1
|
Pereira J, Melo S, Ferreira RM, Carneiro P, Yang V, Maia AF, Carvalho J, Figueiredo C, Machado JC, Morais-de-Sá E, Seruca R, Figueiredo J. E-cadherin variants associated with oral facial clefts trigger aberrant cell motility in a REG1A-dependent manner. Cell Commun Signal 2024; 22:152. [PMID: 38414029 PMCID: PMC10898076 DOI: 10.1186/s12964-024-01532-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 02/13/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND Germline mutations of E-cadherin contribute to hereditary diffuse gastric cancer (HDGC) and congenital malformations, such as oral facial clefts (OFC). However, the molecular mechanisms through which E-cadherin loss-of-function triggers distinct clinical outcomes remain unknown. We postulate that E-cadherin-mediated disorders result from abnormal interactions with the extracellular matrix and consequent aberrant intracellular signalling, affecting the coordination of cell migration. METHODS Herein, we developed in vivo and in vitro models of E-cadherin mutants associated with either OFC or HDGC. Using a Drosophila approach, we addressed the impact of the different variants in cell morphology and migration ability. By combining gap closure migration assays and time-lapse microscopy, we further investigated the migration pattern of cells expressing OFC or HDGC variants. The adhesion profile of the variants was evaluated using high-throughput ECM arrays, whereas RNA sequencing technology was explored for identification of genes involved in aberrant cell motility. RESULTS We have demonstrated that cells expressing OFC variants exhibit an excessive motility performance and irregular leading edges, which prevent the coordinated movement of the epithelial monolayer. Importantly, we found that OFC variants promote cell adhesion to a wider variety of extracellular matrices than HDGC variants, suggesting higher plasticity in response to different microenvironments. We unveiled a distinct transcriptomic profile in the OFC setting and pinpointed REG1A as a putative regulator of this outcome. Consistent with this, specific RNAi-mediated inhibition of REG1A shifted the migration pattern of OFC expressing cells, leading to slower wound closure with coordinated leading edges. CONCLUSIONS We provide evidence that E-cadherin variants associated with OFC activate aberrant signalling pathways that support dynamic rearrangements of cells towards improved adaptability to the microenvironment. This proficiency results in abnormal tissue shaping and movement, possibly underlying the development of orofacial malformations.
Collapse
Affiliation(s)
- Joana Pereira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of Porto University, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Soraia Melo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of Porto University, Porto, Portugal
| | - Rui M Ferreira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of Porto University, Porto, Portugal
| | - Patrícia Carneiro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of Porto University, Porto, Portugal
| | - Vítor Yang
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- IBMC - Institute for Molecular and Cell Biology, University of Porto, Porto, Portugal
- ICBAS - Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - André F Maia
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- IBMC - Institute for Molecular and Cell Biology, University of Porto, Porto, Portugal
| | - João Carvalho
- CFisUC, Department of Physics, University of Coimbra, Coimbra, Portugal
| | - Ceu Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of Porto University, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - José Carlos Machado
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of Porto University, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Eurico Morais-de-Sá
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- IBMC - Institute for Molecular and Cell Biology, University of Porto, Porto, Portugal
| | - Raquel Seruca
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of Porto University, Porto, Portugal
- Faculty of Medicine, University of Porto, Porto, Portugal
| | - Joana Figueiredo
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade Do Porto, Rua Alfredo Allen, 208, Porto, 4200-135, Portugal.
- IPATIMUP - Institute of Molecular Pathology and Immunology of Porto University, Porto, Portugal.
- Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
2
|
Wolf CJ, Fitzpatrick H, Becker C, Smith J, Wood C. An improved multicellular human organoid model for the study of chemical effects on palatal fusion. Birth Defects Res 2023; 115:1513-1533. [PMID: 37530699 PMCID: PMC11253831 DOI: 10.1002/bdr2.2229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 07/11/2023] [Accepted: 07/19/2023] [Indexed: 08/03/2023]
Abstract
BACKGROUND Tissue fusion is a mechanism involved in the development of the heart, iris, genital tubercle, neural tube, and palate during embryogenesis. Failed fusion of the palatal shelves could result in cleft palate (CP), a common birth defect. Organotypic models constructed of human cells offer an opportunity to investigate developmental processes in the human. Previously, our laboratory developed an organoid model of the human palate that contains human mesenchyme and epithelial progenitor cells to study the effects of chemicals on fusion. METHODS Here, we developed an organoid model more representative of the embryonic palate that includes three cell types: mesenchyme, endothelial, and epithelial cells. We measured fusion by a decrease in epithelial cells at the contact point between the organoids and compared the effects of CP teratogens on fusion and toxicity in the previous and current organoid models. We further tested additional suspect teratogens in our new model. RESULTS We found that the three-cell-type model is more sensitive to fusion inhibition by valproic acid and inhibitors of FGF, BMP, and TGFβRI/II. In this new model, we tested other suspect CP teratogens and found that nocodazole, topiramate, and Y27632 inhibit fusion at concentrations that do not induce toxicity. CONCLUSION This sensitive human three-cell-type organotypic model accurately evaluates chemicals for cleft palate teratogenicity.
Collapse
Affiliation(s)
- Cynthia J Wolf
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - Hunter Fitzpatrick
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Carrie Becker
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Jessica Smith
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA
| | - Carmen Wood
- Center for Public Health and Environmental Assessment, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| |
Collapse
|
3
|
Abstract
Orofacial clefts (OFCs) are the most common congenital birth defects in humans and immediately recognized at birth. The etiology remains complex and poorly understood and seems to result from multiple genetic and environmental factors along with gene-environment interactions. It can be classified into syndromic (30%) and nonsyndromic (70%) clefts. Nonsyndromic OFCs include clefts without any additional physical or cognitive deficits. Recently, various genetic approaches, such as genome-wide association studies (GWAS), candidate gene association studies, and linkage analysis, have identified multiple genes involved in the etiology of OFCs. This article provides an insight into the multiple genes involved in the etiology of OFCs. Identification of specific genetic causes of clefts helps in a better understanding of the molecular pathogenesis of OFC. In the near future, it helps to provide a more accurate diagnosis, genetic counseling, personalized medicine for better clinical care, and prevention of OFCs.
Collapse
Affiliation(s)
- Mahamad Irfanulla Khan
- Department of Orthodontics & Dentofacial Orthopedics, The Oxford Dental College, Bangalore, Karnataka, India
| | - Prashanth CS
- Department of Orthodontics & Dentofacial Orthopedics, DAPM R.V. Dental College, Bangalore, Karnataka, India
| | - Narasimha Murthy Srinath
- Department of Oral & Maxillofacial Surgery, Krishnadevaraya College of Dental Sciences, Bangalore, Karnataka, India
| |
Collapse
|
4
|
Mammadova A, Carels CEL, Zhou J, Gilissen C, Helmich MPAC, Bian Z, Zhou H, Von den Hoff JW. Deregulated Adhesion Program in Palatal Keratinocytes of Orofacial Cleft Patients. Genes (Basel) 2019; 10:genes10110836. [PMID: 31652793 PMCID: PMC6895790 DOI: 10.3390/genes10110836] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/17/2019] [Accepted: 10/19/2019] [Indexed: 01/10/2023] Open
Abstract
Orofacial clefts (OFCs) are the most frequent craniofacial birth defects. An orofacial cleft (OFC) occurs as a result of deviations in palatogenesis. Cell proliferation, differentiation, adhesion, migration and apoptosis are crucial in palatogenesis. We hypothesized that deregulation of these processes in oral keratinocytes contributes to OFC. We performed microarray expression analysis on palatal keratinocytes from OFC and non-OFC individuals. Principal component analysis showed a clear difference in gene expression with 24% and 17% for the first and second component, respectively. In OFC cells, 228 genes were differentially expressed (p < 0.001). Gene ontology analysis showed enrichment of genes involved in β1 integrin-mediated adhesion and migration, as well as in P-cadherin expression. A scratch assay demonstrated reduced migration of OFC keratinocytes (343.6 ± 29.62 μm) vs. non-OFC keratinocytes (503.4 ± 41.81 μm, p < 0.05). Our results indicate that adhesion and migration are deregulated in OFC keratinocytes, which might contribute to OFC pathogenesis.
Collapse
Affiliation(s)
- Aysel Mammadova
- Department of Dentistry, Section Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Carine E L Carels
- Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium.
- Department of Oral Health Sciences, KU Leuven, 3000 Leuven, Belgium.
| | - Jie Zhou
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan 430079, China.
| | - Christian Gilissen
- Department of Human Genetics, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Maria P A C Helmich
- Department of Dentistry, Section Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Zhuan Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, Wuhan University, Wuhan 430079, China.
| | - Huiqing Zhou
- Department of Human Genetics, Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
- Department of Molecular Developmental Biology, Radboud Institute for Molecular Life Sciences (RIMLS), P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | - Johannes W Von den Hoff
- Department of Dentistry, Section Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences (RIMLS), Radboud University Medical Center, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| |
Collapse
|
5
|
Roa LA, Bloemen M, Carels CEL, Wagener FADTG, Von den Hoff JW. Retinoic acid disrupts osteogenesis in pre-osteoblasts by down-regulating WNT signaling. Int J Biochem Cell Biol 2019; 116:105597. [PMID: 31479736 DOI: 10.1016/j.biocel.2019.105597] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 08/23/2019] [Accepted: 08/30/2019] [Indexed: 12/13/2022]
Abstract
The skull bones are formed by osteoblasts by intramembranous ossification. WNT signaling is a regulator of bone formation. Retinoic Acid (RA) act as a teratogen affecting craniofacial development. We evaluated the effects of RA on the differentiation and mineralization of MC-3T3 cells, and on the expression of WNT components. MC-3T3 were cultured with or without 0.5 μM RA in osteogenic medium and mineralization was assessed by alizarin red staining. The expression of osteogenic marker genes and WNT genes was evaluated at several time points up to 28 days. RA significantly inhibited MC-3T3 mineralization (p < 0.01), without affecting ALP activity or Alp gene expression. Both parameters gradually increased in time. During culture, RA stimulated Runx2 expression at 14 and 28 days compared to the respective controls (p < 0.05). Also, RA significantly reduced Sp7 expression at days 14 and 21 (p < 0.05). Simultaneously, RA significantly reduced the expression of the WNT genes cMyc, Lef1, Lrp5, Lrp6 and Wnt11 compared to the controls (p < 0.05). In contrast, RA increased the expression of the WNT inhibitors Dkk1 at day 21 and Dkk2 at days 14 and 21 (p < 0.01). Our data indicate that RA disrupts osteogenic differentiation and mineralization by inhibiting WNT signaling.
Collapse
Affiliation(s)
- Laury A Roa
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen, the Netherlands
| | - Marjon Bloemen
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen, the Netherlands
| | - Carine E L Carels
- Department of Oral Health Sciences, University KU Leuven. Herestraat 49, Leuven, Belgium
| | - Frank A D T G Wagener
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen, the Netherlands
| | - Johannes W Von den Hoff
- Department of Orthodontics and Craniofacial Biology, Radboud University Medical Center, Philips van Leydenlaan 25, Nijmegen, the Netherlands.
| |
Collapse
|
6
|
Wei C, Huang H, Cong W, Li Z, Zhang X, Liu H, Wang R, Xiao J. Identification of the Differentially Expressed microRNAs Involved in Cleft Palate Induced by Retinoic Acid (RA) in Mouse Model. J HARD TISSUE BIOL 2018. [DOI: 10.2485/jhtb.27.243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Chao Wei
- Department of Oral Pathology, College of Stomatology, Dalian Medical University
| | - Haitao Huang
- Department of Stomatology, the First Affiliated Hospital, Dalian Medical University
| | - Wei Cong
- Department of Oral Pathology, College of Stomatology, Dalian Medical University
| | - Zhiguang Li
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University
| | - Xuehong Zhang
- Institute of Cancer Stem Cell, Cancer Center, Dalian Medical University
| | - Han Liu
- Department of Oral Pathology, College of Stomatology, Dalian Medical University
| | - Ru Wang
- Department of Stomatology, the First Affiliated Hospital, Dalian Medical University
- Department of Oral and Maxillofacial Surgery, College of Stomatology, Dalian Medical University
| | - Jing Xiao
- Department of Oral Pathology, College of Stomatology, Dalian Medical University
| |
Collapse
|
7
|
Transcriptome profiling reveals candidate cleft palate-related genes in cultured Chinese sturgeons (Acipenser sinensis). Gene 2018; 666:1-8. [PMID: 29733966 DOI: 10.1016/j.gene.2018.05.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/26/2018] [Accepted: 05/03/2018] [Indexed: 11/20/2022]
Abstract
The Chinese sturgeon (Acipenser sinensis) is an anadromous fish distributed in the Yangtze River and the East China Sea. In this study, we report the novel finding of cleft palates in Chinese sturgeons derived from artificial fertilization. To explore the genetic basis of palate malformation in A. sinensis, Illumina RNA-seq technology was used to analyze the transcriptome data of farmed Chinese sturgeons with normal palates and cleft-palates. Raw reads were obtained and assembled into 808,612 unigenes, with an average length of 509.33 bp and an N50 of 574 bp. Sequence similarity analyses against four public databases (Nr, UniProt, KEGG, and COGs) found 158,642 unigenes that could be annotated. GABAergic synapses and TGF-β signal pathways were the two most enriched pathways with high Rich Factors in the analyses of differentially expressed genes. In these two signal pathways, six genes (GABRA4, GS, GNS, S6K, PITX2, and BMP8) were found as candidate cleft-palate genes in Chinese sturgeon. These findings contribute to our understanding of cleft palate genetics in sturgeon, while simultaneously adding to our knowledge about craniofacial development.
Collapse
|
8
|
Živicová V, Lacina L, Mateu R, Smetana K, Kavková R, Krejčí ED, Grim M, Kvasilová A, Borský J, Strnad H, Hradilová M, Šáchová J, Kolář M, Dvořánková B. Analysis of dermal fibroblasts isolated from neonatal and child cleft lip and adult skin: Developmental implications on reconstructive surgery. Int J Mol Med 2017; 40:1323-1334. [PMID: 28901389 PMCID: PMC5627884 DOI: 10.3892/ijmm.2017.3128] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Accepted: 08/21/2017] [Indexed: 01/12/2023] Open
Abstract
The nonsyndromic cleft is one of the most frequent congenital defects in humans. Clinical data demonstrated improved and almost scarless neonatal healing of reparative surgery. Based on our previous results on crosstalk between neonatal fibroblasts and adult keratinocytes, the present study focused on characterization of fibroblasts prepared from cleft lip tissue samples of neonates and older children, and compared them with samples isolated from normal adult skin (face and breast) and scars. Although subtle variances in expression profiles of children and neonates were observed, the two groups differed significantly from adult cells. Compared with adult cells, differences were observed in nestin and smooth muscle actin (SMA) expression at the protein and transcript level. Furthermore, fibroblast to myofibroblast differentiation drives effective wound healing and is largely regulated by the cytokine, transforming growth factor-β1 (TGF-β1). Dysregulation of the TGF-β signalling pathway, including low expression of the TGF-β receptor II, may contribute to reducing scarring in neonates. Fibroblasts of facial origin also exhibited age independent differences from the cells prepared from the breast, reflecting the origin of the facial cells from neural crest-based ectomesenchyme.
Collapse
Affiliation(s)
- Veronika Živicová
- Institute of Anatomy
- Department of Otorhinolaryngology, Head and Neck Surgery
| | - Lukáš Lacina
- Institute of Anatomy
- BIOCEV and
- Department of Dermatovenerology, The First Faculty of Medicine, Charles University, 121 08 Prague
| | | | | | | | | | | | | | - Jiří Borský
- Department of Otorhinolaryngology, The Second Faculty of Medicine, Charles University, 150 06 Prague
| | - Hynek Strnad
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic v.v.i., 142 20 Prague, Czech Republic
| | - Miluše Hradilová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic v.v.i., 142 20 Prague, Czech Republic
| | - Jana Šáchová
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic v.v.i., 142 20 Prague, Czech Republic
| | - Michal Kolář
- Institute of Molecular Genetics, Academy of Sciences of the Czech Republic v.v.i., 142 20 Prague, Czech Republic
| | | |
Collapse
|
9
|
|
10
|
Retinoic acid remodels extracellular matrix (ECM) of cultured human fetal palate mesenchymal cells (hFPMCs) through down-regulation of TGF-β/Smad signaling. Toxicol Lett 2014; 225:208-15. [DOI: 10.1016/j.toxlet.2013.12.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2013] [Revised: 12/13/2013] [Accepted: 12/13/2013] [Indexed: 01/28/2023]
|
11
|
Lin Y, Shu S, Tang S. A case-control study of environmental exposures for nonsyndromic cleft of the lip and/or palate in eastern Guangdong, China. Int J Pediatr Otorhinolaryngol 2014; 78:544-50. [PMID: 24485177 DOI: 10.1016/j.ijporl.2014.01.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2013] [Revised: 12/30/2013] [Accepted: 01/04/2014] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To study the relationship between environmental factors and nonsyndromic cleft of the lip and/or palate (NSCLP) in eastern Guangdong for the prevention of NSCLP. METHODS A 1:1 retrospective case-control study was carried out. Data from 479 children with NSCLP who accepted comprehensive care in our center were recruited as cases from April 2010 to April 2013. An equal number of controls were recruited from pediatrics during the same period. Then we conducted face-to-face interviews with both parents using a structural questionnaire to identify the relationship between NSCLP and environmental risk factors. RESULTS Univariate Chi-square analysis identified 23 factors (P<0.05) as being significantly related to NSCLP. Stepwise multiple logistic regression analyses demonstrated that there were 16 factors significantly associated with this disease. Being male (OR=0.609), parental childbearing age of 25-29 years (ORfather=0.633; ORmother=0.469), higher parental education level (high school or greater) and folic acid supplementation (OR=0.360) were protective factors against NSCLP. However, positive family history of NSCLP (OR=54.132), positive maternal abortion history (OR=3.698), high or low parental age at time of childbirth, poor maternal education level (primary school) (OR=2.258), maternal common cold during pregnancy (OR=1.464), and drug use during pregnancy (OR=3.364) were significant risk factors for NSCLP. CONCLUSION The findings are beneficial for researchers to understand the etiology of NSCLP and to lay a solid foundation for the prevention of NSCLP in eastern Guangdong through educational programs to teach parents about the benefits of folic acid supplementation, adequate parental age at childbirth (25-29 years), higher parental education level (high school or higher), and the dangers of common cold and drug use during the first trimester of pregnancy, positive family history and maternal abortion history.
Collapse
Affiliation(s)
- Yu Lin
- Cleft Lip and Palate Treatment Center, Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou 515041, Guangdong, People's Republic of China
| | - Shenyou Shu
- Cleft Lip and Palate Treatment Center, Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou 515041, Guangdong, People's Republic of China
| | - Shijie Tang
- Cleft Lip and Palate Treatment Center, Second Affiliated Hospital, Shantou University Medical College, North Dongxia Road, Shantou 515041, Guangdong, People's Republic of China.
| |
Collapse
|
12
|
Ackermans MMG, Zhou H, Carels CEL, Wagener FADTG, Von den Hoff JW. Vitamin A and clefting: putative biological mechanisms. Nutr Rev 2011; 69:613-24. [DOI: 10.1111/j.1753-4887.2011.00425.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
13
|
Yao Z, Chen D, Wang A, Ding X, Liu Z, Ling L, He Q, Zhao T. Folic acid rescue of ATRA-induced cleft palate by restoring the TGF-β signal and inhibiting apoptosis. J Oral Pathol Med 2011; 40:433-9. [PMID: 21481001 DOI: 10.1111/j.1600-0714.2010.00994.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Cleft palate is a frequent congenital malformation with a heterogeneous etiology, for which folic acid (FA) supplementation has a protective effect. To gain more insight into the molecular pathways affected by FA, TGF-β signaling and apoptosis in mouse embryonic palatal mesenchymal (MEPM) cells of all-trans retinoic acid (ATRA)-induced cleft palate in organ culture were tested. METHODS C57BL/6J mice embryonic palates were explanted on embryonic day 14 and cultured in DMEM/F12 medium with or without ATRA or FA for 72 h. The palatal fusion was examined by light microscopy. Immunohistochemistry was used to detect TGFβ3/TGF receptor II and caspase 9 in MEPM cells. TUNEL was used to detect apoptosis. RESULTS Similar to development in vivo, palatal development and fusion were normal in control medium. ATRA inhibited palatal development and induced cleft palate, which can be rescued by FA. A higher apoptosis rate and caspase-9 in MEPM cells were detected in the ATRA group than in the control or the ATRA+FA group. Compared with the control or the ATRA+FA group, ATRA had little effect on TGF-β3 in MEPM cells but significantly inhibited TGF-β receptor II. CONCLUSIONS Folic acid can rescue the cultured palates to continue developing and fusing that were inhibited and resulted in cleft palate by ATRA. Apoptosis and TGFβ signaling in MEPM cells were involved in folic acid rescued ATRA-induced cleft palate.
Collapse
Affiliation(s)
- Zhaoyou Yao
- Department of Oral and Maxillofacial surgery, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Greene RM, Pisano MM. Palate morphogenesis: current understanding and future directions. ACTA ACUST UNITED AC 2010; 90:133-54. [PMID: 20544696 DOI: 10.1002/bdrc.20180] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the past, most scientists conducted their inquiries of nature via inductivism, the patient accumulation of "pieces of information" in the pious hope that the sum of the parts would clarify the whole. Increasingly, modern biology employs the tools of bioinformatics and systems biology in attempts to reveal the "big picture." Most successful laboratories engaged in the pursuit of the secrets of embryonic development, particularly those whose research focus is craniofacial development, pursue a middle road where research efforts embrace, rather than abandon, what some have called the "pedestrian" qualities of inductivism, while increasingly employing modern data mining technologies. The secondary palate has provided an excellent paradigm that has enabled examination of a wide variety of developmental processes. Examination of cellular signal transduction, as it directs embryogenesis, has proven exceptionally revealing with regard to clarification of the "facts" of palatal ontogeny-at least the facts as we currently understand them. Herein, we review the most basic fundamentals of orofacial embryology and discuss how functioning of TGFbeta, BMP, Shh, and Wnt signal transduction pathways contributes to palatal morphogenesis. Our current understanding of palate medial edge epithelial differentiation is also examined. We conclude with a discussion of how the rapidly expanding field of epigenetics, particularly regulation of gene expression by miRNAs and DNA methylation, is critical to control of cell and tissue differentiation, and how examination of these epigenetic processes has already begun to provide a better understanding of, and greater appreciation for, the complexities of palatal morphogenesis.
Collapse
Affiliation(s)
- Robert M Greene
- Department of Molecular, Cellular and Craniofacial Biology, University of Louisville, Birth Defects Center, ULSD, Louisville, Kentucky 40292, USA.
| | | |
Collapse
|
15
|
Marinucci L, Balloni S, Carinci F, Locci P, Pezzetti F, Bodo M. Diazepam effects on non-syndromic cleft lip with or without palate: epidemiological studies, clinical findings, genes and extracellular matrix. Expert Opin Drug Saf 2010; 10:23-33. [PMID: 20645675 DOI: 10.1517/14740338.2010.506478] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD This review analyses international studies investigating the combined genetic and environmental causes of cleft lip with or without cleft palate (CL/P) and describes successes and limitations in identifying underlying genetic and environmental factors. CL/P, the most common congenital facial malformation, is a major public health burden in terms of medical costs and emotional stress to patients and families. Because genetic and environmental factors determine risk of occurrence, CL/P has a complex, multifactor aetiology. AREAS COVERED IN THIS REVIEW English language reports from 1980 to 2010 were searched for in Medline, PubMed, Science Citation Index, textbooks and review articles on drugs and pregnancy. Key words were diazepam or benzodiazepine(s) combined with cleft lip, cleft palate, oral malformations, prenatal exposure, GABA, gene expression and extracellular matrix. WHAT THE READER WILL GAIN This review presents an updated assessment of the mutagenic and genotoxic effects of diazepam (DZ), one of the most commonly used benzodiazepines, on CL/P occurrence. TAKE HOME MESSAGE Data are divergent; more studies are needed for an in-depth picture of the effects of DZ during gestation on the child's development, particularly on orofacial clefts.
Collapse
Affiliation(s)
- Lorella Marinucci
- Department of Experimental Medicine and Biochemical Sciences, Section of Histology and Embryology, Faculty of Medicine, University of Perugia, via del Giochetto, Perugia, Italy.
| | | | | | | | | | | |
Collapse
|
16
|
Baroni T, Bellucci C, Lilli C, Pezzetti F, Carinci F, Lumare E, Palmieri A, Stabellini G, Bodo M. Human cleft lip and palate fibroblasts and normal nicotine-treated fibroblasts show altered in vitro expressions of genes related to molecular signaling pathways and extracellular matrix metabolism. J Cell Physiol 2010; 222:748-56. [PMID: 20020508 DOI: 10.1002/jcp.22006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Nonsyndromic cleft lip with or without cleft palate (CLP) is a frequent craniofacial malformation caused by both genetic and environmental factors. Maternal smoking during pregnancy is a known risk factor, due to the teratogenic role of nicotine. To assess and compare the impact of CLP and nicotine, we studied the quantitative expression of genes involved in signaling pathways and extracellular matrix (ECM) metabolism in human normal nicotine-treated (NicN) and CLP fibroblasts compared to normal control (CTRL) cells. Palatal fibroblast cultures from seven CLP children and seven age-matched CTRL subjects were established and subconfluent cells incubated for 24 h without (CTRL and CLP fibroblasts) or with (NicN fibroblasts) 0.6 mM nicotine. Gene expressions were analyzed by real-time quantitative PCR. For the first time, a regulated cholinergic signaling in our human fibroblasts in vitro was demonstrated. Members of TGF-beta, retinoic acid (RA), and GABA-ergic signaling systems were also differently regulated. Among the ECM genes, fibronectin, syndecan, integrin alpha2, and MMP13 genes were concordantly modulated, while integrin beta5, and decorin genes were discordantly modulated. Interestingly, nicotine treatment regulated gene expressions of CD44 and CLPTM1, two candidate genes for CLP. Our findings show a positive association between nicotine treatment and CLP phenotype. Results suggest that nicotine deranges normal palate development, which might contribute to the development of a CLP malformative phenotype, through the impairment of some important signaling systems and ECM composition.
Collapse
Affiliation(s)
- Tiziano Baroni
- Department of Experimental Medicine and Biochemical Sciences, University of Perugia, via del Giochetto, 06100 Perugia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Boyles AL, Wilcox AJ, Taylor JA, Shi M, Weinberg CR, Meyer K, Fredriksen A, Ueland PM, Johansen AMW, Drevon CA, Jugessur A, Trung TN, Gjessing HK, Vollset SE, Murray JC, Christensen K, Lie RT. Oral facial clefts and gene polymorphisms in metabolism of folate/one-carbon and vitamin A: a pathway-wide association study. Genet Epidemiol 2009; 33:247-55. [PMID: 19048631 DOI: 10.1002/gepi.20376] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
An increased risk of facial clefts has been observed among mothers with lower intake of folic acid or vitamin A around conception. We hypothesized that the risk of clefts may be further moderated by genes involved in metabolizing folate or vitamin A. We included 425 case-parent triads in which the child had either cleft lip with or without cleft palate (CL/P) or cleft palate only (CPO), and no other major defects. We analyzed 108 SNPs and one insertion in 29 genes involved in folate/one-carbon metabolism and 68 SNPs from 16 genes involved in vitamin A metabolism. Using the Triad Multi-Marker (TRIMM) approach we performed SNP, gene, chromosomal region, and pathway-wide association tests of child or maternal genetic effects for both CL/P and CPO. We stratified these analyses on maternal intake of folic acid or vitamin A during the periconceptional period. As expected with this high number of statistical tests, there were many associations with P-values<0.05; although there were fewer than predicted by chance alone. The strongest association in our data (between fetal FOLH1 and CPO, P=0.0008) is not in agreement with epidemiologic evidence that folic acid reduces the risk of CL/P in these data, not CPO. Despite strong evidence for genetic causes of oral facial clefts and the protective effects of maternal vitamins, we found no convincing indication that polymorphisms in these vitamin metabolism genes play an etiologic role.
Collapse
Affiliation(s)
- Abee L Boyles
- Epidemiology Branch, NIEHS/NIH, Durham, North Carolina 27709, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Marinucci L, Balloni S, Bodo M, Carinci F, Pezzetti F, Stabellini G, Conte C, Carmela C, Lumare E. Patterns of some extracellular matrix gene expression are similar in cells from cleft lip-palate patients and in human palatal fibroblasts exposed to diazepam in culture. Toxicology 2008; 257:10-6. [PMID: 19114084 DOI: 10.1016/j.tox.2008.12.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2008] [Revised: 11/28/2008] [Accepted: 12/01/2008] [Indexed: 01/06/2023]
Abstract
Prenatal exposure to diazepam, a prototype sedative drug that belongs to Benzodiazepines, can lead to orofacial clefting in human newborns. By using real-time PCR, in the present study we investigated whether diazepam elicits gene expression alterations in extracellular matrix (ECM) components, growth factors and gamma-aminobutyric acid receptor (GABRB3), implicated in the coordinate regulation of palate development. Palate fibroblasts were treated with diazepam (Dz-N fibroblasts) and compared to cleft lip-palate (CLP) fibroblasts obtained from patients with no known exposure to diazepam or other teratogens. Untreated fibroblasts from non-CLP patients were used as control. The results showed significant convergences in gene expression pattern of collagens, fibromodulin, vitronectin, tenascin C, integrins and metalloprotease MMP13 between Dz-N and CLP fibroblasts. Among the growth factors, constitutive Fibroblast Growth Factor 2 (FGF2) was greatly enhanced in Dz-N and CLP fibroblasts and associated with a higher reduction of FGF receptor. Transforming Growth Factor beta 3 (TGFbeta(3)) resulted up-regulated in CLP fibroblasts and decreased in Dz-N fibroblasts. We found phenotypic differences exhibited by Dz-N and CLP fibroblasts in GABRB3 gene regulation, so further studies are necessary to determine whether GABAergic system could be involved in the development of diazepam mediated CLP phenotype. Taken together the results elucidate the molecular mechanisms underlying possible toxicology effects induced by diazepam. Counselling of women on the safety of diazepam exposure is clinically important, also for the forensic consequences.
Collapse
Affiliation(s)
- Lorella Marinucci
- Department of Experimental Medicine and Biochemical Science, University of Perugia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Martínez-Sanz E, Del Río A, Barrio C, Murillo J, Maldonado E, Garcillán B, Amorós M, Fuerte T, Fernández A, Trinidad E, Rabadán MA, López Y, Martínez ML, Martínez-Alvarez C. Alteration of medial-edge epithelium cell adhesion in two Tgf-beta3 null mouse strains. Differentiation 2008; 76:417-30. [PMID: 18431835 PMCID: PMC2346164 DOI: 10.1111/j.1432-0436.2007.00226.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although palatal shelf adhesion is a crucial event during palate development, little work has been carried out to determine which molecules are responsible for this process. Furthermore, whether altered palatal shelf adhesion causes the cleft palate presented by Tgf-β3 null mutant mice has not yet been clarified. Here, we study the presence/distribution of some extracellular matrix and cell adhesion molecules at the time of the contact of palatal shelves in both wild-type and Tgf-β3 null mutant palates of two strains of mice (C57/BL/6J (C57), and MF1) that develop cleft palates of different severity. We have performed immunohistochemistry with antibodies against collagens IV and IX, laminin, fibronectin, the α5- and β1-integrins, and ICAM-1; in situ hybridization with a Nectin-1 riboprobe; and palatal shelf cultures treated or untreated with TGF-β3 or neutralizing antibodies against fibronectin or the α5-integrin. Our results show the location of these molecules in the wild-type mouse medial edge epithelium (MEE) of both strains at the time of the contact of palatal shelves; the heavier (C57) and milder (MF1) alteration of their presence in the Tgf-β3 null mutants; the importance of TGF-β3 to restore their normal pattern of expression; and the crucial role of fibronectin and the α5-integrin in palatal shelf adhesion. We thus provide insight into the molecular bases of this important process and the cleft palate presented by Tgf-β3 null mutant mice.
Collapse
Affiliation(s)
- Elena Martínez-Sanz
- Departamento de Anatomía y Embriología Humana I, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Qiao Y, Liu X, Harvard C, Hildebrand MJ, Rajcan-Separovic E, Holden JJA, Lewis MES. Autism-associated familial microdeletion of Xp11.22. Clin Genet 2008; 74:134-44. [PMID: 18498374 DOI: 10.1111/j.1399-0004.2008.01028.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe two brothers with autistic disorder, intellectual disability (ID) and cleft lip/palate with a microdeletion of Xp11.22 detected through screening individuals with autism spectrum disorders (ASDs) for microdeletions and duplications using 1-Mb resolution array comparative genomic hybridization. The deletion was confirmed by fluorescence in situ hybridization/real-time quantitative polymerase chain reaction (RT-qPCR) and shown to be inherited from their unaffected mother who had skewed (100%) X inactivation of the aberrant chromosome. RT-qPCR characterization of the del(X)(p11.22) region ( approximately 53,887,000-54,359,000 bp) revealed complete deletion of the plant homeodomain finger protein 8 (PHF8) gene as well as deletions of the FAM120C and WNK lysine-deficient protein kinase 3 (WNK3) genes, for which a definitive phenotype has not been previously characterized. Xp11.2 is a gene-rich region within the critical linkage interval for several neurodevelopmental disorders. Rare interstitial microdeletions of Xp11.22 have been recognized with ID, craniofacial dysmorphism and/or cleft lip/palate and truncating mutations of the PHF8 gene within this region. Despite evidence implicating genes within Xp11.22 with language and cognitive development that could contribute to an ASD phenotype, their involvement with autism has not been systematically evaluated. Population screening of 481 (319 males/81 females) and 282 X chromosomes (90 males/96 females) in respective ASD and control cohorts did not identify additional subjects carrying this deletion. Our findings show that in addition to point mutations, a complete deletion of the PHF8 gene is associated with the X-linked mental retardation Siderius-Hamel syndrome (OMIM 300263) and further suggest that the larger size of the Xp11.22 deletion including genes FAM120C and WNK3 may be involved in the pathogenesis of autism.
Collapse
Affiliation(s)
- Y Qiao
- Department of Medical Genetics, and Department of Pathology, Child and Family Research Institute, The University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | |
Collapse
|