1
|
Cannon AE, Zürrer WE, Zejlon C, Kulcsar Z, Lewandowski S, Piehl F, Granberg T, Ineichen BV. Neuroimaging findings in preclinical amyotrophic lateral sclerosis models-How well do they mimic the clinical phenotype? A systematic review. Front Vet Sci 2023; 10:1135282. [PMID: 37205225 PMCID: PMC10185801 DOI: 10.3389/fvets.2023.1135282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
Background and objectives Animal models for motor neuron diseases (MND) such as amyotrophic lateral sclerosis (ALS) are commonly used in preclinical research. However, it is insufficiently understood how much findings from these model systems can be translated to humans. Thus, we aimed at systematically assessing the translational value of MND animal models to probe their external validity with regards to magnetic resonance imaging (MRI) features. Methods In a comprehensive literature search in PubMed and Embase, we retrieved 201 unique publications of which 34 were deemed eligible for qualitative synthesis including risk of bias assessment. Results ALS animal models can indeed present with human ALS neuroimaging features: Similar to the human paradigm, (regional) brain and spinal cord atrophy as well as signal changes in motor systems are commonly observed in ALS animal models. Blood-brain barrier breakdown seems to be more specific to ALS models, at least in the imaging domain. It is noteworthy that the G93A-SOD1 model, mimicking a rare clinical genotype, was the most frequently used ALS proxy. Conclusions Our systematic review provides high-grade evidence that preclinical ALS models indeed show imaging features highly reminiscent of human ALS assigning them a high external validity in this domain. This opposes the high attrition of drugs during bench-to-bedside translation and thus raises concerns that phenotypic reproducibility does not necessarily render an animal model appropriate for drug development. These findings emphasize a careful application of these model systems for ALS therapy development thereby benefiting refinement of animal experiments. Systematic review registration https://www.crd.york.ac.uk/PROSPERO/, identifier: CRD42022373146.
Collapse
Affiliation(s)
| | | | - Charlotte Zejlon
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
| | - Zsolt Kulcsar
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | | | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Center of Neurology, Academic Specialist Center, Stockholm Health Services, Stockholm, Sweden
| | - Tobias Granberg
- Department of Neuroradiology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Benjamin Victor Ineichen
- Center for Reproducible Science, University of Zurich, Zurich, Switzerland
- Department of Neuroradiology, Clinical Neuroscience Center, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
2
|
Rahbaran M, Zekiy AO, Bahramali M, Jahangir M, Mardasi M, Sakhaei D, Thangavelu L, Shomali N, Zamani M, Mohammadi A, Rahnama N. Therapeutic utility of mesenchymal stromal cell (MSC)-based approaches in chronic neurodegeneration: a glimpse into underlying mechanisms, current status, and prospects. Cell Mol Biol Lett 2022; 27:56. [PMID: 35842587 PMCID: PMC9287902 DOI: 10.1186/s11658-022-00359-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022] Open
Abstract
Recently, mesenchymal stromal cell (MSC)-based therapy has become an appreciated therapeutic approach in the context of neurodegenerative disease therapy. Accordingly, a myriad of studies in animal models and also some clinical trials have evinced the safety, feasibility, and efficacy of MSC transplantation in neurodegenerative conditions, most importantly in Alzheimer’s disease (AD), Parkinson’s disease (PD), amyotrophic lateral sclerosis (ALS), and Huntington’s disease (HD). The MSC-mediated desired effect is mainly a result of secretion of immunomodulatory factors in association with release of various neurotrophic factors (NTFs), such as glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF). Thanks to the secretion of protein-degrading molecules, MSC therapy mainly brings about the degradation of pathogenic protein aggregates, which is a typical appearance of chronic neurodegenerative disease. Such molecules, in turn, diminish neuroinflammation and simultaneously enable neuroprotection, thereby alleviating disease pathological symptoms and leading to cognitive and functional recovery. Also, MSC differentiation into neural-like cells in vivo has partially been evidenced. Herein, we focus on the therapeutic merits of MSCs and also their derivative exosome as an innovative cell-free approach in AD, HD, PD, and ALS conditions. Also, we give a brief glimpse into novel approaches to potentiate MSC-induced therapeutic merits in such disorders, most importantly, administration of preconditioned MSCs.
Collapse
Affiliation(s)
- Mohaddeseh Rahbaran
- Biotechnology Department, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Angelina Olegovna Zekiy
- Department of Prosthetic Dentistry, I. M. Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Mahta Bahramali
- Biotechnology Department, University of Tehran, Tehran, Iran
| | | | - Mahsa Mardasi
- Biotechnology Department, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Delaram Sakhaei
- School of Medicine, Sari Branch, Islamic Azad University, Sari, Iran
| | - Lakshmi Thangavelu
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Science, Saveetha University, Chennai, India
| | - Navid Shomali
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Majid Zamani
- Department of Medical Laboratory Sciences, Faculty of Allied Medicine, Infectious Diseases Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Ali Mohammadi
- Department of Neurology, Imam Khomeini Hospital, Urmia University of Medical Sciences, Urmia, Iran.
| | - Negin Rahnama
- Department of Internal Medicine and Health Services, Semnan University of Medical Sciences, Semnan, Iran.
| |
Collapse
|
3
|
Rizzo S, Padelli F, Rinaldi E, Gioeni D, Aquino D, Brizzola S, Acocella F, Spaggiari L, Baggi F, Bellomi M, Bruzzone MG, Petrella F. 7-T MRI tracking of mesenchymal stromal cells after lung injection in a rat model. Eur Radiol Exp 2020; 4:54. [PMID: 33029694 PMCID: PMC7541802 DOI: 10.1186/s41747-020-00183-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 08/04/2020] [Indexed: 01/01/2023] Open
Abstract
Background Mesenchymal stromal cells (MSCs) are able to migrate and engraft at sites of inflammation, injuries, and tumours, but little is known about their fate after local injection. The purpose of this study is to perform MSC tracking, combining in vivo 7-T magnetic resonance imaging (MRI) and histological assessment, following lung injection in a rat model. Methods Five lungs were injected with ferumoxide-labelled MSCs and five with perfluorocarbon-labelled MSCs and underwent 7-T MRI. MRI acquisitions were recorded immediately (T0), at 24 h (T24) and/or 48 h (T48) after injection. For each rat, labelled cells were assessed in the main organs by MRI. Target organs were harvested under sterile conditions from rats sacrificed 0, 24, or 48 h after injection and fixed for histological analysis via confocal and structured illumination microscopy. Results Ferumoxide-labelled MSCs were not detectable in the lungs, whereas they were not visible in the distant sites. Perfluorocarbon-labelled MSCs were seen in 5/5 injected lungs at T0, in 1/2 at T24, and in 1/3 at T48. The fluorine signal in the liver was seen in 3/5 at T0, in 1/2 at T24, and in 2/3 at T48. Post-mortem histology confirmed the presence of MSCs in the injected lung. Conclusions Ferumoxide-labelled cells were not seen at distant sites; a linear decay of injected perfluorocarbon-labelled MSCs was observed at T0, T24, and T48 in the lung. In more than half of the experiments, perfluorocarbon-labelled MSCs scattering to the liver was observed, with a similar decay over time as observed in the lung.
Collapse
Affiliation(s)
- Stefania Rizzo
- Imaging Institute of the Southern Switzerland (IIMSI), Ente Ospedaliero Cantonale (EOC), via Tesserete 46, 6900, Lugano, Switzerland. .,Facoltà di Scienze biomediche, Università della Svizzera italiana (USI), Via G. Buffi 13, 6904, Lugano, Switzerland. .,Clinica di Radiologia EOC, Istituto di Imaging della Svizzera Italiana (IIMSI), via Tesserete 46, 6900, Lugano, Switzerland.
| | - Francesco Padelli
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Elena Rinaldi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Daniela Gioeni
- Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Milan, Italy
| | - Domenico Aquino
- Neuroradiology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Stefano Brizzola
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| | - Fabio Acocella
- Department of Health, Animal Science and Food Safety, Università degli Studi di Milano, Milan, Italy
| | - Lorenzo Spaggiari
- Department of Thoracic Surgery, IRCCS European Institute of Oncology, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| | - Fulvio Baggi
- Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Massimo Bellomi
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,Department of Radiology, IRCCS European Institute of Oncology, Milan, Italy
| | - Maria Grazia Bruzzone
- Department of Neuroradiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Francesco Petrella
- Department of Thoracic Surgery, IRCCS European Institute of Oncology, Milan, Italy.,Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy.,CRC StaMeTec Università degli studi di Milano, Milan, Italy
| |
Collapse
|
4
|
Luo S, Ma C, Zhu MQ, Ju WN, Yang Y, Wang X. Application of Iron Oxide Nanoparticles in the Diagnosis and Treatment of Neurodegenerative Diseases With Emphasis on Alzheimer's Disease. Front Cell Neurosci 2020; 14:21. [PMID: 32184709 PMCID: PMC7058693 DOI: 10.3389/fncel.2020.00021] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Neurodegenerative diseases are characterized by chronic progressive degeneration of the structure and function of the nervous system, which brings an enormous burden on patients, their families, and society. It is difficult to make early diagnosis, resulting from the insidious onset and progressive development of neurodegenerative diseases. The drugs on the market cannot cross the blood-brain barrier (BBB) effectively, which leads to unfavorable prognosis and less effective treatments. Therefore, there is an urgent demand to develop a novel detection method and therapeutic strategies. Recently, nanomedicine has aroused considerable attention for diagnosis and therapy of central nervous system (CNS) diseases. Nanoparticles integrate targeting, imaging, and therapy in one system and facilitate the entry of drug molecules across the blood-brain barrier, offering new hope to patients. In this review, we summarize the application of iron oxide nanoparticles (IONPs) in the diagnosis and treatment of neurodegenerative disease, including Alzheimer's disease (AD), Parkinson's disease (PD), and amyotrophic lateral sclerosis (ALS). We focus on IONPs as magnetic resonance imaging (MRI) contrast agents (CAs) and drug carriers in AD. What most neurodegenerative diseases have in common is that hall marker lesions are represented by protein aggregates (Soto and Pritzkow, 2018). These diseases are of unknown etiology and unfavorable prognosis, and the treatments toward them are less effective (Soto and Pritzkow, 2018). Such diseases usually develop in aged people, and early clinical manifestations are atypical, resulting in difficulty in early diagnosis. Recently, nanomedicine has aroused considerable attention for therapy and diagnosis of CNS diseases because it integrates targeting, imaging, and therapy in one system (Gupta et al., 2019). In this review article, we first introduce the neurodegenerative diseases and commonly used MRI CAs. Then we review the application of IONPs in the diagnosis and treatment of neurodegenerative diseases with the purpose of assisting early theranostics (therapy and diagnosis).
Collapse
Affiliation(s)
- Shen Luo
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
- Department of Critical Care Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chi Ma
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, China
| | - Ming-Qin Zhu
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Wei-Na Ju
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Yang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xu Wang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
5
|
Musavi L, Brandacher G, Hoke A, Darrach H, Lee WPA, Kumar A, Lopez J. Muscle-derived stem cells: important players in peripheral nerve repair. Expert Opin Ther Targets 2018; 22:1009-1016. [PMID: 30347175 DOI: 10.1080/14728222.2018.1539706] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Stem cell therapy for peripheral nerve repair is a rapidly evolving field in regenerative medicine. Although most studies to date have investigated stem cells originating from bone marrow or adipose, skeletal muscle has recently been recognized as an abundant and easily accessible source of stem cells. Muscle-derived stem cells (MDSCs) are a diverse population of multipotent cells with pronounced antioxidant and regenerative capacity. Areas covered: The current literature on the various roles MDSCs serve within the micro- and macro-environment of nerve injury. Furthermore, the exciting new research that is establishing MDSC-cellular therapy as an important therapeutic modality to improve peripheral nerve regeneration. Expert opinion: MDSCs are a promising therapeutic agent for the repair of peripheral nerves; MDSCs not only undergo gliogenesis and angiogenesis, but they also orchestrate larger pro-regenerative host responses. However, the isolation, transformation, and in-vivo behavior of MDSCs require further evaluation prior to clinical application.
Collapse
Affiliation(s)
- Leila Musavi
- a Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory , Johns Hopkins Hospital , Baltimore , Maryland
| | - Gerald Brandacher
- a Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory , Johns Hopkins Hospital , Baltimore , Maryland
| | - Ahmet Hoke
- b The Solomon H Snyder Department of Neuroscience , Johns Hopkins University , Baltimore , Maryland
| | - Halley Darrach
- a Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory , Johns Hopkins Hospital , Baltimore , Maryland
| | - W P Andrew Lee
- a Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory , Johns Hopkins Hospital , Baltimore , Maryland
| | - Anand Kumar
- c Department of Plastic & Reconstructive Surgery , Case Western Reserve University, Rainbow Babies Children's Hospital , Cleveland , OH , USA
| | - Joseph Lopez
- a Department of Plastic and Reconstructive Surgery, Vascularized Composite Allotransplantation Laboratory , Johns Hopkins Hospital , Baltimore , Maryland
| |
Collapse
|
6
|
Rizzo S, Petrella F, Zucca I, Rinaldi E, Barbaglia A, Padelli F, Baggi F, Spaggiari L, Bellomi M, Bruzzone MG. In vitro labelling and detection of mesenchymal stromal cells: a comparison between magnetic resonance imaging of iron-labelled cells and magnetic resonance spectroscopy of fluorine-labelled cells. Eur Radiol Exp 2017; 1:6. [PMID: 29708157 PMCID: PMC5909334 DOI: 10.1186/s41747-017-0010-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Accepted: 03/31/2017] [Indexed: 12/31/2022] Open
Abstract
Background Among the various stem cell populations used for cell therapy, adult mesenchymal stromal cells (MSCs) have emerged as a major new cell technology. These cells must be tracked after transplantation to monitor their migration within the body and quantify their accumulation at the target site. This study assessed whether rat bone marrow MSCs can be labelled with superparamagnetic iron oxide (SPIO) nanoparticles and perfluorocarbon (PFC) nanoemulsion formulations without altering cell viability and compared magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS) results from iron-labelled and fluorine-labelled MSCs, respectively. Methods Of MSCs, 2 × 106 were labelled with Molday ION Rhodamine-B (MIRB) and 2 × 106 were labelled with Cell Sense. Cell viability was evaluated by trypan blue exclusion method. Labelled MSCs were divided into four samples containing increasing cell numbers (0.125 × 106, 0.25 × 106, 0.5 × 106, 1 × 106) and scanned on a 7T MRI: for MIRB-labelled cells, phantoms and cells negative control, T1, T2 and T2* maps were acquired; for Cell Sense labelled cells, phantoms and unlabelled cells, a 19F non-localised single-pulse MRS sequence was acquired. Results In total, 86.8% and 83.6% of MIRB-labelled cells and Cell Sense-labelled cells were viable, respectively. MIRB-labelled cells were visible in all samples with different cell numbers; pellets containing 0.5 × 106 and 1 × 106 of Cell Sense-labelled cells showed a detectable 19F signal. Conclusions Our data support the use of both types of contrast material (SPIO and PFC) for MSCs labelling, although further efforts should be dedicated to improve the efficiency of PFC labelling.
Collapse
Affiliation(s)
- Stefania Rizzo
- 1Department of Radiology, European Institute of Oncology, via Ripamonti 435, 20141 Milan, Italy
| | - Francesco Petrella
- 2Department of Thoracic Surgery, European Institute of Oncology, Milan, Italy.,5Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, via Festa del Perdono 7, 20142 Milan, Italy
| | - Ileana Zucca
- Scientific Department, Neurological Institute IRCCS "Carlo Besta", Milan, Italy
| | - Elena Rinaldi
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute IRCCS "Carlo Besta", Milan, Italy
| | - Andrea Barbaglia
- Scientific Department, Neurological Institute IRCCS "Carlo Besta", Milan, Italy
| | - Francesco Padelli
- Scientific Department, Neurological Institute IRCCS "Carlo Besta", Milan, Italy
| | - Fulvio Baggi
- Neuroimmunology and Neuromuscular Diseases Unit, Neurological Institute IRCCS "Carlo Besta", Milan, Italy
| | - Lorenzo Spaggiari
- 2Department of Thoracic Surgery, European Institute of Oncology, Milan, Italy.,5Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, via Festa del Perdono 7, 20142 Milan, Italy
| | - Massimo Bellomi
- 1Department of Radiology, European Institute of Oncology, via Ripamonti 435, 20141 Milan, Italy.,5Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, via Festa del Perdono 7, 20142 Milan, Italy
| | - Maria Grazia Bruzzone
- Department of Neuroradiology, Neurological Institute IRCCS "Carlo Besta", Milan, Italy
| |
Collapse
|
7
|
Webster CA, Di Silvio D, Devarajan A, Bigini P, Micotti E, Giudice C, Salmona M, Wheeler GN, Sherwood V, Bombelli FB. An early developmental vertebrate model for nanomaterial safety: bridging cell-based and mammalian toxicity assessment. Nanomedicine (Lond) 2016; 11:643-56. [PMID: 27003295 DOI: 10.2217/nnm.15.219] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
AIM With the rise in production of nanoparticles (NPs) for an ever-increasing number of applications, there is an urgent need to efficiently assess their potential toxicity. We propose a NP hazard assessment protocol that combines mammalian cytotoxicity data with embryonic vertebrate abnormality scoring to determine an overall toxicity index. RESULTS We observed that, after exposure to a range of NPs, Xenopus phenotypic scoring showed a strong correlation with cell based in vitro assays. Magnetite-cored NPs, negative for toxicity in vitro and Xenopus, were further confirmed as nontoxic in mice. CONCLUSION The results highlight the potential of Xenopus embryo analysis as a fast screening approach for toxicity assessment of NPs, which could be introduced for the routine testing of nanomaterials.
Collapse
Affiliation(s)
- Carl A Webster
- School of Pharmacy, University of East Anglia, Norwich, UK
| | | | | | - Paolo Bigini
- IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - Edoardo Micotti
- IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | | | - Mario Salmona
- IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Milan, Italy
| | - Grant N Wheeler
- School of Biological Sciences, University of East Anglia, Norwich, UK
| | - Victoria Sherwood
- School of Pharmacy, University of East Anglia, Norwich, UK
- Skin Tumour Laboratory, Jacqui Wood Cancer Centre, University of Dundee, Dundee, UK
| | - Francesca Baldelli Bombelli
- School of Pharmacy, University of East Anglia, Norwich, UK
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", NFMLab, Politecnico di Milano, Milano, Italy
| |
Collapse
|
8
|
Increased Understanding of Stem Cell Behavior in Neurodegenerative and Neuromuscular Disorders by Use of Noninvasive Cell Imaging. Stem Cells Int 2016; 2016:6235687. [PMID: 26997958 PMCID: PMC4779824 DOI: 10.1155/2016/6235687] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/07/2016] [Accepted: 01/11/2016] [Indexed: 12/13/2022] Open
Abstract
Numerous neurodegenerative and neuromuscular disorders are associated with cell-specific depletion in the human body. This imbalance in tissue homeostasis is in healthy individuals repaired by the presence of endogenous stem cells that can replace the lost cell type. However, in most disorders, a genetic origin or limited presence or exhaustion of stem cells impairs correct cell replacement. During the last 30 years, methods to readily isolate and expand stem cells have been developed and this resulted in a major change in the regenerative medicine field as it generates sufficient amount of cells for human transplantation applications. Furthermore, stem cells have been shown to release cytokines with beneficial effects for several diseases. At present however, clinical stem cell transplantations studies are struggling to demonstrate clinical efficacy despite promising preclinical results. Therefore, to allow stem cell therapy to achieve its full potential, more insight in their in vivo behavior has to be achieved. Different methods to noninvasively monitor these cells have been developed and are discussed. In some cases, stem cell monitoring even reached the clinical setting. We anticipate that by further exploring these imaging possibilities and unraveling their in vivo behavior further improvement in stem cell transplantations will be achieved.
Collapse
|
9
|
The progesterone receptor agonist Nestorone holds back proinflammatory mediators and neuropathology in the wobbler mouse model of motoneuron degeneration. Neuroscience 2015; 308:51-63. [DOI: 10.1016/j.neuroscience.2015.09.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/20/2015] [Accepted: 09/02/2015] [Indexed: 12/13/2022]
|
10
|
Violatto MB, Santangelo C, Capelli C, Frapolli R, Ferrari R, Sitia L, Tortarolo M, Talamini L, Previdi S, Moscatelli D, Salmona M, Introna M, Bendotti C, Bigini P. Longitudinal tracking of triple labeled umbilical cord derived mesenchymal stromal cells in a mouse model of Amyotrophic Lateral Sclerosis. Stem Cell Res 2015; 15:243-53. [PMID: 26177481 DOI: 10.1016/j.scr.2015.06.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/25/2015] [Accepted: 06/26/2015] [Indexed: 12/13/2022] Open
Abstract
The translational potential of cell therapy to humans requires a deep knowledge of the interaction between transplanted cells and host tissues. In this study, we evaluate the behavior of umbilical cord mesenchymal stromal cells (UC-MSCs), labeled with fluorescent nanoparticles, transplanted in healthy or early symptomatic transgenic SOD1G93A mice (a murine model of Amyotrophic Lateral Sclerosis). The double labeling of cells with nanoparticles and Hoechst-33258 enabled their tracking for a long time in both cells and tissues. Whole-body distribution of UC-MSCs was performed by in-vivo and ex-vivo analyses 1, 7, 21 days after single intravenous or intracerebroventricular administration. By intravenous administration cells were sequestered by the lungs and rapidly cleared by the liver. No difference in biodistribution was found among the two groups. On the other hand, UC-MSCs transplanted in lateral ventricles remained on the choroid plexus for the whole duration of the study even if decreasing in number. Few cells were found in the spinal cord of SOD1G93A mice exclusively. No migration in brain parenchyma was observed. These results suggest that the direct implantation in brain ventricles allows a prolonged permanence of cells close to the damaged areas and makes this method of tracking reliable for future studies of efficacy.
Collapse
Affiliation(s)
| | - Chiara Santangelo
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Chiara Capelli
- USS Centro di Terapia Cellulare "G. Lanzani", A. O. Papa Giovanni XXIII, Bergamo, Italy
| | - Roberta Frapolli
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Raffaele Ferrari
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Leopoldo Sitia
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Massimo Tortarolo
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Laura Talamini
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Sara Previdi
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Davide Moscatelli
- Dipartimento di Chimica, Materiali e Ingegneria Chimica "G. Natta", Politecnico di Milano, Milano, Italy
| | - Mario Salmona
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Martino Introna
- USS Centro di Terapia Cellulare "G. Lanzani", A. O. Papa Giovanni XXIII, Bergamo, Italy
| | - Caterina Bendotti
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| | - Paolo Bigini
- IRCCS - Istituto di Ricerche Farmacologiche "Mario Negri", Milano, Italy
| |
Collapse
|
11
|
Yacila G, Sari Y. Potential therapeutic drugs and methods for the treatment of amyotrophic lateral sclerosis. Curr Med Chem 2015; 21:3583-93. [PMID: 24934355 DOI: 10.2174/0929867321666140601162710] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 04/08/2014] [Accepted: 05/26/2014] [Indexed: 12/13/2022]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a neurodegenerative disorder caused by damage of motoneurons leading to paralysis state and long term disability. Riluzole is currently the only FDA-approved drug for the treatment of ALS. The proposed mechanisms of ALS include glutamate excitotoxicity, oxidative stress, mitochondrial dysfunction, protein aggregation, SOD1 accumulations, and neuronal death. In this review, we discuss potential biomarkers for the identification of patients with ALS. We further emphasize potential therapy involving the uses of neurotrophic factors such as IGFI, GDNF, VEGF, ADNF-9, colivelin and angiogenin in the treatment of ALS. Moreover, we described several existing drugs such as talampanel, ceftriaxone, pramipexole, dexpramipexole and arimoclomol potential compounds for the treatment of ALS. Interestingly, the uses of stem cell therapy and immunotherapy are promising for the treatment of ALS.
Collapse
Affiliation(s)
| | - Y Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology, Health Science Campus, 3000 Arlington Avenue, Toledo, OH 43614. USA.
| |
Collapse
|
12
|
Sharifi S, Seyednejad H, Laurent S, Atyabi F, Saei AA, Mahmoudi M. Superparamagnetic iron oxide nanoparticles for in vivo molecular and cellular imaging. CONTRAST MEDIA & MOLECULAR IMAGING 2015; 10:329-55. [PMID: 25882768 DOI: 10.1002/cmmi.1638] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2014] [Revised: 01/30/2015] [Accepted: 02/06/2015] [Indexed: 12/16/2022]
Abstract
In the last decade, the biomedical applications of nanoparticles (NPs) (e.g. cell tracking, biosensing, magnetic resonance imaging (MRI), targeted drug delivery, and tissue engineering) have been increasingly developed. Among the various NP types, superparamagnetic iron oxide NPs (SPIONs) have attracted considerable attention for early detection of diseases due to their specific physicochemical properties and their molecular imaging capabilities. A comprehensive review is presented on the recent advances in the development of in vitro and in vivo SPION applications for molecular imaging, along with opportunities and challenges.
Collapse
Affiliation(s)
- Shahriar Sharifi
- Department of Biomaterials Science and Technology, University of Twente, The Netherlands
| | - Hajar Seyednejad
- Department of Bioengineering, Rice University, Houston, TX, 77005, USA
| | - Sophie Laurent
- Department of General, Organic, and Biomedical Chemistry, NMR and Molecular Imaging Laboratory, University of Mons, Avenue Maistriau 19, B-7000, Mons, Belgium.,CMMI - Center for Microscopy and Molecular Imaging, Rue Adrienne Bolland 8, B-6041, Gosselies, Belgium
| | - Fatemeh Atyabi
- Nanotechnology Research Center and Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Amir Ata Saei
- Nanotechnology Research Center and Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Morteza Mahmoudi
- Nanotechnology Research Center and Department of Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran.,Division of Cardiovascular Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.,Cardiovascular Institute, Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
13
|
Lunn JS, Sakowski SA, Feldman EL. Concise review: Stem cell therapies for amyotrophic lateral sclerosis: recent advances and prospects for the future. Stem Cells 2014; 32:1099-109. [PMID: 24448926 DOI: 10.1002/stem.1628] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 12/12/2013] [Accepted: 12/14/2013] [Indexed: 12/12/2022]
Abstract
Amyotrophic lateral sclerosis (ALS) is a lethal disease involving the loss of motor neurons. Although the mechanisms responsible for motor neuron degeneration in ALS remain elusive, the development of stem cell-based therapies for the treatment of ALS has gained widespread support. Here, we review the types of stem cells being considered for therapeutic applications in ALS, and emphasize recent preclinical advances that provide supportive rationale for clinical translation. We also discuss early trials from around the world translating cellular therapies to ALS patients, and offer important considerations for future clinical trial design. Although clinical translation is still in its infancy, and additional insight into the mechanisms underlying therapeutic efficacy and the establishment of long-term safety are required, these studies represent an important first step toward the development of effective cellular therapies for the treatment of ALS.
Collapse
Affiliation(s)
- J Simon Lunn
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA
| | | | | |
Collapse
|
14
|
Alvarim LT, Nucci LP, Mamani JB, Marti LC, Aguiar MF, Silva HR, Silva GS, Nucci-da-Silva MP, DelBel EA, Gamarra LF. Therapeutics with SPION-labeled stem cells for the main diseases related to brain aging: a systematic review. Int J Nanomedicine 2014; 9:3749-70. [PMID: 25143726 PMCID: PMC4137998 DOI: 10.2147/ijn.s65616] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The increase in clinical trials assessing the efficacy of cell therapy for structural and functional regeneration of the nervous system in diseases related to the aging brain is well known. However, the results are inconclusive as to the best cell type to be used or the best methodology for the homing of these stem cells. This systematic review analyzed published data on SPION (superparamagnetic iron oxide nanoparticle)-labeled stem cells as a therapy for brain diseases, such as ischemic stroke, Parkinson’s disease, amyotrophic lateral sclerosis, and dementia. This review highlights the therapeutic role of stem cells in reversing the aging process and the pathophysiology of brain aging, as well as emphasizing nanotechnology as an important tool to monitor stem cell migration in affected regions of the brain.
Collapse
Affiliation(s)
- Larissa T Alvarim
- Hospital Israelita Albert Einstein, São Paulo, Brazil ; Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| | | | | | | | - Marina F Aguiar
- Hospital Israelita Albert Einstein, São Paulo, Brazil ; Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil
| | - Helio R Silva
- Hospital Israelita Albert Einstein, São Paulo, Brazil ; Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| | | | | | - Elaine A DelBel
- Universidade de São Paulo-Faculdade de Odontologia de Ribeirão Preto, São Paulo, Brazil ; NAPNA-Núcleo de Apoio a Pesquisa em Neurociências Aplicadas, São Paulo, Brazil
| | - Lionel F Gamarra
- Hospital Israelita Albert Einstein, São Paulo, Brazil ; Universidade Federal de São Paulo, UNIFESP, São Paulo, Brazil ; Faculdade de Ciências Médicas da Santa Casa de São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Intricate effects of primary motor neuronopathy on contractile proteins and metabolic muscle enzymes as revealed by label-free mass spectrometry. Biosci Rep 2014; 34:BSR20140029. [PMID: 24895011 PMCID: PMC4076836 DOI: 10.1042/bsr20140029] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
While the long-term physiological adaptation of the neuromuscular system to changed functional demands is usually reflected by unilateral skeletal muscle transitions, the progressive degeneration of distinct motor neuron populations is often associated with more complex changes in the abundance and/or isoform expression pattern of contractile proteins and metabolic enzymes. In order to evaluate these intricate effects of primary motor neuronopathy on the skeletal muscle proteome, label-free MS was employed to study global alterations in the WR (wobbler) mouse model of progressive neurodegeneration. In motor neuron disease, fibre-type specification and the metabolic weighting of bioenergetic pathways appear to be strongly influenced by both a differing degree of a subtype-specific vulnerability of neuromuscular synapses and compensatory mechanisms of fibre-type shifting. Proteomic profiling confirmed this pathobiochemical complexity of disease-induced changes and showed distinct alterations in 72 protein species, including a variety of fibre-type-specific isoforms of contractile proteins, metabolic enzymes, metabolite transporters and ion-regulatory proteins, as well as changes in molecular chaperones and various structural proteins. Increases in slow myosin light chains and the troponin complex and a decrease in fast MBP (myosin-binding protein) probably reflect the initial preferential loss of the fast type of neuromuscular synapses in motor neuron disease. The systematic biochemical analysis of muscle from the wobbler mouse model of motor neuron disease suggests that the loss of neuromuscular synapses causes complex changes in the protein profile of contractile tissues, affecting especially the contractile apparatus and energy metabolism.
Collapse
|
16
|
Van Damme P, Robberecht W. Developments in treatments for amyotrophic lateral sclerosis via intracerebroventricular or intrathecal delivery. Expert Opin Investig Drugs 2014; 23:955-63. [PMID: 24816247 DOI: 10.1517/13543784.2014.912275] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Amyotrophic lateral scleroses (ALS) are neurodegenerative disorders primarily affecting the motor system. These incurable disorders are relentlessly progressive and typically limit survival to 2 - 5 years after disease onset. An improved knowledge about disease-causing genes, disease proteins and pathways has revealed considerable heterogeneity in ALS. Novel targeted therapies are being developed, but getting these beyond the BBB remains a challenge. AREAS COVERED The authors review the intracerebroventricular and intrathecal delivery of drugs for the treatment of ALS in preclinical and clinical studies. EXPERT OPINION Lack of BBB permeability should not hold back the development of promising treatments for ALS, as the available evidence suggest that direct intrathecal or intracerebroventricular administration of drug is a feasible delivery route in patients with ALS.
Collapse
Affiliation(s)
- Philip Van Damme
- KU Leuven (University of Leuven), Department of Neurosciences, Experimental Neurology and Leuven Research Institute for Neuroscience and Disease (LIND) , Leuven , Belgium
| | | |
Collapse
|
17
|
The role of heat shock proteins in Amyotrophic Lateral Sclerosis: The therapeutic potential of Arimoclomol. Pharmacol Ther 2014; 141:40-54. [DOI: 10.1016/j.pharmthera.2013.08.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 07/29/2013] [Indexed: 12/11/2022]
|
18
|
Cova L, Bigini P, Diana V, Sitia L, Ferrari R, Pesce RM, Khalaf R, Bossolasco P, Ubezio P, Lupi M, Tortarolo M, Colombo L, Giardino D, Silani V, Morbidelli M, Salmona M, Moscatelli D. Biocompatible fluorescent nanoparticles for in vivo stem cell tracking. NANOTECHNOLOGY 2013; 24:245603. [PMID: 23690139 DOI: 10.1088/0957-4484/24/24/245603] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Efficient application of stem cells to the treatment of neurodegenerative diseases requires safe cell tracking to follow stem cell fate over time in the host environment after transplantation. In this work, for the first time, fluorescent and biocompatible methyl methacrylate (MMA)-based nanoparticles (fluoNPs) were synthesized through a free-radical co-polymerization process with a fluorescent macromonomer obtained by linking Rhodamine B and hydroxyethyl methacrylate. We demonstrate that the fluoNPs produced by polymerization of MMA-Rhodamine complexes (1) were efficient for the labeling and tracking of multipotent human amniotic fluid cells (hAFCs); (2) did not alter the main biological features of hAFCs (such as viability, cell growth and metabolic activity); (3) enabled us to determine the longitudinal bio-distribution of hAFCs in different brain areas after graft in the brain ventricles of healthy mice by a direct fluorescence-based technique. The reliability of our approach was furthermore confirmed by magnetic resonance imaging analyses, carried out by incubating hAFCs with both superparamagnetic iron oxide nanoparticles and fluoNPs. Our data suggest that these finely tunable and biocompatible fluoNPs can be exploited for the longitudinal tracking of stem cells.
Collapse
Affiliation(s)
- Lidia Cova
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Liu B, Gao HC, Xu JW, Cao H, Fang XD, Gao HM, Qiao SX. Apoptosis of colorectal cancer UTC116 cells induced by Cantharidinate. Asian Pac J Cancer Prev 2013; 13:3705-8. [PMID: 23098458 DOI: 10.7314/apjcp.2012.13.8.3705] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Effects of Cantharidinate on apoptosis of human colorectal cancer UTC-116 cells were investigated by means of 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide (MTT) assay, H and E staining, flow cytometry, and Raman Spectra analysis. The results showed Cantharidinate to exert inhibitory action on proliferation of human colorectal cancer UTC-116 cells, inducing apoptosis, arresting cells in G1 phase, with decline of S and G2 phases. In addition, the results of Raman spectrum showed significant changes in the UTC-116 cells chemical structure with stretching after the application of Cantharidinate. Taken together, these results suggest that the treatment of human colorectal cancer with Cantharidinate may be associated with multiple molecular mechanisms for apoptosis. Furthermore, similar to fluorouracil, Cantharidinate should be considered as novel assistant drug for controlling the growth of human colorectal cancer UTC-116 cells.
Collapse
Affiliation(s)
- Bin Liu
- Department of General Surgery, Second Hospital of Jilin University, Changchun, China
| | | | | | | | | | | | | |
Collapse
|
20
|
Moser JM, Bigini P, Schmitt-John T. The wobbler mouse, an ALS animal model. Mol Genet Genomics 2013; 288:207-29. [PMID: 23539154 PMCID: PMC3664746 DOI: 10.1007/s00438-013-0741-0] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/12/2013] [Indexed: 12/11/2022]
Abstract
This review article is focused on the research progress made utilizing the wobbler mouse as animal model for human motor neuron diseases, especially the amyotrophic lateral sclerosis (ALS). The wobbler mouse develops progressive degeneration of upper and lower motor neurons and shows striking similarities to ALS. The cellular effects of the wobbler mutation, cellular transport defects, neurofilament aggregation, neuronal hyperexcitability and neuroinflammation closely resemble human ALS. Now, 57 years after the first report on the wobbler mouse we summarize the progress made in understanding the disease mechanism and testing various therapeutic approaches and discuss the relevance of these advances for human ALS. The identification of the causative mutation linking the wobbler mutation to a vesicle transport factor and the research focussed on the cellular basis and the therapeutic treatment of the wobbler motor neuron degeneration has shed new light on the molecular pathology of the disease and might contribute to the understanding the complexity of ALS.
Collapse
Affiliation(s)
- Jakob Maximilian Moser
- Molecular Biology and Genetics Department, Aarhus University, C. F. Møllers Alle 3, 8000 Aarhus C, Denmark
| | | | | |
Collapse
|
21
|
Current world literature. Curr Opin Organ Transplant 2013; 18:111-30. [PMID: 23299306 DOI: 10.1097/mot.0b013e32835daf68] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Gálvez P, Clares B, Hmadcha A, Ruiz A, Soria B. Development of a cell-based medicinal product: regulatory structures in the European Union. Br Med Bull 2013. [PMID: 23184855 DOI: 10.1093/bmb/lds036] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
INTRODUCTION New therapies with genes, tissues and cells have taken the emerging field for the treatment of many diseases. Advances on stem cell therapy research have led to international regulatory agencies to harmonize and regulate the development of new medicines with stem cells. SOURCES OF DATA European Medicines Agency on September 15, 2012. AREAS OF AGREEMENT Cell therapy medicinal products should be subjected to the same regulatory principles than any other medicine. AREAS OF CONTROVERSY Their technical requirements for quality, safety and efficacy must be more specific and stringent than other biologic products and medicines. GROWING POINTS Cell therapy medicinal products are at the cutting edge of innovation and offer a major hope for various diseases for which there are limited or no therapeutic options. AREAS TIMELY FOR DEVELOPING RESEARCH The development of cell therapy medicinal products constitutes an alternative therapeutic strategy to conventional clinical therapy, for which no effective cure was previously available.
Collapse
|
23
|
Li SC, Yin HZ, Loudon WG, Weiss JH. Cultivating stem cells for treating amyotrophic lateral sclerosis. World J Stem Cells 2012; 4:117-119. [PMID: 23516096 PMCID: PMC3600561 DOI: 10.4252/wjsc.v4.i12.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 09/17/2012] [Accepted: 12/20/2012] [Indexed: 02/06/2023] Open
Abstract
This editorial addresses the current challenges and future directions in the use of stem cells as an approach for treating amyotrophic lateral sclerosis. A wide variety of literature has been reviewed to enlighten the reader on the many facets of stem cell research that are important to consider before using them for a cell based therapy.
Collapse
Affiliation(s)
- Shengwen Calvin Li
- Shengwen Calvin Li, William G Loudon, CHOC Children's Hospital, University of California Irvine, Orange, CA 92868, United States
| | | | | | | |
Collapse
|
24
|
Myogenic potential of whole bone marrow mesenchymal stem cells in vitro and in vivo for usage in urinary incontinence. PLoS One 2012; 7:e45538. [PMID: 23029081 PMCID: PMC3448658 DOI: 10.1371/journal.pone.0045538] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2012] [Accepted: 08/23/2012] [Indexed: 12/21/2022] Open
Abstract
Urinary incontinence, defined as the complaint of any involuntary loss of urine, is a pathological condition, which affects 30% females and 15% males over 60, often following a progressive decrease of rhabdosphincter cells due to increasing age or secondary to damage to the pelvic floor musculature, connective tissue and/or nerves. Recently, stem cell therapy has been proposed as a source for cell replacement and for trophic support to the sphincter. To develop new therapeutic strategies for urinary incontinence, we studied the interaction between mesenchymal stem cells (MSCs) and muscle cells in vitro; thereafter, aiming at a clinical usage, we analyzed the supporting role of MSCs for muscle cells in vitro and in in vivo xenotransplantation. MSCs can express markers of the myogenic cell lineages and give rise, under specific cell culture conditions, to myotube-like structures. Nevertheless, we failed to obtain mixed myotubes both in vitro and in vivo. For in vivo transplantation, we tested a new protocol to collect human MSCs from whole bone marrow, to get larger numbers of cells. MSCs, when transplanted into the pelvic muscles close to the external urethral sphincter, survived for a long time in absence of immunosuppression, and migrated into the muscle among fibers, and towards neuromuscular endplates. Moreover, they showed low levels of cycling cells, and did not infiltrate blood vessels. We never observed formation of cell masses suggestive of tumorigenesis. Those which remained close to the injection site showed an immature phenotype, whereas those in the muscle had more elongated morphologies. Therefore, MSCs are safe and can be easily transplanted without risk of side effects in the pelvic muscles. Further studies are needed to elucidate their integration into muscle fibers, and to promote their muscular transdifferentiation either before or after transplantation.
Collapse
|