-effective diagnosis, timely treatment, ongoing monitoring, and prevention of life-threatening outcomes. Aside from significant advancements demonstrated in academic research, implementation in real-world applications remains frustratingly limited. The divergence between academic developments and practical utility is often due to factors such as operational complexity, low sensitivity and the need for trained personnel. Taking this into consideration, our objective is to present a critical and objective overview of the latest advancements in fully integrated one-step POCT assays for home-testing which would be commercially viable. In particular, aspects of signal amplification, assay design modification, and sample preparation are critically evaluated and their features and medical applications along with future perspective and challenges with respect to minimal user intervention are summarized. Associated with and very important for the one-step POCT realization are also readout devices and fabrication processes. Critical analysis of available and useful technologies are presented in the SI section.
Collapse
Affiliation(s)
- Dan Strohmaier-Nguyen
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany
| | - Carina Horn
- Roche Diagnostics GmbH, 68305, Mannheim, Germany
| | - Antje J Baeumner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
2
|
Chen SY, Wu AY, Lunde R, Lai JJ. Osmotic Processor for Enabling Sensitive and Rapid Biomarker Detection via Lateral Flow Assays. Front Bioeng Biotechnol 2022; 10:884271. [PMID: 35721843 PMCID: PMC9199386 DOI: 10.3389/fbioe.2022.884271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Urine is an attractive biospecimen for in vitro diagnostics, and urine-based lateral flow assays are low-cost devices suitable for point-of-care testing, particularly in low-resource settings. However, some of the lateral flow assays exhibit limited diagnostic utility because the urinary biomarker concentration is significantly lower than the assay detection limit, which compromises the sensitivity. To address the challenge, we developed an osmotic processor that statically and spontaneously concentrated biomarkers. The specimen in the device interfaces with the aqueous polymer solution via a dialysis membrane. The polymer solution induces an osmotic pressure difference that extracts water from the specimen, while the membrane retains the biomarkers. The evaluation demonstrated that osmosis induced by various water-soluble polymers efficiently extracted water from the specimens, ca. 5–15 ml/h. The osmotic processor concentrated the specimens to improve the lateral flow assays’ detection limits for the model analytes—human chorionic gonadotropin and SARS-CoV-2 nucleocapsid protein. After the treatment via the osmotic processor, the lateral flow assays detected the corresponding biomarkers in the concentrated specimens. The test band intensities of the assays with the concentrated specimens were very similar to the reference assays with 100-fold concentrations. The mass spectrometry analysis estimated the SARS-CoV-2 nucleocapsid protein concentration increased ca. 200-fold after the osmosis. With its simplicity and flexibility, this device demonstrates a great potential to be utilized in conjunction with the existing lateral flow assays for enabling highly sensitive detection of dilute target analytes in urine.
Collapse
Affiliation(s)
- Sheng-You Chen
- Department of Mechanical Engineering, University of Washington, Seattle, WA, United States
| | - Abe Y. Wu
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - Ruby Lunde
- Department of Bioengineering, University of Washington, Seattle, WA, United States
| | - James J. Lai
- Department of Bioengineering, University of Washington, Seattle, WA, United States
- *Correspondence: James J. Lai,
| |
Collapse
|
3
|
Advanced trap lateral flow immunoassay sensor for the detection of cortisol in human bodily fluids. Sci Rep 2021; 11:22580. [PMID: 34799635 PMCID: PMC8604903 DOI: 10.1038/s41598-021-02084-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/09/2021] [Indexed: 11/08/2022] Open
Abstract
Paper-based biosensors based on lateral flow immunoassay (LFI) are promising candidates for POC diagnosis because of their ease of use and rapid target detection. However, the low sensitivity of LFI limits its application, and signal amplification has been used in numerous studies to increase its sensitivity. We developed an advanced trap LFI (α-trapLFI), a simple-to-use sensor, with an additional step for signal amplification. Here, signal amplification is automatically implemented following delayed release of enhancement solution induced by water-soluble polyvinyl alcohol tape. As the polyvinyl alcohol tape is exposed to water, its polymer structure is perturbed (within 5 min), allowing ions to pass through. This new sensor was designed to have a short time delay between the flow of solutions used for the immunoassay and signal amplification. The α-trapLFI was subsequently used to detect cortisol with high sensitivity (9.1 pg∙mL-1) over a broad detection range (0.01-1000 ng∙mL-1) in bodily fluids. Furthermore, an excellent correlation was obtained by analyzing 20 human real saliva samples using this sensor and a conventional ELISA (R2 = 0.90). The new sensor will be helpful in detecting various small molecules for simple, rapid, and portable POC diagnosis of stress disorders.
Collapse
|
4
|
ASANO H, MAEDA T, SHIRAISHI Y. Sensitive Determination of Hexavalent Chromium Using a Microfluidic Paper-based Analytical Device with Solid Phase Extraction. BUNSEKI KAGAKU 2021. [DOI: 10.2116/bunsekikagaku.70.379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hitoshi ASANO
- Center for Liberal Arts and Sciences, Sanyo-Onoda City University
| | - Taishiro MAEDA
- Department of Applied Chemistry, Faculty of Engineering, Sanyo-Onoda City University
| | - Yukihide SHIRAISHI
- Department of Applied Chemistry, Faculty of Engineering, Sanyo-Onoda City University
| |
Collapse
|
5
|
Strip modification and alternative architectures for signal amplification in nanoparticle-based lateral flow assays. Anal Bioanal Chem 2021; 413:4111-4117. [PMID: 34036400 DOI: 10.1007/s00216-021-03421-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/12/2021] [Accepted: 05/19/2021] [Indexed: 10/21/2022]
Abstract
Nanoparticle (NP)-based lateral flow assay (LFA) technology has outstanding characteristics that make it ideal for point-of-care bioanalytical applications. However, LFAs still have important limitations, especially related to sensitivity, which is in general worse than that of other well-established bioassays such as ELISA or PCR. Many efforts have been made for enhancing the sensitivity of LFAs, mainly actuating on the nanoparticle labels and on alternative optical detection modes. However, strip pads modification for such a purpose is an incipient vast field of research. This article gives a brief overview on the recent advances proposed for signal amplification actuating on different pads and the general architecture of the LFA strips. Such strategies offer universal tools that can be adapted to any LFA, independently of the kind of sample, analyte, and label. The principles of the different strategies developed to achieve novel signal amplification and sensitive detection are discussed, and some examples of relevant approaches are highlighted, together with future prospects and challenges.
Collapse
|
6
|
Lert-Itthiporn A, Srikritsadawong P, Choengchan N. Foldable paper-based analytical device for membraneless gas-separation and determination of iodate based on fluorescence quenching of gold nanoclusters. Talanta 2021; 221:121574. [PMID: 33076121 DOI: 10.1016/j.talanta.2020.121574] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/08/2020] [Accepted: 08/10/2020] [Indexed: 12/12/2022]
Abstract
A new design of a paper-based analytical device (PAD) for membraneless gas-separation with subsequent determination of iodate is presented. The rectangular PAD was invented as the folded pattern, where two circular reservoirs: the donor reservoir and the acceptor reservoir were situated in "a single paper" for convenient use. The hydrophobic barrier of each reservoir was easily fabricated by painting with a permanent marker. The PAD was demonstrated for the quantitative analysis of iodate, based on the fluorescence quenching of the bovine serum albumin-stabilized gold nanoclusters (BSA-AuNCs). The BSA-AuNCs were fast prepared by a microwave-assisted approach. The nanoclusters solution was applied into the acceptor reservoir, while the sample, iodide and sulfuric acid were sequentially aliquoted into the donor reservoir. After folding the PAD, the donor and the acceptor were mounted together via a two-sided mounting tape. The headspace between the two reservoirs allows membraneless gas-separation of free iodine from the donor to diffuse into the acceptor. Etching of gold core of the nanoclusters in the acceptor resulted in quenching of the red emission, was monitored by two methods, i.e. "fluorometric detection" (λex: 490 nm, λem: 630 nm) and "image capture" of the acceptor under the UV irradiation by a smart phone's camera. Two calibrations were plotted accordingly to their detections and good linearities (r2 ˃ 0.98) were observed from 0.005 to 0.1 mmol L-1 iodate. High accuracy (mean recovery: 95.1 (±4.6) %) and high precision (RSD < 3%) were obtained. The lower limits of detection were 0.005 mmol L-1 (with fluorometric detection) and 0.01 mmol L-1 (with image capture). The method was effectively applied for the measurement of iodate in iodized salts and fish sauces without prior sample pre-treatment.
Collapse
Affiliation(s)
- Aurachat Lert-Itthiporn
- Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Bangkok, Thailand; Department of Chemistry and the Applied Analytical Chemistry Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Pongpichet Srikritsadawong
- Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Bangkok, Thailand; Department of Chemistry and the Applied Analytical Chemistry Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand
| | - Nathawut Choengchan
- Flow Innovation-Research for Science and Technology Laboratories (FIRST Labs), Bangkok, Thailand; Department of Chemistry and the Applied Analytical Chemistry Research Unit, Faculty of Science, King Mongkut's Institute of Technology Ladkrabang, Bangkok, 10520, Thailand.
| |
Collapse
|
7
|
Mathaweesansurn A, Thongrod S, Khongkaew P, Phechkrajang CM, Wilairat P, Choengchan N. Simple and fast fabrication of microfluidic paper-based analytical device by contact stamping for multiple-point standard addition assay: Application to direct analysis of urinary creatinine. Talanta 2020; 210:120675. [DOI: 10.1016/j.talanta.2019.120675] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/21/2019] [Accepted: 12/23/2019] [Indexed: 02/06/2023]
|
8
|
Chailapakul O, Siangproh W, Jampasa S, Chaiyo S, Teengam P, Yakoh A, Pinyorospathum C. Paper-based sensors for the application of biological compound detection. COMPREHENSIVE ANALYTICAL CHEMISTRY 2020. [PMCID: PMC7274129 DOI: 10.1016/bs.coac.2020.03.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
This chapter describes the importance of PADs for biomarker detection. The screening of disease markers and other biomolecules that related to health conditions have play important roles for an indication of the risk from infections and other diseases. Paper-based analytical devices (PADs) is an excellent option for applications of biomarker detection because it contains all advantages which arise from the paper material. Moreover, the uncomplicated techniques including electrochemistry and colorimetry can be easily applied on PADs for the analytical detection. The detection method can be categorized into three main topics: enzymatic methods, immunoassays, and DNA sensors. Following the main context, other interesting applications also present in this chapter.
Collapse
|
9
|
Nishat S, Awan FR, Bajwa SZ. Nanoparticle-based Point of Care Immunoassays for in vitro Biomedical Diagnostics. ANAL SCI 2019; 35:123-131. [PMID: 30224569 DOI: 10.2116/analsci.18r001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In resource-limited settings, the availability of medical practitioners and early diagnostic facilities are inadequate relative to the population size and disease burden. To address cost and delayed time issues in diagnostics, strip-based immunoassays, e.g. dipstick, lateral flow assay (LFA) and microfluidic paper-based analytical devices (microPADs), have emerged as promising alternatives to conventional diagnostic approaches. These assays rely on chromogenic agents to detect disease biomarkers. However, limited specificity and sensitivity have motivated scientists to improve the efficiency of these assays by conjugating chromogenic agents with nanoparticles for enhanced qualitative and quantitative output. Various nanomaterials, which include metallic, magnetic and luminescent nanoparticles, are being used in the fabrication of biosensors to detect and quantify biomolecules and disease biomarkers. This review discusses some of the principles and applications of such nanoparticle-based point of care biosensors in biomedical diagnosis.
Collapse
Affiliation(s)
- Sumaira Nishat
- National Institute for Biotechnology and Genetic Engineering (NIBGE).,akistan Institute of Engineering and Applied Sciences (PIEAS).,Department of Computer Science, University of Agriculture
| | - Fazli Rabbi Awan
- National Institute for Biotechnology and Genetic Engineering (NIBGE).,akistan Institute of Engineering and Applied Sciences (PIEAS)
| | - Sadia Zafar Bajwa
- National Institute for Biotechnology and Genetic Engineering (NIBGE).,akistan Institute of Engineering and Applied Sciences (PIEAS)
| |
Collapse
|
10
|
Mimura M, Tomita S, Kurita R, Shiraki K. Array-based Generation of Response Patterns with Common Fluorescent Dyes for Identification of Proteins and Cells. ANAL SCI 2019; 35:99-102. [PMID: 29806617 DOI: 10.2116/analsci.18sdn01] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A differential array consisting of commercially available common fluorescent dyes was constructed for the identification of proteins and human cancer cells. Fluorescence of dyes was differently altered by mixing with proteins and human cancer cells, generating response patterns that are unique to the analytes. Linear discriminant analysis of the obtained patterns enabled the accurate identification of eight proteins and three human cancer cells. As this system can be easily prepared, it would offer a unique opportunity for array-based differential biosensing.
Collapse
Affiliation(s)
- Masahiro Mimura
- Faculty of Pure and Applied Sciences, University of Tsukuba.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) and DAILAB
| | - Shunsuke Tomita
- Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) and DAILAB
| | - Ryoji Kurita
- Faculty of Pure and Applied Sciences, University of Tsukuba.,Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST) and DAILAB
| | | |
Collapse
|
11
|
Paper-Based Microfluidics for Point-of-Care Medical Diagnostics. Bioanalysis 2019. [DOI: 10.1007/978-981-13-6229-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|