1
|
Spertini C, Bénéchet AP, Birch F, Bellotti A, Román-Trufero M, Arber C, Auner HW, Mitchell RA, Spertini O, Smirnova T. Macrophage migration inhibitory factor blockade reprograms macrophages and disrupts prosurvival signaling in acute myeloid leukemia. Cell Death Discov 2024; 10:157. [PMID: 38548753 PMCID: PMC10978870 DOI: 10.1038/s41420-024-01924-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 03/14/2024] [Accepted: 03/19/2024] [Indexed: 04/01/2024] Open
Abstract
The malignant microenvironment plays a major role in the development of resistance to therapies and the occurrence of relapses in acute myeloid leukemia (AML). We previously showed that interactions of AML blasts with bone marrow macrophages (MΦ) shift their polarization towards a protumoral (M2-like) phenotype, promoting drug resistance; we demonstrated that inhibiting the colony-stimulating factor-1 receptor (CSF1R) repolarizes MΦ towards an antitumoral (M1-like) phenotype and that other factors may be involved. We investigated here macrophage migration inhibitory factor (MIF) as a target in AML blast survival and protumoral interactions with MΦ. We show that pharmacologically inhibiting MIF secreted by AML blasts results in their apoptosis. However, this effect is abrogated when blasts are co-cultured in close contact with M2-like MΦ. We next demonstrate that pharmacological inhibition of MIF secreted by MΦ, in the presence of granulocyte macrophage-colony stimulating factor (GM-CSF), efficiently reprograms MΦ to an M1-like phenotype that triggers apoptosis of interacting blasts. Furthermore, contact with reprogrammed MΦ relieves blast resistance to venetoclax and midostaurin acquired in contact with CD163+ protumoral MΦ. Using intravital imaging in mice, we also show that treatment with MIF inhibitor 4-IPP and GM-CSF profoundly affects the tumor microenvironment in vivo: it strikingly inhibits tumor vasculature, reduces protumoral MΦ, and slows down leukemia progression. Thus, our data demonstrate that MIF plays a crucial role in AML MΦ M2-like protumoral phenotype that can be reversed by inhibiting its activity and suggest the therapeutic targeting of MIF as an avenue towards improved AML treatment outcomes.
Collapse
Affiliation(s)
- Caroline Spertini
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Alexandre P Bénéchet
- In Vivo Imaging Facility (IVIF), Department of Research and Training, Lausanne University Hospital and University of Lausanne, Lausanne, 1011, Switzerland
| | - Flora Birch
- Department of oncology UNIL-CHUV, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), 1011, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, 1015, Lausanne, Switzerland
| | - Axel Bellotti
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Mónica Román-Trufero
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Caroline Arber
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
- Department of oncology UNIL-CHUV, Lausanne University Hospital (CHUV), University of Lausanne (UNIL), 1011, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, 1015, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011, Lausanne, Switzerland
- Service of Immuno-oncology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
| | - Holger W Auner
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland
- Faculty of Biology and Medicine, University of Lausanne, 1011, Lausanne, Switzerland
| | - Robert A Mitchell
- Department of Surgery, Division of Immunotherapy, University of Louisville, Louisville, KY, 40202, USA
| | - Olivier Spertini
- Faculty of Biology and Medicine, University of Lausanne, 1011, Lausanne, Switzerland
| | - Tatiana Smirnova
- Service and Central Laboratory of Hematology, Lausanne University Hospital (CHUV), 1011, Lausanne, Switzerland.
| |
Collapse
|
2
|
Yu XH, Wu JB, Fan HY, Dai L, Xian HC, Chen BJ, Liao P, Huang MC, Pang X, Zhang M, Liang XH, Tang YL. Artemisinin suppressed tumour growth and induced vascular normalisation in oral squamous cell carcinoma via inhibition of macrophage migration inhibitory factor. Oral Dis 2024; 30:363-375. [PMID: 36321394 DOI: 10.1111/odi.14418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 09/05/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND Tumour vascular normalisation therapy advocates a balance between pro-angiogenic factors and anti-angiogenic factors in tumours. Artemisinin (ART), which is derived from traditional Chinese medicine, has been shown to inhibit tumour growth; however, the relationship between ART and tumour vascular normalisation in oral squamous cell carcinoma (OSCC) has not been previously reported. METHODS Different concentrations(0 mg/kg, 25 mg/kg, 50 mg/kg, 100 mg/kg)of ART were used to treat the xenograft nude mice model of OSCC. The effects of ART on migration and proliferation of OSCC and human umbilical vein endothelial cells (HUVEC) cells were detected by scratch assay and CCK-8 assay. OSCC cells with macrophage migration inhibitory factor (MIF) silenced were constructed to explore the effect of MIF. RESULTS Treatment with ART inhibited the growth and angiogenesis of OSCC xenografts in nude mice and downregulated vascular endothelial growth factor (VEGF), IL-8, and MIF expression levels. ART reduced the proliferation, migration, and tube formation of HUVEC, as well as the expression of VEGFR1 and VEGFR2. When the dose of ART was 50 mg/kg, vascular normalisation of OSCC xenografts was induced. Moreover, VEGF and IL-8 were needed in rhMIF restoring tumour growth and inhibit vascular normalisation after the addition of rhMIF to ART-treated cells. CONCLUSION Artemisinin might induce vascular normalisation and inhibit tumour growth in OSCC through the MIF-signalling pathway.
Collapse
Affiliation(s)
- Xiang-Hua Yu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Jing-Biao Wu
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
- Department of Stomatology, North Sichuan Medical College, Nanchong, China
| | - Hua-Yang Fan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Li Dai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Hong-Chun Xian
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Bing-Jun Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Peng Liao
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Mei-Chang Huang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Xin Pang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Mei Zhang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Xin-Hua Liang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| | - Ya-Ling Tang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Department of Oral Pathology, West China Hospital of Stomatology (Sichuan University), Chengdu, China
| |
Collapse
|
3
|
Huth S, Huth L, Heise R, Marquardt Y, Lopopolo L, Piecychna M, Boor P, Fingerle-Rowson G, Kapurniotu A, Yazdi AS, Bucala R, Bernhagen J, Baron JM. Macrophage migration inhibitory factor (MIF) and its homolog D-dopachrome tautomerase (D-DT) are significant promotors of UVB- but not chemically induced non-melanoma skin cancer. Sci Rep 2023; 13:11611. [PMID: 37464010 PMCID: PMC10354066 DOI: 10.1038/s41598-023-38748-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/13/2023] [Indexed: 07/20/2023] Open
Abstract
Non-melanoma skin cancer (NMSC) is the most common cancer in Caucasians worldwide. We investigated the pathophysiological role of MIF and its homolog D-DT in UVB- and chemically induced NMSC using Mif-/-, D-dt-/- and Mif-/-/D-dt-/- mice on a hairless SKH1 background. Knockout of both cytokines showed similar attenuating effects on inflammation after acute UVB irradiation and tumor formation during chronic UVB irradiation, without additive protective effects noted in double knockout mice, indicating that both cytokines activate a similar signaling threshold. In contrast, genetic deletion of Mif and D-dt had no major effects on chemically induced skin tumors. To get insight into the contributing mechanisms, we used an in vitro 3D skin model with incorporated macrophages. Application of recombinant MIF and D-DT led to an accumulation of macrophages within the epidermal part that could be reversed by selective inhibitors of MIF and D-DT pathways. In summary, our data indicate that MIF and D-DT contribute to the development and progression of UVB- but not chemically induced NMSC, a role at least partially accounted by effects of both cytokines on epidermal macrophage accumulation. These data highlight that MIF and D-DT are both potential therapeutic targets for the prevention of photocarcinogenesis but not chemical carcinogenesis.
Collapse
Affiliation(s)
- Sebastian Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany.
| | - Laura Huth
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Ruth Heise
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Yvonne Marquardt
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Linda Lopopolo
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Marta Piecychna
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Peter Boor
- Institute of Pathology and Department of Nephrology and Immunology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Günter Fingerle-Rowson
- Department I of Internal Medicine, Center of Integrated Oncology Köln Bonn, University Hospital of Cologne, Cologne, Germany
| | - Aphrodite Kapurniotu
- Division of Peptide Biochemistry, School of Life Sciences, Technical University of Munich (TUM), Freising, Germany
| | - Amir S Yazdi
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| | - Richard Bucala
- Department of Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Jürgen Bernhagen
- Division of Vascular Biology, Institute for Stroke and Dementia Research (ISD), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Jens Malte Baron
- Department of Dermatology and Allergology, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany
| |
Collapse
|
4
|
Jovanović Krivokuća M, Vilotić A, Stefanoska I, Bojić-Trbojević Ž, Vićovac L. Macrophage migration inhibitory factor in human early pregnancy events and association with placental pathologies. Placenta 2021; 116:51-57. [PMID: 33612316 DOI: 10.1016/j.placenta.2021.02.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/12/2021] [Accepted: 02/09/2021] [Indexed: 12/31/2022]
Abstract
Macrophage migration inhibitory factor (MIF) is a versatile cytokine acting as an important regulator of innate and adaptive immunity and implicated in many physiological and pathological processes. It is abundantly expressed at the feto-maternal interface and proposed to have a role in establishing and maintaining a healthy pregnancy. This review presents the current literature data regarding the MIF role in early pregnancy events and its association with some of the placental pathological conditions, including infection, preeclampsia, gestational diabetes mellitus and choriocarcinoma. General information regarding MIF structure and function is followed by an overview of its expression in reproductive tissues and in pregnancy. Futher, we discuss MIF's involvement in the survival of decidual stromal cells, placenta of the first trimester of pregnancy, and in trophoblast cell functions studied in vitro. Current findings associating this cytokine to placental infection, preeclampsia, gestational diabetes mellitus and choriocarcinoma are presented in the final part.
Collapse
Affiliation(s)
- Milica Jovanović Krivokuća
- Department for Biology of Reproduction, Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia.
| | - Aleksandra Vilotić
- Department for Biology of Reproduction, Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia.
| | - Ivana Stefanoska
- Department for Biology of Reproduction, Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia.
| | - Žanka Bojić-Trbojević
- Department for Biology of Reproduction, Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia.
| | - Ljiljana Vićovac
- Department for Biology of Reproduction, Institute for the Application of Nuclear Energy, INEP, University of Belgrade, Banatska 31b, 11080, Belgrade, Serbia.
| |
Collapse
|
5
|
Ding MH, Lozoya EG, Rico RN, Chew SA. The Role of Angiogenesis-Inducing microRNAs in Vascular Tissue Engineering. Tissue Eng Part A 2020; 26:1283-1302. [PMID: 32762306 DOI: 10.1089/ten.tea.2020.0170] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Angiogenesis is an important process in tissue repair and regeneration as blood vessels are integral to supply nutrients to a functioning tissue. In this review, the application of microRNAs (miRNAs) or anti-miRNAs that can induce angiogenesis to aid in blood vessel formation for vascular tissue engineering in ischemic diseases such as peripheral arterial disease and stroke, cardiac diseases, and skin and bone tissue engineering is discussed. Endothelial cells (ECs) form the endothelium of the blood vessel and are recognized as the primary cell type that drives angiogenesis and studied in the applications that were reviewed. Besides ECs, mesenchymal stem cells can also play a pivotal role in these applications, specifically, by secreting growth factors or cytokines for paracrine signaling and/or as constituent cells in the new blood vessel formed. In addition to delivering miRNAs or cells transfected/transduced with miRNAs for angiogenesis and vascular tissue engineering, the utilization of extracellular vesicles (EVs), such as exosomes, microvesicles, and EVs collectively, has been more recently explored. Proangiogenic miRNAs and anti-miRNAs contribute to angiogenesis by targeting the 3'-untranslated region of targets to upregulate proangiogenic factors such as vascular endothelial growth factor (VEGF), basic fibroblast growth factor, and hypoxia-inducible factor-1 and increase the transduction of VEGF signaling through the PI3K/AKT and Ras/Raf/MEK/ERK signaling pathways such as phosphatase and tensin homolog or regulating the signaling of other pathways important for angiogenesis such as the Notch signaling pathway and the pathway to produce nitric oxide. In conclusion, angiogenesis-inducing miRNAs and anti-miRNAs are promising tools for vascular tissue engineering for several applications; however, future work should emphasize optimizing the delivery and usage of these therapies as miRNAs can also be associated with the negative implications of cancer.
Collapse
Affiliation(s)
- May-Hui Ding
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Eloy G Lozoya
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Rene N Rico
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| | - Sue Anne Chew
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Brownsville, Texas, USA
| |
Collapse
|
6
|
Kim BS, Breuer B, Arnke K, Ruhl T, Hofer T, Simons D, Knobe M, Ganse B, Guidi M, Beier JP, Fuchs PC, Pallua N, Bernhagen J, Grieb G. The effect of the macrophage migration inhibitory factor (MIF) on excisional wound healing in vivo. J Plast Surg Hand Surg 2020; 54:137-144. [PMID: 32281469 DOI: 10.1080/2000656x.2019.1710710] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: The macrophage migration inhibitory factor (MIF) has been determined as a cytokine exerting a multitude of effects in inflammation and angiogenesis. Earlier studies have indicated that MIF may also be involved in wound healing and flap surgery. Methods: We investigated the effect of MIF in an excisional wound model in wildtype, Mif-/- and recombinant MIF treated mice. Wound closure rates as well as the macrophage marker Mac-3, the pro-inflammatory cytokine tumor necrosis factor α (TNFα) and the pro-angiogenic factor von Willebrand factor (vWF) were measured. Finally, we used a flap model in Mif-/- and WT mice with an established perfusion gradient to identify MIF's contribution in flap perfusion. Results: In the excision wound model, we found reduced wound healing after MIF injection, whereas Mif deletion improved wound healing. Furthermore, a reduced expression of Mac-3, TNFα and vWF in Mif-/- mice was seen when compared to WT mice. In the flap model, Mif-/- knockout mice showed mitigated flap perfusion with lower hemoglobin content and oxygen saturation as measured by O2C measurements when compared to WT mice. Conclusions: Our data suggest an inhibiting effect of MIF in wound healing with increased inflammation and perfusion. In flaps, by contrast, MIF may contribute to flap vascularization.
Collapse
Affiliation(s)
- Bong-Sung Kim
- Department of Plastic and Reconstructive Surgery, Hand Surgery - Burn Center, RWTH Aachen University Hospital, Aachen, Germany.,Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Benjamin Breuer
- Department of Plastic and Reconstructive Surgery, Hand Surgery - Burn Center, RWTH Aachen University Hospital, Aachen, Germany
| | - Kevin Arnke
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Tim Ruhl
- Department of Plastic and Reconstructive Surgery, Hand Surgery - Burn Center, RWTH Aachen University Hospital, Aachen, Germany
| | - Tanja Hofer
- Department of Plastic and Reconstructive Surgery, Hand Surgery - Burn Center, RWTH Aachen University Hospital, Aachen, Germany
| | - David Simons
- Department of Plastic and Reconstructive Surgery, Hand Surgery - Burn Center, RWTH Aachen University Hospital, Aachen, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias Knobe
- Department of Orthopaedic Trauma, RWTH Aachen University Hospital, Aachen, Germany.,Division of Trauma Surgery, Kantonsspital Luzern, Luzern, Switzerland
| | - Bergita Ganse
- Department of Orthopaedic Trauma, RWTH Aachen University Hospital, Aachen, Germany
| | - Marco Guidi
- Department of Plastic Surgery and Hand Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Justus P Beier
- Department of Plastic and Reconstructive Surgery, Hand Surgery - Burn Center, RWTH Aachen University Hospital, Aachen, Germany
| | - Paul C Fuchs
- Department of Plastic Surgery, Hand Surgery - Burn Center, Cologne-Merheim Medical Center, Witten/Herdecke University, Cologne, Germany
| | - Norbert Pallua
- Department of Plastic and Reconstructive Surgery, Hand Surgery - Burn Center, RWTH Aachen University Hospital, Aachen, Germany.,Aesthetic Elite International - Private Clinic, Düsseldorf, Germany
| | - Jürgen Bernhagen
- Chair of Vascular Biology, Institute for Stroke and Dementia Research (ISD), LMU University Hospital, Ludwig-Maximilians-University (LMU) Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Gerrit Grieb
- Department of Plastic and Reconstructive Surgery, Hand Surgery - Burn Center, RWTH Aachen University Hospital, Aachen, Germany.,Department of Plastic Surgery and Hand Surgery, Gemeinschaftskrankenhaus Havelhoehe, Teaching Hospital of the Charité University, Berlin, Germany
| |
Collapse
|
7
|
Eguchi R, Wakabayashi I. HDGF enhances VEGF‑dependent angiogenesis and FGF‑2 is a VEGF‑independent angiogenic factor in non‑small cell lung cancer. Oncol Rep 2020; 44:14-28. [PMID: 32319650 PMCID: PMC7251661 DOI: 10.3892/or.2020.7580] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 03/04/2020] [Indexed: 12/12/2022] Open
Abstract
Non-small cell lung cancer (NSCLC) accounts for over 80% of all diagnosed lung cancer cases. Lung cancer is the leading cause of cancer-related deaths worldwide. Most NSCLC cells overexpress vascular endothelial growth factor-A (VEGF-A) which plays a pivotal role in tumour angiogenesis. Anti-angiogenic therapies including VEGF-A neutralisation have significantly improved the response rates, progression-free survival and overall survival of patients with NSCLC. However, the median survival of these patients is shorter than 18 months, suggesting that NSCLC cells secrete VEGF-independent angiogenic factors, which remain unknown. We aimed to explore these factors in human NSCLC cell lines, A549, Lu99 and EBC-1 using serum-free culture, to which only EBC-1 cells could adapt. By mass spectrometry, we identified 1,007 proteins in the culture supernatant derived from EBC-1 cells. Among the identified proteins, interleukin-8 (IL-8), macrophage migration inhibitory factor (MIF), galectin-1, midkine (MK), IL-18, galectin-3, VEGF-A, hepatoma-derived growth factor (HDGF), osteopontin (OPN), connective tissue growth factor (CTGF) and granulin (GRN) are known to be involved in angiogenesis. Tube formation, neutralisation and RNA interference assays revealed that VEGF-A and HDGF function as angiogenic factors in EBC-1 cells. To confirm whether VEGF-A and HDGF also regulate angiogenesis in the other NSCLC cell lines, we established a novel culture method. NSCLC cells were embedded in collagen gel and cultured three-dimensionally. Tube formation, neutralisation and RNA interference assays using the three-dimensional (3D) culture supernatant showed that VEGF-A and HDGF were not angiogenic factors in Lu99 cells. By gene microarray in EBC-1 and Lu99 cells, we identified 61 mRNAs expressed only in Lu99 cells. Among these mRNAs, brain-derived neurotrophic factor (BDNF), fibroblast growth factor-2 (FGF-2) and FGF-5 are known to be involved in angiogenesis. Tube formation and neutralisation assays clarified that FGF-2 functions as an angiogenic factor in Lu99 cells. These results indicate that HDGF enhances VEGF-dependent angiogenesis and that FGF-2 is a VEGF-independent angiogenic factor in human NSCLC cells.
Collapse
Affiliation(s)
- Ryoji Eguchi
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| | - Ichiro Wakabayashi
- Department of Environmental and Preventive Medicine, Hyogo College of Medicine, Nishinomiya, Hyogo 663‑8501, Japan
| |
Collapse
|
8
|
Lee VM, Hernandez S, Giang B, Chabot C, Hernandez J, de Bellard ME. Molecular Events Controlling Cessation of Trunk Neural Crest Migration and Onset of Differentiation. Front Cell Dev Biol 2020; 8:199. [PMID: 32318567 PMCID: PMC7147452 DOI: 10.3389/fcell.2020.00199] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 03/09/2020] [Indexed: 12/30/2022] Open
Abstract
Neural crest cells (NCC) migrate extensively in vertebrate embryos to populate diverse derivatives including ganglia of the peripheral nervous system. Little is known about the molecular mechanisms that lead migrating trunk NCC to settle at selected sites in the embryo, ceasing their migration and initiating differentiation programs. To identify candidate genes involved in these processes, we profiled genes up-regulated in purified post-migratory compared with migratory NCC using a staged, macroarrayed cDNA library. A secondary screen of in situ hybridization revealed that many genes are specifically enhanced in neural crest-derived ganglia, including macrophage migration inhibitory factor (MIF), a ligand for CXCR4 receptor. Through in vivo and in vitro assays, we found that MIF functions as a potent chemoattractant for NCC. These results provide a molecular profile of genes expressed concomitant with gangliogenesis, thus, offering new markers and potential regulatory candidates involved in cessation of migration and onset of differentiation.
Collapse
Affiliation(s)
- Vivian M Lee
- Universal Cells Inc., Seattle, WA, United States
| | - Sergio Hernandez
- Biology Department, California State University Northridge, Northridge, CA, United States
| | - Belle Giang
- Moorpark College, Moorpark, CA, United States
| | - Chris Chabot
- Biology Department, California State University Northridge, Northridge, CA, United States
| | | | - Maria Elena de Bellard
- Biology Department, California State University Northridge, Northridge, CA, United States
| |
Collapse
|
9
|
Guda MR, Rashid MA, Asuthkar S, Jalasutram A, Caniglia JL, Tsung AJ, Velpula KK. Pleiotropic role of macrophage migration inhibitory factor in cancer. Am J Cancer Res 2019; 9:2760-2773. [PMID: 31911860 PMCID: PMC6943360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023] Open
Abstract
Macrophage migration inhibitory factor (MIF) is an inflammatory cytokine that serves many roles in inflammation and immunity; however, it is also involved in carcinogenesis. This is a review of the clinical and experimental data published on MIF and its role in various types of cancers such as glioblastomas, lung cancer, breast cancer, gastric cancer, melanoma, bladder cancer, and head and neck cancers. The goal of this review is to show MIFs role in various types of cancers. Data show that MIF is overexpressed in these malignancies in humans, and contributes to the deregulation of the cell cycle, angiogenesis, and metastasis. Clinical studies show that MIF overexpression in these types of tumors significantly decreases survival rate, and increases tumor aggression. There are multiple anti-MIF molecules that are currently being explored and investigations should be continued.
Collapse
Affiliation(s)
- Maheedhara R Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Matthew A Rashid
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Anvesh Jalasutram
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - John L Caniglia
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
| | - Andrew J Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Illinois Neurological InstitutePeoria, IL, USA
| | - Kiran K Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Department of Neurosurgery, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Department of Pediatrics, University of Illinois College of Medicine at PeoriaPeoria, IL, USA
- Department of Microbiology, Yogi Vemana UniversityKadapa, AP, India
| |
Collapse
|
10
|
Suresh V, Sundaram R, Dash P, Sabat SC, Mohapatra D, Mohanty S, Vasudevan D, Senapati S. Macrophage migration inhibitory factor of Syrian golden hamster shares structural and functional similarity with human counterpart and promotes pancreatic cancer. Sci Rep 2019; 9:15507. [PMID: 31664114 PMCID: PMC6820718 DOI: 10.1038/s41598-019-51947-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that increasingly is being studied in cancers and inflammatory diseases. Though murine models have been instrumental in understanding the functional role of MIF in different pathological conditions, the information obtained from these models is biased towards a specific species. In experimental science, results obtained from multiple clinically relevant animal models always provide convincing data that might recapitulate in humans. Syrian golden hamster (Mesocricetus auratus), is a clinically relevant animal model for multiple human diseases. Hence, the major objectives of this study were to characterize the structure and function of Mesocricetus auratus MIF (MaMIF) and finally evaluate its effect on pancreatic tumor growth in vivo. Initially, the recombinant MaMIF was cloned, expressed and purified in a bacterial expression system. The MaMIF primary sequence, biochemical properties, and crystal structure analysis showed greater similarity with human MIF. The crystal structure of MaMIF illustrates that it forms a homotrimer as known in human and mouse. However, MaMIF exhibits some minor structural variations when compared to human and mouse MIF. The in vitro functional studies show that MaMIF has tautomerase activity and enhances activation and migration of hamster peripheral blood mononuclear cells (PBMCs). Interestingly, injection of MaMIF into HapT1 pancreatic tumor-bearing hamsters significantly enhanced the tumor growth and tumor-associated angiogenesis. Together, the current study shows a structural and functional similarity between the hamster and human MIF. Moreover, it has demonstrated that a high level of circulating MIF originating from non-tumor cells might also promote pancreatic tumor growth in vivo.
Collapse
Affiliation(s)
- Voddu Suresh
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Regional Centre for Biotechnology, Faridabad, Haryana, India
| | - Rajivgandhi Sundaram
- Macromolecular Crystallography Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India.,Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Pujarini Dash
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Surendra Chandra Sabat
- Molecular Biology of Abiotic Stress Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Debasish Mohapatra
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India
| | - Sneha Mohanty
- Department of Microbiology, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Dileep Vasudevan
- Macromolecular Crystallography Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| | - Shantibhusan Senapati
- Tumor Microenvironment and Animal Models Lab, Institute of Life Sciences, Bhubaneswar, Odisha, India.
| |
Collapse
|
11
|
Xu F, Shi YH, Chen J. Characterization and immunologic functions of the macrophage migration inhibitory factor from Japanese sea bass, Lateolabrax japonicus. FISH & SHELLFISH IMMUNOLOGY 2019; 86:947-955. [PMID: 30586634 DOI: 10.1016/j.fsi.2018.12.042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/16/2018] [Accepted: 12/21/2018] [Indexed: 06/09/2023]
Abstract
Macrophage migration inhibitory factor (MIF) is a cytokine playing critical roles in inflammatory and immune responses. However, its functions have not been well studied in fish. In this study, we identified a MIF molecule from Japanese sea bass (Lateolabrax japonicus; LjMIF). Multiple sequence alignment showed that LjMIF has the typical structural features of MIFs. Phylogenetic tree analysis revealed that LjMIF is most closely related to the yellowfin tuna (Thunnus albacares), large yellow croaker (Larimichthys crocea), and red drum (Sciaenops ocellatus) homologs. Constitutive mRNA expression of LjMIF was detected in all tested tissues, with the highest level in the liver. Upon Vibro harveyi infection, LjMIF transcripts were altered in the tested tissues, including the liver, spleen, and head kidney. Subsequently, we prepared recombinant LjMIF (rLjMIF) and the corresponding antibody (anti-LjMIF). The in vitro study showed that rLjMIF inhibited the trafficking of Japanese sea bass monocytes/macrophages (MO/MΦ) and lymphocytes, but not of neutrophils, while anti-LjMIF had the opposite effect. rLjMIF also enhanced phagocytosis and intracellular killing of V. harveyi by MO/MΦ, while anti-LjMIF only inhibited phagocytosis by MO/MΦ. The in vivo study showed that rLjMIF aggravated the course of V. harveyi infection in Japanese sea bass, but anti-LjMIF increased the survival rate of the fish and decreased the bacterial burden. In conclusion, our observation revealed that LjMIF is closely involved in the immune responses of Japanese sea bass for combating V. harveyi infection.
Collapse
Affiliation(s)
- Feng Xu
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Yu-Hong Shi
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China
| | - Jiong Chen
- Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Meishan Campus, Ningbo University, Ningbo, 315832, China; Key Laboratory of Applied Marine Biotechnology of Ministry of Education, Meishan Campus, Ningbo University, Ningbo, 315832, China.
| |
Collapse
|
12
|
Zhang C, Ramsey C, Berical A, Yu L, Leng L, McGinnis KA, Song Y, Michael H, McCormack MC, Allore H, Morris A, Crothers K, Bucala R, Lee PJ, Sauler M. A functional macrophage migration inhibitory factor promoter polymorphism is associated with reduced diffusing capacity. Am J Physiol Lung Cell Mol Physiol 2018; 316:L400-L405. [PMID: 30520689 DOI: 10.1152/ajplung.00439.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cigarette smoke exposure is the leading modifiable risk factor for chronic obstructive pulmonary disease (COPD); however, the clinical and pathologic consequences of chronic cigarette smoke exposure are variable among smokers. Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine implicated in the pathogenesis of COPD. Within the promoter of the MIF gene is a functional polymorphism that regulates MIF expression (-794 CATT5-8 microsatellite repeat) ( rs5844572 ). The role of this polymorphim in mediating disease susceptibility to COPD-related traits remains unknown. We performed a cross-sectional analysis of DNA samples from 641 subjects to analyze MIF-794 CATT5-8 ( rs5844572 ) polymorphism by standard methods. We generated multivariable logistic regression models to determine the risk of low expressing MIF alleles for airflow obstruction [defined by forced expiratory volume in 1 s (FEV1)/forced vital capacity ratio <0.70] and an abnormal diffusion capacity [defined by a diffusion capacity for carbon monoxide (DLCO) percent predicted <80%]. We then used generalized linear models to determine the association of MIF genotypes with FEV1 percent predicted and DLCO percent predicted. The MIF-794 CATT5 allele was associated with an abnormal diffusion capacity in two cohorts [odds ratio (OR): 9.31, 95% confidence interval (CI): 1.97-4.06; and OR: 2.21, 95% CI: 1.03-4.75]. Similarly, the MIF-794 CATT5 allele was associated with a reduced DLCO percentage predicted in these two cohorts: 63.5 vs. 70.0 ( P = 0.0023) and 60.1 vs. 65.4 ( P = 0.059). This study suggests an association between a common genetic polymorphism of an endogenous innate immune gene, MIF, with reduced DLCO, an important measurement of COPD severity.
Collapse
Affiliation(s)
- C Zhang
- Department of Medicine Saint Louis University Hospital , Saint Louis, Missouri
| | - C Ramsey
- Yale Center for Medical Informatics, Yale School of Medicine , New Haven, Connecticut
| | - A Berical
- Department of Medicine, Boston University School of Medicine , Boston, Massachusetts
| | - L Yu
- Department of Medicine, Massachusetts General Hospital , Boston, Massachusetts
| | - L Leng
- Department of Medicine, Yale School of Medicine , New Haven, Connecticut
| | - K A McGinnis
- Veterans Affairs Connecticut Healthcare System, West Haven, Connecticut
| | - Y Song
- Department of Medicine, Yale School of Medicine , New Haven, Connecticut
| | - H Michael
- Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - M C McCormack
- Department of Medicine, Johns Hopkins University , Baltimore, Maryland
| | - H Allore
- Department of Medicine, Yale School of Medicine , New Haven, Connecticut
| | - A Morris
- Department of Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - K Crothers
- Department of Medicine, University of Washington School of Medicine , Seattle, Washington
| | - R Bucala
- Department of Medicine, Yale School of Medicine , New Haven, Connecticut
| | - P J Lee
- Department of Medicine, Yale School of Medicine , New Haven, Connecticut
| | - M Sauler
- Department of Medicine, Yale School of Medicine , New Haven, Connecticut
| |
Collapse
|
13
|
Hahne M, Schumann P, Mursell M, Strehl C, Hoff P, Buttgereit F, Gaber T. Unraveling the role of hypoxia-inducible factor (HIF)-1α and HIF-2α in the adaption process of human microvascular endothelial cells (HMEC-1) to hypoxia: Redundant HIF-dependent regulation of macrophage migration inhibitory factor. Microvasc Res 2018; 116:34-44. [DOI: 10.1016/j.mvr.2017.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 09/12/2017] [Accepted: 09/19/2017] [Indexed: 11/26/2022]
|
14
|
Keck M, van Dijk RM, Deeg CA, Kistler K, Walker A, von Rüden EL, Russmann V, Hauck SM, Potschka H. Proteomic profiling of epileptogenesis in a rat model: Focus on cell stress, extracellular matrix and angiogenesis. Neurobiol Dis 2018; 112:119-135. [PMID: 29413716 DOI: 10.1016/j.nbd.2018.01.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 01/11/2018] [Accepted: 01/17/2018] [Indexed: 12/26/2022] Open
Abstract
Information about epileptogenesis-associated changes in protein expression patterns is of particular interest for future selection of target and biomarker candidates. Bioinformatic analysis of proteomic data sets can increase our knowledge about molecular alterations characterizing the different phases of epilepsy development following an initial epileptogenic insult. Here, we report findings from a focused analysis of proteomic data obtained for the hippocampus and parahippocampal cortex samples collected during the early post-insult phase, latency phase, and chronic phase of a rat model of epileptogenesis. The study focused on proteins functionally associated with cell stress, cell death, extracellular matrix (ECM) remodeling, cell-ECM interaction, cell-cell interaction, angiogenesis, and blood-brain barrier function. The analysis revealed prominent pathway enrichment providing information about the complex expression alterations of the respective protein groups. In the hippocampus, the number of differentially expressed proteins declined over time during the course of epileptogenesis. In contrast, a peak in the regulation of proteins linked with cell stress and death as well as ECM and cell-cell interaction became evident at later phases during epileptogenesis in the parahippocampal cortex. The data sets provide valuable information about the time course of protein expression patterns during epileptogenesis for a series of proteins. Moreover, the findings provide comprehensive novel information about expression alterations of proteins that have not been discussed yet in the context of epileptogenesis. These for instance include different members of the lamin protein family as well as the fermitin family member 2 (FERMT2). Induction of FERMT2 and other selected proteins, CD18 (ITGB2), CD44 and Nucleolin were confirmed by immunohistochemistry. Taken together, focused bioinformatic analysis of the proteomic data sets completes our knowledge about molecular alterations linked with cell death and cellular plasticity during epileptogenesis. The analysis provided can guide future selection of target and biomarker candidates.
Collapse
Affiliation(s)
- Michael Keck
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Roelof Maarten van Dijk
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Cornelia A Deeg
- Institute of Animal Physiology, Department of Veterinary Sciences, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Katharina Kistler
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Andreas Walker
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Eva-Lotta von Rüden
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Vera Russmann
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Helmholtz Center Munich, Neuherberg, Germany
| | - Heidrun Potschka
- Institute of Pharmacology, Toxicology & Pharmacy, Ludwig-Maximilians-University (LMU), Munich, Germany.
| |
Collapse
|
15
|
Farooq U, Naz S, Zehra B, Khan A, Ali SA, Ahmed A, Sarwar R, Bukhari SM, Rauf A, Ahmad I, Mabkhot YN. Isolation and characterization of three new anti-proliferative Sesquiterpenes from Polygonum barbatum and their mechanism via apoptotic pathway. BMC Cancer 2017; 17:694. [PMID: 29061136 PMCID: PMC5654143 DOI: 10.1186/s12885-017-3667-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 09/28/2017] [Indexed: 11/23/2022] Open
Abstract
Background The emergence of chemoresistant cancers and toxicity related to existing chemotherapeutic agents, demand the search for new pharmacophore with enhanced anti-cancer activity and least toxicity. For this purpose, three new sesquiterpenes were isolated from ethyl acetate fraction of the aerial parts of the plant Polygonum barbatum and evaluated for their anti-cancer potential. Methods The structural elucidation and characterization of the isolated compounds 1–3 were performed using various spectroscopic techniques such as mass, UV, IR, and extensive 1D/2D–NMR spectroscopy. Furthermore, the compounds 1–3 were subjected to screening of anti-cancer activity against different cell lines followed by brief analysis of apoptotic and anti-angiogenic potentials of the potent hit against non-small cell lung carcinoma cell line. Results All the compounds 1–3 were subjected to anti-proliferative potential against non-small cell lung carcinoma (NCI-H460), breast cancer (MCF-7), cervical cancer (HeLa) and normal mouse fibroblast (NIH-3 T3) cell lines. Among these, compound 3 was found to be more cytotoxic against NCI-H460 and MCF-7 cells (IC50 = 17.86 ± 0.72 and 11.86 ± 0.46 μM respectively). When compared with the standard drug cisplatin compound 3 was found to have more potent activity against NCI-H460 (IC50 = 19 ± 1.24 μM) as compared to MCF-7 cell lines (IC50 = 9.62 ± 0.5 μM). Compound 3 induced apoptosis in NCI-H460 cells in a dose dependent manner. It significantly downregulated, the expression of anti-apoptotic (BCL-2 L1 and p53) and increased the expression of pro-apoptotic (BAK and BAX) genes. Besides apoptosis, it also significantly reduced the cell migration and downregulated the angiogenic genes (i.e. VEGF and COX-2), thereby, inhibiting angiogenesis in NCI-H460 cells. Conclusion Compound 3 possesses potent anti-proliferative potential as well as induced apoptosis and inhibited the cell migration of the cancerous cells by altering the gene expression, responsible for it.
Collapse
Affiliation(s)
- Umar Farooq
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, KPK, 22060, Pakistan.
| | - Sadia Naz
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, KPK, 22060, Pakistan
| | - Binte Zehra
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ajmal Khan
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, KPK, 22060, Pakistan.
| | - Syed Abid Ali
- H.E.J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan
| | - Ayaz Ahmed
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, 75270, Pakistan.
| | - Rizwana Sarwar
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, KPK, 22060, Pakistan
| | - Syed Majid Bukhari
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, KPK, 22060, Pakistan
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Anbar, Khyber Pakhtunkhwa, 23561, Pakistan
| | - Izhar Ahmad
- Department of Botany, Islamia College Peshawar, Peshawar, Pakistan
| | - Yahia Nasser Mabkhot
- Department of Chemistry, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
16
|
Myocardial Expression of Macrophage Migration Inhibitory Factor in Patients with Heart Failure. J Clin Med 2017; 6:jcm6100095. [PMID: 29027966 PMCID: PMC5664010 DOI: 10.3390/jcm6100095] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/26/2017] [Accepted: 10/10/2017] [Indexed: 12/28/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic inflammatory protein and contributes to several different inflammatory and ischemic/hypoxic diseases. MIF was shown to be cardioprotective in experimental myocardial ischemia/reperfusion injury and its expression is regulated by the transcription factor hypoxia-inducible factor (HIF)-1α. We here report on MIF expression in the failing human heart and assess myocardial MIF in different types of cardiomyopathy. Myocardial tissue samples from n = 30 patients were analyzed by quantitative Real-Time PCR. MIF and HIF-1α mRNA expression was analyzed in myocardial samples from patients with ischemic (ICM) and non-ischemic cardiomyopathy (NICM) and from patients after heart transplantation (HTX). MIF expression was elevated in myocardial samples from patients with ICM compared to NICM. Transplanted hearts showed lower MIF levels compared to hearts from patients with ICM. Expression of HIF-1α was analyzed and was shown to be significantly increased in ICM patients compared to patients with NICM. MIF and HIF-1α mRNA is expressed in the human heart. MIF and HIF-1α expression depends on the underlying type of cardiomyopathy. Patients with ICM show increased myocardial MIF and HIF-1α expression.
Collapse
|
17
|
Wang J, Lin J, Kaiser U, Wohlfart P, Hammes HP. Absence of macrophage migration inhibitory factor reduces proliferative retinopathy in a mouse model. Acta Diabetol 2017; 54:383-392. [PMID: 28070752 DOI: 10.1007/s00592-016-0956-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Accepted: 12/19/2016] [Indexed: 01/06/2023]
Abstract
AIMS Ischemia-induced neovascularization is the key feature of proliferative diabetic retinopathy. Macrophage migration inhibitory factor (MIF) is a pleiotropic proinflammatory and proangiogenic cytokine, and its levels are elevated in the vitreous of patients with proliferative diabetic retinopathy. In this study, we aimed at investigating the relative potential of MIF in the ischemia-induced retinal neovascularization. METHODS Both WT and MIF-knockout mice were subjected to the retinopathy of prematurity (ROP) model. Intraretinal vessel regrowth was assessed by whole-mount immunofluorescence, and preretinal neovascularization was analyzed in retinal vertical sections after periodic acid-Schiff staining in the hypoxic stage of the ROP model. Gene expression of selected proangiogenic and proinflammatory factors at postnatal day 13 (p13) was measured by real-time PCR. Vascular endothelial growth factor (VEGF) expression, recruitment of endothelial progenitor cells (EPCs) and microglial activation were analyzed with immunofluorescence. RESULTS MIF deficiency increased areas of vascular obliteration by 49%, reduced sprouting tips by 27% and inhibited preretinal angiogenesis by 35%. VEGF expression was reduced in Müller cells of MIF-knockout mice. MIF absence reduced gene expression of erythropoietin, tumor necrosis factor alpha and intercellular adhesion molecule-1 by 30, 70 and 50%, respectively, decreased the number of retinal EPCs by 37.5% and inhibited microglial activation in the hypoxic condition. CONCLUSIONS In conclusion, we found that MIF has proangiogenic and proinflammatory properties in retinal neovascularization. The proangiogenic role of MIF in ischemia-induced retinal neovascularization is associated with the expression of VEGF and erythropoietin, EPC recruitment and inflammation. Therefore, MIF has a potential role in the pathological angiogenesis of proliferative retinopathy.
Collapse
Affiliation(s)
- Jing Wang
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Jihong Lin
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Ulrike Kaiser
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Paulus Wohlfart
- R&D Diabetes Division, Research and Translational Medicine, Sanofi, Industriepark Höchst, 65926, Frankfurt, Germany
| | - Hans-Peter Hammes
- 5th Medical Department, Medical Faculty Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| |
Collapse
|
18
|
Bloom J, Metz C, Nalawade S, Casabar J, Cheng KF, He M, Sherry B, Coleman T, Forsthuber T, Al-Abed Y. Identification of Iguratimod as an Inhibitor of Macrophage Migration Inhibitory Factor (MIF) with Steroid-sparing Potential. J Biol Chem 2016; 291:26502-26514. [PMID: 27793992 DOI: 10.1074/jbc.m116.743328] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/27/2016] [Indexed: 12/11/2022] Open
Abstract
Macrophage migration inhibitory factor (MIF) is a pleiotropic cytokine that has been implicated in a broad range of inflammatory and oncologic diseases. MIF is unique among cytokines in terms of its release profile and inflammatory role, notably as an endogenous counter-regulator of the anti-inflammatory effects of glucocorticoids. In addition, it exhibits a catalytic tautomerase activity amenable to the design of high affinity small molecule inhibitors. Although several classes of these compounds have been identified, biologic characterization of these molecules remains a topic of active investigation. In this study, we used in vitro LPS-driven assays to characterize representative molecules from several classes of MIF inhibitors. We determined that MIF inhibitors exhibit distinct profiles of anti-inflammatory activity, especially with regard to TNFα. We further investigated a molecule with relatively low anti-inflammatory activity, compound T-614 (also known as the anti-rheumatic drug iguratimod), and found that, in addition to exhibiting selective MIF inhibition in vitro and in vivo, iguratimod also has additive effects with glucocorticoids. Furthermore, we found that iguratimod synergizes with glucocorticoids in attenuating experimental autoimmune encephalitis, a model of multiple sclerosis. Our work identifies iguratimod as a valuable new candidate for drug repurposing to MIF-relevant diseases, including multiple sclerosis.
Collapse
Affiliation(s)
- Joshua Bloom
- From the Hofstra-Northwell School of Medicine, Hempstead, New York 11549, .,the Centers for Molecular Innovation
| | - Christine Metz
- From the Hofstra-Northwell School of Medicine, Hempstead, New York 11549.,Biomedical Sciences, and
| | - Saisha Nalawade
- the Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Julian Casabar
- the Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | | | | | - Barbara Sherry
- From the Hofstra-Northwell School of Medicine, Hempstead, New York 11549.,Immunology and Inflammation, and
| | - Thomas Coleman
- the Office of Technology Transfer, The Feinstein Institute for Medical Research, Manhasset, New York 11030, and
| | - Thomas Forsthuber
- the Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249
| | - Yousef Al-Abed
- From the Hofstra-Northwell School of Medicine, Hempstead, New York 11549, .,the Centers for Molecular Innovation
| |
Collapse
|