1
|
Upreti A, Hoang TV, Li M, Tangeman JA, Dierker DS, Wagner BD, Tsonis PA, Liang C, Lachke SA, Robinson ML. miR-26 Deficiency Causes Alterations in Lens Transcriptome and Results in Adult-Onset Cataract. Invest Ophthalmol Vis Sci 2024; 65:42. [PMID: 38683565 PMCID: PMC11059818 DOI: 10.1167/iovs.65.4.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 03/25/2024] [Indexed: 05/01/2024] Open
Abstract
Purpose Despite strong evidence demonstrating that normal lens development requires regulation governed by microRNAs (miRNAs), the functional role of specific miRNAs in mammalian lens development remains largely unexplored. Methods A comprehensive analysis of miRNA transcripts in the newborn mouse lens, exploring both differential expression between lens epithelial cells and lens fiber cells and overall miRNA abundance, was conducted by miRNA sequencing. Mouse lenses lacking each of three abundantly expressed lens miRNAs (miR-184, miR-26, and miR-1) were analyzed to explore the role of these miRNAs in lens development. Results Mice lacking all three copies of miR-26 (miR-26TKO) developed postnatal cataracts as early as 4 to 6 weeks of age. RNA sequencing analysis of neonatal lenses from miR-26TKO mice exhibited abnormal reduced expression of a cohort of genes found to be lens enriched and linked to cataract (e.g., Foxe3, Hsf4, Mip, Tdrd7, and numerous crystallin genes) and abnormal elevated expression of genes related to neural development (Lhx3, Neurod4, Shisa7, Elavl3), inflammation (Ccr1, Tnfrsf12a, Csf2ra), the complement pathway, and epithelial to mesenchymal transition (Tnfrsf1a, Ccl7, Stat3, Cntfr). Conclusions miR-1, miR-184, and miR-26 are each dispensable for normal embryonic lens development. However, loss of miR-26 causes lens transcriptome changes and drives cataract formation.
Collapse
Affiliation(s)
- Anil Upreti
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, Ohio, United States
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - Thanh V. Hoang
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, Ohio, United States
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - Minghua Li
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - Jared A. Tangeman
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, Ohio, United States
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - David S. Dierker
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - Brad D. Wagner
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | | | - Chun Liang
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, Delaware, United States
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, Delaware, United States
| | - Michael L. Robinson
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, Ohio, United States
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, Ohio, United States
| |
Collapse
|
2
|
Fang R, Li HL, Lv NX, Yue PL, Jia YX, Liu ZC, Zhou HG, Song XD. Inhibition of miR-29a-3p Alleviates Apoptosis of Lens Epithelial Cells via Upregulation of CAND1. Curr Eye Res 2024; 49:391-400. [PMID: 38095165 DOI: 10.1080/02713683.2023.2293457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 12/05/2023] [Indexed: 03/23/2024]
Abstract
PURPOSE Accumulated evidence has shown that microRNAs (miRNAs) are closely related to the pathogenesis and progression of senile cataracts. Here we investigate the effect of miR-29a-3p in cataractogenesis and determined the potential molecular mechanism involved. METHODS In this study, we constructed a selenite cataract model in rats and obtained the miRNAs related to cataracts by whole transcriptome sequencing. To investigate the effect and mechanism of miR-29a-3p on cataracts, we performed several in vivo and in vitro experiments, including CCK8 assay, flow cytometry, luciferase reporter assay, Edu assay, and western blot analysis. RESULT Sequencing data showed downregulation of miR-29a-3p in rats with selenite cataracts. Down-regulation of miR-29a-3p could promote lens epithelial cells (SRA01/04) proliferation and inhibit cell apoptosis, and miR-29a-3p silence could inhibit the development of cataracts. Additionally, CAND1 was a direct target gene for miR-29a-3p. CONCLUSION These data demonstrate that miR-29a-3p inhibits apoptosis of lens epithelial cells by regulating CAND1, which may be a potential target for senile cataracts.
Collapse
Affiliation(s)
- Rui Fang
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Hai-Long Li
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Ning-Xin Lv
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Pei-Lin Yue
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Yu-Xuan Jia
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - Zhao-Chuan Liu
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Tongren Eye Center, Beijing, China
- Beijing Ophthalmology&Visual Sciences Key Lab, Beijing, China
| | - Hong-Gang Zhou
- The State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy and Key Laboratory of Molecular Drug Research, Nankai University, Tianjin, China
| | - Xu-Dong Song
- Beijing Tongren Hospital, Capital Medical University, Beijing, China
- Beijing Tongren Eye Center, Beijing, China
- Beijing Ophthalmology&Visual Sciences Key Lab, Beijing, China
| |
Collapse
|
3
|
Upreti A, Hoang TV, Li M, Tangeman JA, Dierker DS, Wagner BD, Tsonis PA, Liang C, Lachke SA, Robinson ML. miR-26 deficiency causes alterations in lens transcriptome and results in adult-onset cataract. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.29.577818. [PMID: 38352453 PMCID: PMC10862774 DOI: 10.1101/2024.01.29.577818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Purpose Despite strong evidence demonstrating that normal lens development requires regulation governed by miRNAs, the functional role of specific miRNAs in mammalian lens development remains largely unexplored. Methods A comprehensive analysis of miRNA transcripts in the newborn mouse lens, exploring both differential expression between lens epithelial cells and lens fiber cells and overall miRNA abundance was conducted by miRNA-seq. Mouse lenses lacking each of three abundantly expressed lens miRNAs: miR-184, miR-26 and miR-1 were analyzed to explore the role of these miRNAs in lens development. Results Mice lacking all three copies of miR-26 (miR-26TKO) developed postnatal cataracts as early as 4-6 weeks of age. RNA-seq analysis of neonatal lenses from miR-26TKO mice exhibited abnormal reduced expression of a cohort of genes found to be lens-enriched and linked to cataract (e.g. Foxe3, Hsf4, Mip, Tdrd7, and numerous crystallin genes), and abnormal elevated expression of genes related to neural development (Lhx3, Neurod4, Shisa7, Elavl3 ), inflammation (Ccr1, Tnfrsf12a, Csf2ra), the complement pathway, and epithelial to mesenchymal transition (Tnfrsf1a, Ccl7, Stat3, Cntfr). Conclusion miR-1, miR-184 and miR-26 are each dispensable for normal embryonic lens development. However, loss of miR-26 causes lens transcriptome changes and drives cataract formation.
Collapse
Affiliation(s)
- Anil Upreti
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Thanh V Hoang
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Minghua Li
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Jared A Tangeman
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - David S Dierker
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Brad D Wagner
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | | | - Chun Liang
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| | - Salil A Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Michael L Robinson
- Cell, Molecular and Structural Biology Program, Miami University, Oxford, OH 45056, USA
- Department of Biology and Center for Visual Sciences, Miami University, Oxford, OH 45056, USA
| |
Collapse
|
4
|
Fattahi M, Rezaee D, Fakhari F, Najafi S, Aghaei-Zarch SM, Beyranvand P, Rashidi MA, Bagheri-Mohammadi S, Zamani-Rarani F, Bakhtiari M, Bakhtiari A, Falahi S, Kenarkoohi A, Majidpoor J, Nguyen PU. microRNA-184 in the landscape of human malignancies: a review to roles and clinical significance. Cell Death Discov 2023; 9:423. [PMID: 38001121 PMCID: PMC10673883 DOI: 10.1038/s41420-023-01718-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/05/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNAs (ncRNAs) with a short length of 19-22 nucleotides. miRNAs are posttranscriptional regulators of gene expression involved in various biological processes like cell growth, apoptosis, and angiogenesis. miR-184 is a well-studied miRNA, for which most studies report its downregulation in cancer cells and tissues and experiments support its role as a tumor suppressor inhibiting malignant biological behaviors of cancer cells in vitro and in vivo. To exert its functions, miR-184 affects some signaling pathways involved in tumorigenesis like Wnt and β-catenin, and AKT/mTORC1 pathway, oncogenic factors (e.g., c-Myc) or apoptotic proteins, such as Bcl-2. Interestingly, clinical investigations have shown miR-184 with good performance as a prognostic/diagnostic biomarker for various cancers. Additionally, exogenous miR-184 in cell and xenograft animal studies suggest it as a therapeutic anticancer target. In this review, we outline the studies that evaluated the roles of miR-184 in tumorigenesis as well as its clinical significance.
Collapse
Affiliation(s)
- Mehdi Fattahi
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| | - Delsuz Rezaee
- School of Allied Medical Sciences, Ilam University of Medical Sciences, Ilam, Iran
| | - Fatemeh Fakhari
- Department of Toxicology and Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Sajad Najafi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Seyed Mohsen Aghaei-Zarch
- Department of Medical Genetics, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Beyranvand
- Department of Molecular Genetics, National Institute of Genetic Engineering and Biotechnology (NIGEB), Tehran, Iran
| | - Mohammad Amin Rashidi
- Student Research Committee, Department of Occupational Health and Safety, School of Public Health and Safety, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Bagheri-Mohammadi
- Department of Physiology and Neurophysiology Research Center, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fahimeh Zamani-Rarani
- Department of Anatomical Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Abbas Bakhtiari
- Anatomical Sciences Department, Medical Faculty, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Shahab Falahi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
| | - Azra Kenarkoohi
- Zoonotic Diseases Research Center, Ilam University of Medical Sciences, Ilam, Iran
- Department of Microbiology, Faculty of Medicine, Ilam University of Medical Sciences, Ilam, Iran
| | - Jamal Majidpoor
- Department of Anatomy, Faculty of Medicine, Infectious Disease Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | - P U Nguyen
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
5
|
Zhang J, Li P, Sun L, Jiang N, Guo W, Wang J, Gao F, Li J, Li H, Zhang J, Mu H, Hu Y, Cui X. Knockout of miR-184 in zebrafish leads to ocular abnormalities by elevating p21 levels. FASEB J 2023; 37:e22927. [PMID: 37086087 DOI: 10.1096/fj.202300067r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/20/2023] [Accepted: 04/04/2023] [Indexed: 04/23/2023]
Abstract
miR-184 is one of the most abundant miRNAs expressed in the lens and corneal tissue. Mutations in the seed region of miR-184 are responsible for inherited anterior segment dysgenesis. Animal models recapitulating miR-184-related anterior segment dysgenesis are still lacking, and the molecular basis of ocular abnormalities caused by miR-184 dysfunction has not been well elucidated in vivo. In the present study, we constructed a miR-184-/- zebrafish line by destroying both two dre-mir-184 paralogs with CRISPR-Cas9 technology. Although there were no gross developmental defects, the miR-184-/- zebrafish displayed microphthalmia and cataract phenotypes. Cytoskeletal abnormalities, aggregation of γ-crystallin, and lens fibrosis were induced in miR-184-/- lenses. However, no obvious corneal abnormalities were observed in miR-184-/- zebrafish. Instead of apoptosis, deficiency of miR-184 led to aberrant cell proliferation and a robust increase in p21 levels in zebrafish eyes. Inhibition of p21 by UC2288 compromised the elevation of lens fibrosis markers in miR-184-/- lenses. RNA-seq demonstrated that levels of four transcriptional factors HSF4, Sox9a, CTCF, and Smad6a, all of which could suppress p21 expression, were reduced in miR-184-/- eyes. The predicted zebrafish miR-184 direct target genes (e.g., atp1a3a and nck2a) were identified and verified in miR-184-/- eye tissues. The miR-184-/- zebrafish is the first animal model mimicking miR-184-related anterior segment dysgenesis and could broaden our understanding of the roles of miR-184 in eye development.
Collapse
Affiliation(s)
- Jing Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Ping Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Luqian Sun
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Ning Jiang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Wenya Guo
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Jungai Wang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Fen Gao
- Kaifeng Key Lab of Myopia and Cataract, Kaifeng Central Hospital, Kaifeng, China
| | - Jing Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Hui Li
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Jun Zhang
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| | - Hongmei Mu
- Kaifeng Key Lab of Myopia and Cataract, Kaifeng Central Hospital, Kaifeng, China
| | - Yanzhong Hu
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xiukun Cui
- Joint National Laboratory for Antibody Drug Engineering, The First Affiliated Hospital, School of Medicine, Henan University, Kaifeng, China
| |
Collapse
|
6
|
Chen S, Zhang C, Shen L, Hu J, Chen X, Yu Y. Noncoding RNAs in cataract formation: star molecules emerge in an endless stream. Pharmacol Res 2022; 184:106417. [PMID: 36038044 DOI: 10.1016/j.phrs.2022.106417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 08/24/2022] [Accepted: 08/24/2022] [Indexed: 11/30/2022]
Abstract
For decades, research on the pathological mechanism of cataracts has usually focused on the abnormal protein changes caused by a series of risk factors. However, an entire class of molecules, termed non-coding RNA (ncRNA), was discovered in recent years and proven to be heavily involved in cataract formation. Recent studies have recognized the key regulatory roles of ncRNAs in cataracts by shaping cellular activities such as proliferation, apoptosis, migration and epithelial-mesenchymal transition (EMT). This review summarizes our current insight into the biogenesis, properties and functions of ncRNAs and then discusses the development of research on ncRNAs in cataracts. Considering the significant role of ncRNA in cataract formation, research on novel associated regulatory mechanisms is urgently needed, and the development of therapeutic alternatives for the treatment of cataracts seems promising.
Collapse
Affiliation(s)
- Silong Chen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Chengshou Zhang
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Lifang Shen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China
| | - Jianghua Hu
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China; Department of Ophthalmology, Jiande Branch, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Xiangjun Chen
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, 268 Kaixuan Road, China.
| | - Yibo Yu
- Eye Center of the Second Affiliated Hospital, Medical College of Zhejiang University, 88 Jiefang Road, Hangzhou, China.
| |
Collapse
|
7
|
Wang H, Zheng G, Sun M, Chi Y. Circ-POLR3A accelerates TGF-β2-induced promotion in cell viability, migration, and invasion of lens epithelial cells via miR-31/TXNIP signaling cascade. J Biochem Mol Toxicol 2022; 36:e23144. [PMID: 35730126 DOI: 10.1002/jbt.23144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 02/28/2022] [Accepted: 05/31/2022] [Indexed: 11/11/2022]
Abstract
Posterior capsular opacification (PCO) is the major complication after cataract surgery and can result in secondary vision loss. Circular RNAs (circRNAs) are reported to play critical regulatory roles in multiple cell biological processes. The most common working mechanism of circRNAs is by acting as microRNA sponges. Here, we analyzed the role and mechanism of circRNA RNA polymerase III subunit A (POLR3A) in PCO. Cell viability was analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Cell motility was assessed by transwell and wound healing assays. Dual-luciferase reporter and RNA-pull-down assays were performed to verify the interaction between microRNA-31 (miR-31) and circ-POLR3A or thioredoxin interacting protein (TXNIP). PCO cell model was established by treating SRA01/04 cells with transforming growth factor-β2 (TGF-β2). We found that TGF-β2 enhanced SRA01/04 cell viability, migration, and invasion abilities. Circ-POLR3A expression was upregulated in PCO tissues and TGF-β2-induced SRA01/04 cells. TGF-β2 promoted the viability and motility of SRA01/04 cells largely by upregulating circ-POLR3A. Circ-POLR3A negatively regulated the miR-31 level by directly interacting with it. Circ-POLR3A absence-induced influences in TGF-β2-induced SRA01/04 cells were partly reversed by silencing miR-31. miR-31 is directly bound to the 3'-untranslated region of TXNIP. TXNIP overexpression largely attenuated miR-31 overexpression-mediated effects in TGF-β2-induced SRA01/04 cells. Circ-POLR3A could elevate the protein expression of TXNIP by sponging miR-31. Exosomes were involved in mediating the delivery of circ-POLR3A in SRA01/04 cells. In conclusion, circ-POLR3A contributed to TGF-β2-induced promotion of cell viability, migration, and invasion of SRA01/04 cells by targeting miR-31/TXNIP axis.
Collapse
Affiliation(s)
- Huajun Wang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan, China
| | - Guangying Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan, China
| | - Miaomiao Sun
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan, China
| | - Yingjie Chi
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou City, Henan, China
| |
Collapse
|
8
|
Gundagatti S, Srivastava S. Development of Electrochemical Biosensor for miR204-Based Cancer Diagnosis. Interdiscip Sci 2022; 14:596-606. [PMID: 35471629 DOI: 10.1007/s12539-022-00508-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 02/11/2022] [Accepted: 02/17/2022] [Indexed: 06/14/2023]
Abstract
With increase in cancer burden worldwide and poor survival rates due to delayed diagnosis, it is pertinent to develop a device for early diagnosis. We report an electrochemical biosensor for quantification of miRNA-204 (miR-204) biomarker that is dysregulated in most of the cancers. The proposed methodology uses the gold nanoparticles-modified carbon screen-printed electrode for immobilization of single-stranded DNA probe against miR-204. Colloidal gold nanoparticles were synthesized using L-glutamic acid as reducing agent. Nanoparticles were characterized by UV-visible spectroscopy and transmission electron microscopy. Spherical gold nanoparticles were of 7-28 nm in size. Biosensor fabricated using these nanoparticles was characterized by cyclic voltammetry after spiking 0.1 fg/mL-0.1 µg/mL of miR-204 in fetal bovine serum. Response characteristics of the miR-204 biosensor displayed high sensitivity of 8.86 µA/µg/µL/cm2 with wide detection range of 15.5 aM to 15.5 nM. The low detection limit makes it suitable for early diagnosis and screening of cancer.
Collapse
Affiliation(s)
- Shilpa Gundagatti
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, U.P., India
| | - Sudha Srivastava
- Department of Biotechnology, Jaypee Institute of Information Technology, A-10, Sector-62, Noida, U.P., India.
| |
Collapse
|
9
|
Wang S, Yu M, Yan H, Liu J, Guo C. MiR-34a-5p negatively regulates oxidative stress on lens epithelial cells by silencing GPX3 - a novel target. Curr Eye Res 2022; 47:727-734. [PMID: 35180020 DOI: 10.1080/02713683.2022.2029905] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Purpose MiR-34a-5p is reported to be related with age-related nuclear cataract. This study investigated the mechanism of miR-34a-5p in the regulation of oxidative stress on lens epithelial cells.Methods The three candidate miRNAs were screened by CCK-8 assays after transfection of mimics or inhibitor in H2O2-treated HLE-B3 cells. The apoptosis, ROS level and GPX activity of HLE-B3 cells transfected with miR-34a-5p mimics or inhibitor were analysed by flow cytometry, cellular ROS and GPX activity test. The target genes of miR-34a-5p were predicted by proteomic and bioinformatic analysis. The relationship between miR-34a-5p and GPX3 were internally validated by qRT-PCR and Western blot and externally verified by dual-luciferase reporter assay. The effect of miR-34a-5p-GPX3 axis on regulation of oxidative stress in HLE-B3 cells were conducted by overexpression of GPX3 and tested by flow cytometry analysis, cellular ROS and GPX detection.Results The viability of H2O2-treated HLE-B3 cells were weakened by up-regulated miR-34a-5p. Cell apoptosis and oxidative damage were also induced by overexpression of miR-34a-5p. GPX3 and SRC were identified as target genes of miR-34a-5p by combined analysis of proteomic and bioinformatics, while GPX3 was selected for further research for its connection with anti-oxidation. Western blot and qRT-PCR tests proved that GPX3 is negatively regulated by miR-34a-5p. Dual-luciferase reporter assay verified that GPX3 is the direct target of miR-34a-5p. The increased oxidative stress induced by transfection of miR-34a-5p mimics in H2O2-treated HLE-B3 cells was attenuated by overexpression of GPX3.Conclusions MiR-34a-5p is a negative regulator of oxidative stress on lens epithelial cells and the mechanism is by silencing the expression of GPX3. These data suggests that miR-34a-5p may be a potential novel therapeutic target for the prevention and treatment of age-related cataract.
Collapse
Affiliation(s)
- Song Wang
- Xi'an Fourth Hospital, Shaanxi Eye Hospital, Affiliated Xi'an Fourth Hospital, Northwestern Polytechnical University, Xi'an, 710004, Shaanxi, China.,Department of Ophthalmic Center, General Hospital of Xinjiang Military Region, Urumqi, 830013, Xinjiang, China
| | - Mengsi Yu
- Department of Clinical Laboratory, The First Affiliated Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang, China
| | - Hong Yan
- Xi'an Fourth Hospital, Shaanxi Eye Hospital, Affiliated Xi'an Fourth Hospital, Northwestern Polytechnical University, Xi'an, 710004, Shaanxi, China.,Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| | - Jun Liu
- Department of Ophthalmology, Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, 712000, Shaanxi, China
| | - Chenjun Guo
- Department of Ophthalmology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi, China
| |
Collapse
|
10
|
Peng C, Wang Y, Ji L, Kuang L, Yu Z, Li H, Zhang J, Zhao J. LncRNA-MALAT1/miRNA-204-5p/Smad4 Axis Regulates Epithelial-Mesenchymal Transition, Proliferation and Migration of Lens Epithelial Cells. Curr Eye Res 2021; 46:1137-1147. [PMID: 33327804 DOI: 10.1080/02713683.2020.1857778] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
MATERIALS AND METHODS LECs were cultured and induced with TGF-β2 (10 ng/mL). SiRNA against MALAT1 (Si-MALAT1) was transfected into LECs to knockdown the expression of MALAT1. To overexpress or knockdown miR-204-5p, miR-204-5p mimics (miR-204-5p mimics) and anti-miR-204-5p (miR-204-5p inhibitor) were transfected into LECs. We used RNA FISH to identify the location of MALAT1. RNA levels of MALAT1 and miR-204-5p were analyzed by RT-qPCR. Additionally, target protein levels of Smad4, epithelial differentiation and mesenchymal markers were analyzed with Western blot. We employed EdU Labeling to measured cell proliferation and performed Transwell Assay to analyze the cell migration. Dual-luciferase reporter assays in LECs were conducted to verify whether miRNA-204-5p was negatively regulated by MALAT1 and Smad4 was a direct target of miR-204-5p. RESULTS The expression of MALAT1 was upregulated in PCO specimens. MALAT1 was overexpressed in TGF-β2 induced LECs, and the knockdown of MALAT1 could attenuate TGF-β2 induced EMT. Besides, the upregulation of MALAT1 was correlated with the downregulation of miR-204-5p and upregulation of Smad4. Importantly, MALAT1 was revealed to be located in the cytoplasm of LECs. Furthermore, luciferase reporter assays confirmed that MALAT1 could negatively regulate the expression of miR-204-5p and then regulate its direct target Smad4. Finally, the knockdown of MALAT1 could inhibit the EMT, proliferation, and migration of LECs; however, those can be reversed by anti-miR-204-5p. CONCLUSIONS Our findings reveal that MALAT1 may regulate EMT, proliferation, and migration of LECs as a ceRNA by "sponging" miR-204-5p and targeting Smad4, and serve as a promising therapeutic target in preventing PCO.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China
- Key Laboratory of Lens Research of Liaoning Province, Shenyang, China
| | - Yuchi Wang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China
- Key Laboratory of Lens Research of Liaoning Province, Shenyang, China
| | - Liyang Ji
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China
- Key Laboratory of Lens Research of Liaoning Province, Shenyang, China
| | - Liangju Kuang
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Ziyan Yu
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China
- Key Laboratory of Lens Research of Liaoning Province, Shenyang, China
| | - Hanrong Li
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China
- Key Laboratory of Lens Research of Liaoning Province, Shenyang, China
| | - Jinsong Zhang
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China
- Key Laboratory of Lens Research of Liaoning Province, Shenyang, China
| | - Jiangyue Zhao
- Department of Ophthalmology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
- Department of Ophthalmology, Eye Hospital of China Medical University, Shenyang, China
- Key Laboratory of Lens Research of Liaoning Province, Shenyang, China
| |
Collapse
|
11
|
Bereimipour A, Najafi H, Mirsane ES, Moradi S, Satarian L. Roles of miR-204 in retinal development and maintenance. Exp Cell Res 2021; 406:112737. [PMID: 34324864 DOI: 10.1016/j.yexcr.2021.112737] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/14/2022]
Abstract
The retina is the innermost part of the eye of most vertebrates and it is essential for vision. The development, maintenance, and function of this laminated structure is tightly regulated by numerous genes. Deficiencies in the expression of these genes as well as deregulation of various molecular mechanisms can cause retinopathies and blindness. MicroRNAs (miRNAs) are one of the most important and effective molecular regulatory mechanisms that underlie the biology of the retina. miRNAs have specific functional roles in the development and maintenance of different retinal layers and retinal cell types. While previous studies have reported a large number of miRNAs linked to development, maintenance and diseases of the retina, no comprehensive study has properly discussed and integrated data from these studies. Given the particular importance of miR-204 in retinal biology, we intend to critically discuss the expression and functional significance of this miRNA in the development, maintenance, and pathologies of the retina. Moreover, we explore biological processes through which miR-204 influences retinal pathophysiology. This review highlights the crucial functions of miR-204 in the retina and suggests the putative mechanism of miR-204 action in retinal biology.
Collapse
Affiliation(s)
- Ahmad Bereimipour
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran; Faculty of Sciences and Advanced Technologies in Biology, University of Science and Culture, Tehran, Iran
| | - Hadi Najafi
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Elahe Sadat Mirsane
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Sharif Moradi
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| | - Leila Satarian
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.
| |
Collapse
|
12
|
Tang S, Di G, Hu S, Liu Y, Dai Y, Chen P. AQP5 regulates vimentin expression via miR-124-3p.1 to protect lens transparency. Exp Eye Res 2021; 205:108485. [PMID: 33582182 DOI: 10.1016/j.exer.2021.108485] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 01/27/2021] [Accepted: 01/29/2021] [Indexed: 12/18/2022]
Abstract
The pathogenesis of congenital cataract (CC), a major disease associated with blindness in infants, is complex and diverse. Aquaporin 5 (AQP5) represents an essential membrane water channel. In the present study, whole exome sequencing revealed a novel heterozygous missense mutation of AQP5 (c.152 T > C, p. L51P) in the four generations of the autosomal dominant CC (adCC) family. By constructing a mouse model of AQP5 knockout (KO) using the CRISPR/Cas9 technology, we observed that the lens of AQP5-KO mice showed mild opacity at approximately six months of age. miR-124-3p.1 expression was identified to be downregulated in the lens of AQP5-KO mice as evidenced by qRT-PCR analysis. A dual luciferase reporter assay confirmed that vimentin was a target gene of miR-124-3p.1. Organ-cultured AQP5-KO mouse lenses were showed increased opacity compared to those of WT mice, and vimentin expression was upregulated as determined by RT-PCR, western blotting, and immunofluorescence staining. After miR-124-3p.1 agomir was added, the lens opacity in WT mice and AQP5-KO mice decreased, accompanied by the downregulation of vimentin. AQP5-L51P increased vimentin expression of in human lens epithelial cells. Therefore, a missense mutation in AQP5 (c.152 T > C, p. L51P) was associated with adCC, and AQP5 could participate in the maintenance of lens transparency by regulating vimentin expression via miR-124-3p.1.
Collapse
Affiliation(s)
- Suzhen Tang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Guohu Di
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China
| | - Shaohua Hu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Yaning Liu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China
| | - Yunhai Dai
- State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China.
| | - Peng Chen
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Qingdao University, Qingdao, 266071, Shandong Province, China; Institute of Stem Cell Regeneration Medicine, School of Basic Medicine, Qingdao University, Qingdao, 266071, China.
| |
Collapse
|
13
|
Chen Y, Fan D, Zhang X, Han S, Wei X, Wang Y, Song L. MicroRNA-184 is a key molecule responsible for the transforming growth factor-β 2 -induced epithelial-mesenchymal transition in human lens epithelial-B3 cells. Clin Exp Ophthalmol 2020; 48:821-829. [PMID: 32356563 DOI: 10.1111/ceo.13774] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 04/09/2020] [Accepted: 04/16/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND TGF-β2-induced epithelial-mesenchymal transition (EMT) is an important mechanism for posterior capsule opacity (PCO) in lens epithelial cells (LECs). This study aimed to investigate if MicroRNA-184 (miR-184) plays a role in the TGF-β2-induced EMT in LECs. METHODS Human LECs (HLE-B3 cells) were used in this study. Quantitative real-time polymerase chain reaction (PCR) (qRT-PCR) was performed to analyse miR-184 expressions in HLE-B3 treated with TGF-β2 at different concentrations (0-15 ng/mL) and different time (10 ng/mL, 0-48 hours). After transfection of miR-184 mimics or miR-184 inhibitor, cells were treated with 10 ng/mL TGF-β2 for 24 hours, and the expression levels of miR-184, E-cadherin, vimentin, zinc finger E-box binding homeobox 2 (ZEB2), α-Smooth muscle actin (α-SMA), Collagen 1 and bin3 were determined by qRT-PCR and Western blot, respectively. RESULTS TGF-β2 treatment significantly downregulated E-cadherin and upregulated vimentin generally in a dose-dependent and time-dependent manner. TGF-β2 treatment significantly elevated the level of miR-184 in both dose- and time-dependent manners. In addition, transfection of miR-184 inhibitor RNA significantly attenuated TGF-β2-induced downregulation of E-cadherin as well as upregulation of vimentin, ZEB2, α-SMA and Collagen 1, whereas transfection of miR-184 mimic further enhanced the effects of TGF-β2 on the expressions of these markers. Furthermore, TGF-β2 treatment significantly downregulated bin3, and transfection of miR-184 mimic and miR-184 inhibitor significantly enhanced and attenuated the inhibition effect of TGF-β2 on bin3, respectively. CONCLUSIONS miR-184 plays a key role in the TGF-β2-induced EMT in LECs, and bin3 may be a downstream protein.
Collapse
Affiliation(s)
- Yang Chen
- Department of Ophthalmology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Dongsheng Fan
- Department of Ophthalmology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Xinli Zhang
- Department of Ophthalmology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Shaoping Han
- Department of Ophthalmology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Xiaoyue Wei
- Department of Ophthalmology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Yongshu Wang
- Department of Ophthalmology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| | - Lili Song
- Department of Ophthalmology, Luoyang Central Hospital Affiliated to Zhengzhou University, Luoyang, China
| |
Collapse
|
14
|
Shiels A. TRPM3_miR-204: a complex locus for eye development and disease. Hum Genomics 2020; 14:7. [PMID: 32070426 PMCID: PMC7027284 DOI: 10.1186/s40246-020-00258-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 02/06/2020] [Indexed: 02/07/2023] Open
Abstract
First discovered in a light-sensitive retinal mutant of Drosophila, the transient receptor potential (TRP) superfamily of non-selective cation channels serve as polymodal cellular sensors that participate in diverse physiological processes across the animal kingdom including the perception of light, temperature, pressure, and pain. TRPM3 belongs to the melastatin sub-family of TRP channels and has been shown to function as a spontaneous calcium channel, with permeability to other cations influenced by alternative splicing and/or non-canonical channel activity. Activators of TRPM3 channels include the neurosteroid pregnenolone sulfate, calmodulin, phosphoinositides, and heat, whereas inhibitors include certain drugs, plant-derived metabolites, and G-protein subunits. Activation of TRPM3 channels at the cell membrane elicits a signal transduction cascade of mitogen-activated kinases and stimulus response transcription factors. The mammalian TRPM3 gene hosts a non-coding microRNA gene specifying miR-204 that serves as both a tumor suppressor and a negative regulator of post-transcriptional gene expression during eye development in vertebrates. Ocular co-expression of TRPM3 and miR-204 is upregulated by the paired box 6 transcription factor (PAX6) and mutations in all three corresponding genes underlie inherited forms of eye disease in humans including early-onset cataract, retinal dystrophy, and coloboma. This review outlines the genomic and functional complexity of the TRPM3_miR-204 locus in mammalian eye development and disease.
Collapse
Affiliation(s)
- Alan Shiels
- Ophthalmology and Visual Sciences, Washington University School of Medicine, 660 S. Euclid Ave., Box 8096, St. Louis, MO, 63110, USA.
| |
Collapse
|
15
|
Wu P, Zhang D, Geng Y, Li R, Zhang Y. Circular RNA-ZNF609 regulates corneal neovascularization by acting as a sponge of miR-184. Exp Eye Res 2020; 192:107937. [PMID: 31954666 DOI: 10.1016/j.exer.2020.107937] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/19/2019] [Accepted: 01/14/2020] [Indexed: 01/14/2023]
Abstract
Corneal neovascularization can cause abnormal blood vessels to grow in the normally transparent and translucent cornea leading to various sight-threatening eye diseases. microRNAs and circular RNAs are known to play essential roles in the regulation of numerous biological functions. It is urgently needed to understand the molecular mechanism of miRNAs and circular RNAs in the corneal neovascularization. We aimed to elucidate the role of a specific a circular RNA, cZNF609, in the corneal neovascularization. cZNF609 and miR-184 levels were determined by RT-qPCR. Luciferase reporter assay and RNA immunoprecipitation assay were conducted to verify the target of cZNF609. The biological function of cZNF609 and miR-184 were assessed via cell proliferation, migration, and tube formation assays in vitro as well as the corneal suture model in vivo. The up-regulation of cZNF609 and down-regulation of miR-184 were observed during corneal neovascularization. cZNF609 acted as a miR-184 sponge to block miR-184 activity. Overexpression of miR-184 suppressed HCEKs cell proliferation, migration in vitro, and angiogenesis in vivo. The miR-184-mediated inhibition effect can be rescued through the re-introduction of cZNF609. Mechanically, cZNF609/miR-184 interaction regulated the downstream Akt and VEGF signaling pathway. Intervention of cZNF609 and miR-184 may serve as a potential strategy for pathological corneal neovascularization treatment.
Collapse
Affiliation(s)
- Pengcheng Wu
- Department of Ophthalmology, Lanzhou University Second Hospital, No.82 Cuiyingmen, Lanzhou, 730030, Gansu, China.
| | - Dongyan Zhang
- Department of Ophthalmology, Lanzhou University Second Hospital, No.82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Yuanyuan Geng
- Department of Ophthalmology, Lanzhou University Second Hospital, No.82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Rui Li
- Department of Ophthalmology, Lanzhou University Second Hospital, No.82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| | - Yanan Zhang
- Department of Ophthalmology, Lanzhou University Second Hospital, No.82 Cuiyingmen, Lanzhou, 730030, Gansu, China
| |
Collapse
|
16
|
Schulte D, Geerts D. MEIS transcription factors in development and disease. Development 2019; 146:146/16/dev174706. [PMID: 31416930 DOI: 10.1242/dev.174706] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/28/2019] [Indexed: 12/12/2022]
Abstract
MEIS transcription factors are key regulators of embryonic development and cancer. Research on MEIS genes in the embryo and in stem cell systems has revealed novel and surprising mechanisms by which these proteins control gene expression. This Primer summarizes recent findings about MEIS protein activity and regulation in development, and discusses new insights into the role of MEIS genes in disease, focusing on the pathogenesis of solid cancers.
Collapse
Affiliation(s)
- Dorothea Schulte
- Institute of Neurology (Edinger Institute), University Hospital Frankfurt, Goethe University, 60528 Frankfurt, Germany
| | - Dirk Geerts
- Department of Medical Biology L2-109, Amsterdam University Medical Center, University of Amsterdam, 1105 AZ Amsterdam, The Netherlands
| |
Collapse
|
17
|
MicroRNA-486-5p suppresses TGF-β2-induced proliferation, invasion and epithelial-mesenchymal transition of lens epithelial cells by targeting Smad2. J Biosci 2018; 42:575-584. [PMID: 29229876 DOI: 10.1007/s12038-017-9709-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The pathological development of lens epithelial cells (LECs) leads to posterior capsular opacification (PCO). This study was undertaken to investigate the effects of microRNA-486-5p (miR-486-5p) on TGF-β2-induced proliferation, invasion and epithelial-mesenchymal transition (EMT) in the lens epithelial cell line SRA01/04, and to explore the underlying molecular mechanisms. The expression of miR-486-5p in TGF-β2-induced SRA01/04 cells was down-regulated, and the expression of Smad2, p-Smad2 and p-Smad3 was up-regulated. A dual-luciferase reporter assay revealed that miR-486-5p directly targets the 30'-UTR of Smad2. MiR-486-5p mimic transfection markedly down-regulated the expression levels of Smad2, thus inhibiting the expression of p-Smad2 and p-Smad3. MiR-486-5p overexpression in SRA01/04 cells markedly suppressed TGF-β2-induced proliferation and invasion, inhibited protein expression of CDK2 and CDK4, down-regulated fibronectin, α-SMA and vimentin and up-regulated E-cadherin; these effects were partly reversed by Smad2 overexpression. In short, these data show that miR-486-5p overexpression can inhibit TGF-β2-induced proliferation, invasion and EMT in SRA01/04 cells by repressing Smad2/Smad3 signalling, implying that miR-486-5p may be an effective target to interfere in the progression of PCO.
Collapse
|
18
|
Shi Z, Su Y, Wang F, Liu P. Downregulation of microRNA-181a attenuates hydrogen peroxide-induced human lens epithelial cell apoptosis in vitro. Mol Med Rep 2018; 17:6009-6015. [PMID: 29484431 DOI: 10.3892/mmr.2018.8608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 07/07/2017] [Indexed: 11/05/2022] Open
Abstract
Apoptosis of human lens epithelial (HLE) cells is a process closely associated with cataract formation. The aim of the present study was to explore the effects of microRNA (miR)‑181a against hydrogen peroxide (H2O2)-induced apoptosis in HLE cells in vitro. The recombinant lentiviral plasmid pLKO. 1‑puro‑miR‑181a was constructed and used to transfect human HLE‑B3 cells with the short hairpin (sh)RNA to silence the expression of miR‑181a. The apoptotic rate of both HLE‑B3 cells in which miR‑181a expression was stably silenced and in untransfected HLE‑B3 cells was assessed in the presence of H2O2 using flow cytometry. The mRNA expression levels of the apoptosis‑related genes caspase-3 (CASP3) and B‑cell lymphoma‑2‑associated X protein (BAX), and of the potential target genes for miR‑181a, c‑MET, cyclooxygenase 2 (COX‑2) and snail family transcriptional repressor 2 (SNAI2) were measured using reverse transcription‑quantitative polymerase chain reaction (RT‑qPCR). Malondialdehyde (MDA), superoxide dismutase (SOD) and catalase (CAT) levels were assessed using ELISA. RT‑qPCR analysis revealed that miR‑181a expression was downregulated in HLE‑B3 cells following transfection with miR‑181a‑shRNA. Treatment with H2O2 significantly reduced the viability of HLE‑B3 cells, whereas miR‑181a knockdown was revealed to attenuate the effects on cell viability following H2O2 treatment. In addition, the downregulation of miR‑181a expression significantly decreased H2O2‑induced cell apoptosis, which was accompanied by a downregulation in CASP3 and BAX and COX‑2 expression. Furthermore, the levels of MDA were decreased, whereas the levels of SOD and CAT were increased following miR‑181a silencing. The present findings suggested that miR‑181a knockdown may protect HLE‑B3 cells against H2O2‑induced apoptosis in vitro. The molecular mechanisms involved in the protective effects of miR‑181a silencing may involve the suppression of CASP3, BAX and COX‑2 expression, and the inhibition of MDA generation.
Collapse
Affiliation(s)
- Zhan Shi
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ying Su
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Feng Wang
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Ping Liu
- Department of Ophthalmology, The First Affiliated Hospital, Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
19
|
Zhang X, Di G, Dong M, Qu M, Zhao X, Duan H, Hu X, Liu T, Zhou Q, Shi W. Epithelium-derived miR-204 inhibits corneal neovascularization. Exp Eye Res 2017; 167:122-127. [PMID: 29246498 DOI: 10.1016/j.exer.2017.12.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 12/05/2017] [Accepted: 12/10/2017] [Indexed: 11/28/2022]
Abstract
MicroRNA-204 (miR-204) is highly expressed in cornea, here we explored the role and mechanism of miR-204 in corneal neovascularization (CNV). Mouse CNV was induced by intrastromal placement of suture in BALB/c mice with the subconjunctival injection of miR-204 agomir or negative control. Human primary limbal epithelial cells (LECs) and immortalized microvascular endothelial cells (HMECs) were used to evaluate the expression changes and anti-angiogenic effects of miR-204 under biomechanical stress (BS). The expression and localization of miR-204, vascular endothelial growth factor (VEGF) and their receptors were detected by quantitative real-time PCR, in situ hybridization, immunohistochemistry and Western blot. The results showed that miR-204 expression was mainly localized in epithelium and down-expressed in vascularized cornea. Subconjunctival injection of miR-204 agomir inhibited CNV and reduced the expression of VEGF and VEGF receptor 2. Similarly, miR-204 overexpression attenuated the increased expression of VEGF by biomechanical stress in LECs, and suppressed the proliferation, migration, and tube formation of HMECs. These novel findings indicate that epithelium-derived miR-204 inhibits suture-induced CNV through regulating VEGF and VEGF receptor 2.
Collapse
Affiliation(s)
- Xiaoping Zhang
- The Affiliated Hospital of Qingdao University, Qingdao, Shandong, China; Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Guohu Di
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Muchen Dong
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, Shandong, China; School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Mingli Qu
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Xiaowen Zhao
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Haoyun Duan
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Xiaoli Hu
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Ting Liu
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, Shandong, China
| | - Qingjun Zhou
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, Shandong, China.
| | - Weiyun Shi
- Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong Academy of Medical Sciences, Qingdao, Shandong, China.
| |
Collapse
|
20
|
Yu X, Zheng H, Chan MTV, Wu WKK. MicroRNAs: new players in cataract. Am J Transl Res 2017; 9:3896-3903. [PMID: 28979668 PMCID: PMC5622237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/15/2016] [Indexed: 06/07/2023]
Abstract
Cataract is the most common cause of blindness worldwide. Multiple factors such as aging, eye injury, diabetes mellitus, ultraviolet exposure, drug use and other ocular diseases are etiologically linked to cataractogenesis. Due to a rapid increase in aging population, age-related cataract has become the leading cause of blindness. Therefore, it is urgent to understand the molecular mechanism underlying cataractogenesis. MicroRNAs (miRNAs) are a group of endogenous, small noncoding RNAs that regulate gene expression at the post-translational level through binding with the 3'-untranslated regions of target mRNAs. Studies have shown that miRNAs play important roles in multiple cellular functions, including apoptosis, cell proliferation, senescence and stress response. Deregulated expression of miRNAs is also linked to the pathogenesis of many diseases, including ocular diseases. In our review, we focus on miRNAs that are involved in cataract development and discuss their potential applications as novel diagnostic markers and therapeutic targets.
Collapse
Affiliation(s)
- Xin Yu
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100042, China
| | - Heyi Zheng
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing 100042, China
| | - Matthew TV Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong KongHong Kong, China
| | - William Ka Kei Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong KongHong Kong, China
- State Key Laboratory of Digestive Disease, LKS Institute of Health Sciences, The Chinese University of Hong KongHong Kong, China
| |
Collapse
|
21
|
Wu CR, Ye M, Qin L, Yin Y, Pei C. Expression of lens-related microRNAs in transparent infant lenses and congenital cataract. Int J Ophthalmol 2017; 10:361-365. [PMID: 28393025 DOI: 10.18240/ijo.2017.03.06] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 02/06/2017] [Indexed: 12/27/2022] Open
Abstract
AIM To identify the expression of lens-related microRNAs (miRNAs) in the central epithelium of transparent infant lenses and congenital cataract. METHODS Lens-related miRNAs were retrieved from PubMed database. The expression levels of these miRNAs in transparent infant lenses and congenital cataract were determined by stem-loop reverse transcription-polymerase chain reaction (RT-PCR). miRanda algorithm was used to predict the target genes of these differentially expressed miRNAs. The target mRNA was validated. RESULTS Six lens-related miRNAs were retrieved from screening PubMed database. The most abundant miRNA in transparent infant lenses according to stem-loop RT-PCR was miR-184. miR-182 was up-regulated in congenital cataract. Contrarily, miR-204 and miR-124 was down-regulated. miR-204 exhibited a more significant decrease in expression than miR-124. In addition, Meis2 was predicted to be the target of miR-204 using miRanda algorithm. miR-204 mimic/antagomir transfection experiments suggested the negative correlation between the expression of miR-204 and Meis2. CONCLUSION The expression levels of miR-182, miR-204 and miR-124 differ between the central epithelium of transparent infant lens and congenital cataract, suggesting their involvement in the pathogenesis of congenital cataract. miR-204 may act via silencing Meis2 to regulate lens development and congenital cataract formation.
Collapse
Affiliation(s)
- Chang-Rui Wu
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Min Ye
- Ningxia Eye Hospital, People Hospital of Ningxia Hui Autonomous Region (First Affiliated Hospital of Northwest University for Nationalities), Yinchuan 750001, Ningxia Hui Autonomous Region, China
| | - Li Qin
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Yue Yin
- Basic Research Center, Affiliated Shaanxi Provincial Tumor Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| | - Cheng Pei
- Department of Ophthalmology, the First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, China
| |
Collapse
|
22
|
Transcriptome-wide Investigation of mRNA/circRNA in miR-184 and Its r.57c > u Mutant Type Treatment of Human Lens Epithelial Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2017. [PMID: 28624226 PMCID: PMC5415957 DOI: 10.1016/j.omtn.2017.02.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
m-miR-184 (mutant miR-184, r.57c > u) appears in familial hereditary ocular diseases, including keratoconus, cataracts, EDICT (endothelial dystrophy, iris hypoplasia, congenital cataract, and stromal thinning) syndrome, severe keratoconus, and non-ectatic corneal thinning. The biological function of m-miR-184 in these ocular diseases remains unclear. With the emergence of high-throughput sequencing, it is now possible to discover many different biological components simultaneously. Using two different RNA libraries, we sequenced the complete transcriptome of HLE cells treated with miR-184, m-miR-184, and a negative control. Data were integrated in an effort to identify any novel gene affected by m-miR-184. Notably, we concluded that ALDH5A1 and GABRA3 were disordered by m-miR-184, which might lead to ocular disease. Moreover, circRNA (circular RNA) expression was highy random across miR-184, m-miR-184, and negative control treatment groups. The sequences of the circRNAs did reveal a particularly high level of ALU sequences. In summary, we provide a new avenue for understanding the role of m-miR-184 in ocular diseases.
Collapse
|
23
|
Peng H, Park JK, Lavker RM. Autophagy and Macropinocytosis: Keeping an Eye on the Corneal/Limbal Epithelia. Invest Ophthalmol Vis Sci 2017; 58:416-423. [PMID: 28118670 PMCID: PMC5270618 DOI: 10.1167/iovs.16-21111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 12/05/2016] [Indexed: 02/07/2023] Open
Abstract
Autophagy and macropinocytosis are processes that are vital for cellular homeostasis, and help cells respond to stress and take up large amounts of material, respectively. The limbal and corneal epithelia have the machinery necessary to carry out both processes; however, autophagy and macropinocytosis are relatively understudied in these two epithelia. In this Perspectives, we describe the basic principles behind macropinocytosis and autophagy, discuss how these two processes are regulated in the limbal and corneal epithelia, consider how these two processes impact on the physiology of limbal and corneal epithelia, and elaborate on areas of future research in autophagy and macropinocytosis as related to the limbal/corneal epithelia.
Collapse
Affiliation(s)
- Han Peng
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Jong Kook Park
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| | - Robert M. Lavker
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States
| |
Collapse
|
24
|
Park JK, Peng H, Yang W, Katsnelson J, Volpert O, Lavker RM. miR-184 exhibits angiostatic properties via regulation of Akt and VEGF signaling pathways. FASEB J 2017; 31:256-265. [PMID: 27825105 PMCID: PMC5161520 DOI: 10.1096/fj.201600746r] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 09/22/2016] [Indexed: 11/11/2022]
Abstract
Corneal avascularity is critical for achieving transparency necessary for proper transmission of light to the lens and visual acuity. Although much is known about angiogenesis and angiostasis, the precise regulation of these processes in the cornea is unclear. MicroRNA (miR)-184, the most abundant corneal epithelial miRNA, has been suggested to function in corneal angiostasis by altering VEGF signaling; however, the mechanism(s) underlying this regulation have not been addressed. Using a combination of in vitro and in vivo assays to evaluate angiogenesis, we demonstrated that human limbal epithelial keratinocytes (HLEKs) engineered to overexpress miR-184 secreted lower amounts of angiogenic mitogens. Human dermal microvascular cells exposed to conditioned medium from miR-184-overexpressing HLEKs were less proliferative and failed to seal linear scratch wounds. The in vivo Matrigel plug assay showed that conditioned medium from miR-184-expressing HLEKs elicited a lesser degree of neovascularization compared with controls. We found that miR-184 directly targets and represses the proangiogenic factors, friend of Gata 2 (FOG2), platelet-derived growth factor (PDGF)-β, and phosphatidic acid phosphatase 2b (PPAP2B). FOG2 regulates VEGF expression, whereas PDGF-β and PPAP2B regulate Akt activity. By attenuating both VEGF and Akt signaling, miR-184 acts as a broad-spectrum negative regulator of corneal angiogenesis.-Park, J. K., Peng, H., Yang, W., Katsnelson, J., Volpert, O., Lavker, R. M. miR-184 exhibits angiostatic properties via regulation of Akt and VEGF signaling pathways.
Collapse
Affiliation(s)
- Jong Kook Park
- Department of Dermatology Northwestern University, Chicago, Illinois, USA
| | - Han Peng
- Department of Dermatology Northwestern University, Chicago, Illinois, USA
| | - Wending Yang
- Department of Dermatology Northwestern University, Chicago, Illinois, USA
| | - Julia Katsnelson
- Department of Dermatology, New York Metropolitan Hospital, New York, New York, USA; and
| | - Olga Volpert
- Department of Urology, The Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Robert M Lavker
- Department of Dermatology Northwestern University, Chicago, Illinois, USA;
| |
Collapse
|
25
|
Raghunath A, Perumal E. Micro-RNAs and Their Roles in Eye Disorders. Ophthalmic Res 2015; 53:169-86. [DOI: 10.1159/000371853] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 01/04/2015] [Indexed: 11/19/2022]
|
26
|
Li Y, Liu S, Zhang F, Jiang P, Wu X, Liang Y. Expression of the microRNAs hsa-miR-15a and hsa-miR-16-1 in lens epithelial cells of patients with age-related cataract. Int J Clin Exp Med 2015; 8:2405-2410. [PMID: 25932180 PMCID: PMC4402827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 01/17/2015] [Indexed: 06/04/2023]
Abstract
This study aimed to examine and analyze the expression levels of hsa-miR-15a and hsa-miR-16-1 in lens epithelial cells from patients with age-related cataract to understand better the roles of these microRNAs in the pathogenesis of this disease. Lens epithelial cells of 60 age-related cataract patients (including 20 with cortical cataracts, 20 with nuclear cataracts, and 20 with posterior subcapsular cataracts) and 20 normal patients were included in the study. Real-time PCR was used to detect the expression of hsa-miR-15a-5p, hsa-miR-15a-3p, hsa-miR-16-1-5p, and hsa-miR-16-1-3p. Expression of the target genes of these microRNAs, namely bcl-2 and mcl-1, was also evaluated. hsa-miR-15a-5p, hsa-miR-15a-3p, and hsa-miR-16-1-5p were expressed at low levels in normal lens epithelial cells but at significantly higher levels in corresponding cells of patients with cortical, nuclear, or posterior subcapsular cataracts (P < 0.01). hsa-miR-16-1-3p was expressed at relatively high levels in normal lens epithelial cells but significantly decreased expression, or none at all, was detected in cells of patients from each cataract group (P < 0.01). Concerning their target genes bcl-2 and mcl-1, expression was detectable in normal lens epithelial cells, but their levels were significantly decreased in cataract patients, irrespective of type (P < 0.01). Expression of hsa-miR-15a-5p, hsa-miR-15a-3p, and hsa-miR-16-1-5p rose in lens epithelial cells in the three types of age-related cataract, which may suppress the expression of the anti-apoptotic genes bcl-2 and mcl-1, thereby contributing to the pathogenesis of age-related cataract through apoptosis.
Collapse
Affiliation(s)
- Yuanbin Li
- Department of Ophthalmology, Qilu Hospital of Shandong UniversityJinan, People’s Republic of China
- Department of Ophthalmology, Yantai Yuhuangding HospitalYantai, People’s Republic of China
| | - Shujun Liu
- Department of Ophthalmology, Yantai Yuhuangding HospitalYantai, People’s Republic of China
| | - Fenglan Zhang
- Department of Ophthalmology, Yantai Yuhuangding HospitalYantai, People’s Republic of China
| | - Pengfei Jiang
- Department of Ophthalmology, Yantai Yuhuangding HospitalYantai, People’s Republic of China
| | - Xinyi Wu
- Department of Ophthalmology, Qilu Hospital of Shandong UniversityJinan, People’s Republic of China
| | - Yan Liang
- Department of Ophthalmology, Yantai Yuhuangding HospitalYantai, People’s Republic of China
| |
Collapse
|
27
|
Banaei-Esfahani A, Moazzeni H, Nosar PN, Amin S, Arefian E, Soleimani M, Yazdani S, Elahi E. MicroRNAs that target RGS5. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2015; 18:108-14. [PMID: 25810883 PMCID: PMC4366720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Accepted: 09/16/2014] [Indexed: 11/22/2022]
Abstract
OBJECTIVES An earlier meta-analysis on gene expression data derived from four microarray, two cDNA library, and one SAGE experiment had identified RGS5 as one of only ten non-housekeeping genes that were reported to be expressed in human trabecular meshwork (TM) cells by all studies. RGS5 encodes regulator of G-protein signaling-5. The TM tissue is the route of aqueous fluid outflow, and is relevant to the pathology of glaucoma. MicroRNAs constitute the most recently identified components of the cellular machinery for gene regulation in eukaryotic cells. Given our long standing interest in glaucoma, we aimed to identify miRNAs that may target RGS5. MATERIALS AND METHODS Eight miRNAs were selected for study using bioinformatics tools and available data on miRNAs expressed in the eye. Their effects were assessed using the dual luciferase assay. 3'-UTR segments of RGS5 mRNA were cloned downstream of a luciferase coding gene in psiCHECK2 vectors, and these were co-transfected with each of the miRNAs into HEK293 cells. RESULTS The outcomes evidenced that one or more of the segments are in fact targeted by miR-7, miR-9, miR-96, miR-23a, miR-23b, miR-204, and miR-211. Down regulations by the miRNAs were statistically significant. The effect of miR-204 is considered particularly important as this miRNA is well known to regulate eye development and to affect multiple ocular functions. CONCLUSION Our results justify further studies on regulation of RGS5 expression and RGS5 downstream functions by these miRNAs.
Collapse
Affiliation(s)
- Amir Banaei-Esfahani
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Hamidreza Moazzeni
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pooya Naseri Nosar
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Sadaf Amin
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran
| | - Ehsan Arefian
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | | - Shahin Yazdani
- Ophthalmic Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Elahi
- Department of Biotechnology, College of Science, University of Tehran, Tehran, Iran,School of Biology, College of Science, University of Tehran, Tehran, Iran,*Corresponding author: Elahe Elahi. College of Science, University of Tehran, Tehran, Iran. Tel: +98-9122181251; Fax: +98-21-66405141; ,
| |
Collapse
|
28
|
Murad N, Kokkinaki M, Gunawardena N, Gunawan MS, Hathout Y, Janczura KJ, Theos AC, Golestaneh N. miR-184 regulates ezrin, LAMP-1 expression, affects phagocytosis in human retinal pigment epithelium and is downregulated in age-related macular degeneration. FEBS J 2014; 281:5251-64. [PMID: 25251993 DOI: 10.1111/febs.13066] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 09/15/2014] [Accepted: 09/19/2014] [Indexed: 01/06/2023]
Abstract
MicroRNA 184 (miR-184) is known to play a key role in neurological development and apoptosis and is highly expressed in mouse brain, mouse corneal epithelium, zebrafish lens and human retinal pigment epithelium (RPE). However, the role of miR-184 in RPE is largely unknown. We investigated the role of miR-184 in RPE and its possible implication in age-related macular degeneration (AMD). Proteomic analysis identified the ezrin (EZR) gene as a target of miR-184 in human RPE. EZR is a membrane cytoskeleton crosslinker that is also known to bind to lysosomal-associated membrane protein 1 (LAMP-1) during the formation of phagocytic vacuoles. In adult retinal pigment epithelium 19 (ARPE19) cells, inhibition of miR-184 resulted in upregulation of EZR mRNA and EZR protein, and induced downregulation of LAMP-1. The inhibition of miR-184 decreased EZR-bound LAMP-1 protein levels and affected phagocytic activity in ARPE19 cells. In primary culture of human RPE isolated from eyes of AMD donors (AMD RPE), miR-184 was significantly downregulated compared with control (normal) RPE. Downregulation of miR-184 was consistent with significantly lower levels of LAMP-1 protein in AMD RPE, and overexpression of MIR-184 in AMD RPE was able to rescue LAMP-1 protein expression to normal levels. Altogether, these observations suggest a novel role for miR-184 in RPE health and support a model proposing that downregulation of miR-184 expression during aging may result in dysregulation of RPE function, contributing to retinal degeneration.
Collapse
Affiliation(s)
- Najiba Murad
- Department of Biochemistry and Molecular and Cellular Biology, Georgetown University Medical Center, Washington, DC, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Dong N, Xu B, Benya SR, Tang X. MiRNA-26b inhibits the proliferation, migration, and epithelial-mesenchymal transition of lens epithelial cells. Mol Cell Biochem 2014; 396:229-38. [PMID: 25063219 DOI: 10.1007/s11010-014-2158-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 07/14/2014] [Indexed: 10/25/2022]
Abstract
MicroRNAs (miRNAs) are a class of small endogenous gene regulators that play important roles in various developmental and pathological processes. However, little is known about the precise identity and functions of miR-26b in posterior capsule opacification (PCO). In this study, we report that the expression of miR-26b is decreased in human PCO-attached lens epithelial cells (LECs) and SRA01/04 cells in the presence of TGF-β2. Overexpression of miR-26b inhibited the proliferation of LECs based on MTT assays and BrdU incorporation assays. In addition, the overexpression of miR-26b inhibited the migration ability of LECs, as shown by wound-healing and transwell migration assays. The overexpression of miR-26b increased the level of the lens epithelial marker E-cadherin and reduced the levels of mesenchymal-related proteins, such as fibronectin, a-SMA, and type I collagen, in SRA01/04 cells in the presence of TGF-β2. Furthermore, the upregulation of E-cadherin and downregulation of mesenchymal-related proteins were induced in human PCO-attached LECs transfected with miR-26b mimics. We further demonstrated that Smad4 and COX-2 are targets of miR-26b in LECs using luciferase reporter assays. These data reveal that miR-26b can inhibit the proliferation, migration, and EMT of lens epithelial cells, and restoration of miRNA-26b may be a potential, novel therapeutic target for the prevention and treatment of posterior capsule opacification.
Collapse
Affiliation(s)
- Ning Dong
- Department of Ophthalmology, Beijing Shijitan Hospital, Capital Medical University, Beijing, People's Republic of China
| | | | | | | |
Collapse
|
30
|
Yan B, Yao J, Tao ZF, Jiang Q. Epigenetics and ocular diseases: from basic biology to clinical study. J Cell Physiol 2014; 229:825-33. [PMID: 24318407 DOI: 10.1002/jcp.24522] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2013] [Accepted: 12/02/2013] [Indexed: 12/23/2022]
Abstract
Epigenetics is an emerging field in ophthalmology and has opened a new avenue for understanding ocular development and ocular diseases related to aging and environment. Epigenetic mechanisms, including DNA methylation, histone modifications, chromatin remodeling, and deployment of non-coding RNAs, result in the heritable silencing of gene expression without any change in DNA sequence. Accumulating evidence suggests a potential link between gene expression, chromatin structure, non-coding RNAs, and cellular differentiation during ocular development. Disruption of the balance of epigenetic networks could become the etiology of several ocular diseases. Here, we summarized the current knowledge about epigenetic regulatory mechanisms in ocular development and diseases.
Collapse
Affiliation(s)
- Biao Yan
- Eye Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | |
Collapse
|
31
|
Conte I, Banfi S, Bovolenta P. Non-coding RNAs in the development of sensory organs and related diseases. Cell Mol Life Sci 2013; 70:4141-55. [PMID: 23588489 PMCID: PMC11113508 DOI: 10.1007/s00018-013-1335-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/25/2013] [Accepted: 03/27/2013] [Indexed: 12/21/2022]
Abstract
Genomes are transcribed well beyond the conventionally annotated protein-encoding genes and produce many thousands of regulatory non-coding RNAs (ncRNAs). In the last few years, ncRNAs, especially microRNAs and long non-coding RNA, have received increasing attention because of their implication in the function of chromatin-modifying complexes and in the regulation of transcriptional and post-transcriptional events. The morphological events and the genetic networks responsible for the development of sensory organs have been well delineated and therefore sensory organs have provided a useful scenario to address the role of ncRNAs. In this review, we summarize the current information on the importance of microRNAs and long non-coding RNAs during the development of the eye, inner ear, and olfactory system in vertebrates. We will also discuss those cases in which alteration of ncRNA expression has been linked to pathological conditions affecting these organs.
Collapse
Affiliation(s)
- Ivan Conte
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131 Naples, Italy
| | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Via Pietro Castellino, 111, 80131 Naples, Italy
- Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Paola Bovolenta
- Centro de Biología Molecular ‘Severo Ochoa’, CSIC–UAM, c/Nicolas Cabrera 1, Cantoblanco, 28049 Madrid, Spain
- CIBER de Enfermedades Raras, ISCIII, Madrid, Spain
| |
Collapse
|
32
|
Schulte D, Frank D. TALE transcription factors during early development of the vertebrate brain and eye. Dev Dyn 2013; 243:99-116. [DOI: 10.1002/dvdy.24030] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2013] [Revised: 07/11/2013] [Accepted: 07/13/2013] [Indexed: 12/25/2022] Open
Affiliation(s)
- Dorothea Schulte
- Institute of Neurology (Edinger Institute); University Hospital Frankfurt, J.W. Goethe University; Frankfurt Germany
| | - Dale Frank
- Department of Biochemistry; The Rappaport Family Institute for Research in the Medical Sciences, Faculty of Medicine, Technion-Israel Institute of Technology; Haifa Israel
| |
Collapse
|
33
|
Avellino R, Carrella S, Pirozzi M, Risolino M, Salierno FG, Franco P, Stoppelli P, Verde P, Banfi S, Conte I. miR-204 targeting of Ankrd13A controls both mesenchymal neural crest and lens cell migration. PLoS One 2013; 8:e61099. [PMID: 23620728 PMCID: PMC3631221 DOI: 10.1371/journal.pone.0061099] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Accepted: 03/05/2013] [Indexed: 12/20/2022] Open
Abstract
Loss of cell adhesion and enhancement of cell motility contribute to epithelial-to-mesenchymal transition during development. These processes are related to a) rearrangement of cell-cell and cell-substrate adhesion molecules; b) cross talk between extra-cellular matrix and internal cytoskeleton through focal adhesion molecules. Focal adhesions are stringently regulated transient structures implicated in cell adhesion, spreading and motility during tissue development. Importantly, despite the extensive elucidation of the molecular composition of focal adhesions, the complex regulation of their dynamics is largely unclear. Here, we demonstrate, using live-imaging in medaka, that the microRNA miR-204 promotes both mesenchymal neural crest and lens cell migration and elongation. Overexpression of miR-204 results in upregulated cell motility, while morpholino-mediated ablation of miR-204 activity causes abnormal lens morphogenesis and neural crest cell mislocalization. Using a variety of in vivo and in vitro approaches, we demonstrate that these actions are mediated by the direct targeting of the Ankrd13A gene, which in turn controls focal cell adhesion formation and distribution. Significantly, in vivo restoration of abnormally elevated levels of Ankrd13A resulting from miR-204 inactivation rescued the aberrant lens phenotype in medaka fish. These data uncover, for the first time in vivo, the role of a microRNA in developmental control of mesenchymal cell migration and highlight miR-204 as a "master regulator" of the molecular networks that regulate lens morphogenesis in vertebrates.
Collapse
Affiliation(s)
| | | | | | | | | | - Paola Franco
- Institute of Genetics and Biophysics, Naples, Italy
| | | | | | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Naples, Italy
| |
Collapse
|
34
|
Shaham O, Gueta K, Mor E, Oren-Giladi P, Grinberg D, Xie Q, Cvekl A, Shomron N, Davis N, Keydar-Prizant M, Raviv S, Pasmanik-Chor M, Bell RE, Levy C, Avellino R, Banfi S, Conte I, Ashery-Padan R. Pax6 regulates gene expression in the vertebrate lens through miR-204. PLoS Genet 2013; 9:e1003357. [PMID: 23516376 PMCID: PMC3597499 DOI: 10.1371/journal.pgen.1003357] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 01/17/2013] [Indexed: 12/22/2022] Open
Abstract
During development, tissue-specific transcription factors regulate both protein-coding and non-coding genes to control differentiation. Recent studies have established a dual role for the transcription factor Pax6 as both an activator and repressor of gene expression in the eye, central nervous system, and pancreas. However, the molecular mechanism underlying the inhibitory activity of Pax6 is not fully understood. Here, we reveal that Trpm3 and the intronic microRNA gene miR-204 are co-regulated by Pax6 during eye development. miR-204 is probably the best known microRNA to function as a negative modulator of gene expression during eye development in vertebrates. Analysis of genes altered in mouse Pax6 mutants during lens development revealed significant over-representation of miR-204 targets among the genes up-regulated in the Pax6 mutant lens. A number of new targets of miR-204 were revealed, among them Sox11, a member of the SoxC family of pro-neuronal transcription factors, and an important regulator of eye development. Expression of Trpm/miR-204 and a few of its targets are also Pax6-dependent in medaka fish eyes. Collectively, this study identifies a novel evolutionarily conserved mechanism by which Pax6 controls the down-regulation of multiple genes through direct up-regulation of miR-204. The transcription factor Pax6 is reiteratively employed in space and time for the establishment of progenitor pools and the differentiation of neuronal and non-neuronal lineages of the CNS, pancreas, and eye. Execution of these diverse developmental programs depends on simultaneous activation and repression of gene networks functioning downstream of Pax6. MicroRNAs function as inhibitors of gene expression. Many microRNA genes are transcribed through common promoters of host genes. In this study, using wide-scale analysis of changes in gene expression following Pax6 deletion in the lens, we discover that Pax6 regulates the gene Trpm3 and its hosted microRNA, miR-204. We then show that miR-204 suppresses several target genes in the lens, notably the neuronal gene Sox11. Lastly, by conducting parallel experiments in the medaka fish, we show that Pax6 control of miR-204 and its target genes is evolutionarily conserved between mammals and fish, stressing the biological importance of this pathway. Pax6 regulation of miR-204 explains part of the complex, divergent inhibitory activity of Pax6 in ocular progenitor cells, which is required to establish and maintain the identity and function of ocular tissues.
Collapse
Affiliation(s)
- Ohad Shaham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Karen Gueta
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Eyal Mor
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Pazit Oren-Giladi
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Dina Grinberg
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Qing Xie
- Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Ales Cvekl
- Department of Genetics and Department of Ophthalmology and Visual Sciences, Albert Einstein College of Medicine, Bronx, New York, United States of America
| | - Noam Shomron
- Department of Cell and Developmental Biology, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Noa Davis
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Maya Keydar-Prizant
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shaul Raviv
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Metsada Pasmanik-Chor
- Bioinformatics Unit, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Rachel E. Bell
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Carmit Levy
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | | | - Sandro Banfi
- Telethon Institute of Genetics and Medicine, Naples, Italy
- Medical Genetics, Department of Biochemistry, Biophysics and General Pathology, Second University of Naples, Naples, Italy
| | - Ivan Conte
- Telethon Institute of Genetics and Medicine, Naples, Italy
- * E-mail: (IC); (RA-P)
| | - Ruth Ashery-Padan
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- * E-mail: (IC); (RA-P)
| |
Collapse
|
35
|
Schraml E, Grillari J. From cellular senescence to age-associated diseases: the miRNA connection. LONGEVITY & HEALTHSPAN 2012; 1:10. [PMID: 24472232 PMCID: PMC3922944 DOI: 10.1186/2046-2395-1-10] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Accepted: 08/20/2012] [Indexed: 12/16/2022]
Abstract
Cellular senescence has evolved from an in-vitro model system to study aging in vitro to a multifaceted phenomenon of in-vivo importance as senescent cells in vivo have been identified and their removal delays the onset of age-associated diseases in a mouse model system. From the large emerging class of non-coding RNAs, miRNAs have only recently been functionally implied in the regulatory networks that are modified during the aging process. Here we summarize examples of similarities between the differential expression of miRNAs during senescence and age-associated diseases and suggest that these similarities might emphasize the importance of senescence for the pathogenesis of age-associated diseases. Understanding such a connection on the level of miRNAs might offer valuable opportunities for designing novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- Elisabeth Schraml
- Department of Biotechnology, BOKU VIBT University of Natural Resources and Life Sciences, Vienna, Austria
| | - Johannes Grillari
- Department of Biotechnology, BOKU VIBT University of Natural Resources and Life Sciences, Vienna, Austria
- Evercyte GmbH, Muthgasse 18, Vienna, 1190, Austria
| |
Collapse
|