1
|
Kollarik S, Bimbiryte D, Sethi A, Dias I, Moreira CG, Noain D. Pharmacological enhancement of slow-wave activity at an early disease stage improves cognition and reduces amyloid pathology in a mouse model of Alzheimer's disease. Front Aging Neurosci 2025; 16:1519225. [PMID: 39831085 PMCID: PMC11739298 DOI: 10.3389/fnagi.2024.1519225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Improving sleep in murine Alzheimer's disease (AD) is associated with reduced brain amyloidosis. However, the window of opportunity for successful sleep-targeted interventions, regarding the reduction in pathological hallmarks and related cognitive performance, remains poorly characterized. Methods Here, we enhanced slow-wave activity (SWA) during sleep via sodium oxybate (SO) oral administration for 2 weeks at early (6 months old) or moderately late (11 months old) disease stages in Tg2576 mice and evaluated resulting neuropathology and behavioral performance. Results We observed that the cognitive performance of 6-month-old Tg2576 mice significantly improved upon SO treatment, whereas no change was observed in 11-month-old mice. Histochemical assessment of amyloid plaques demonstrated that SO-treated 11-month-old Tg2576 mice had significantly less plaque burden than placebo-treated ones, whereas ELISA of insoluble protein fractions from brains of 6-month-old Tg2576 mice indicated lower Aβ-42/Aβ-40 ratio in SO-treated group vs. placebo-treated controls. Discussion Altogether, our results suggest that SWA-dependent reduction in brain amyloidosis leads to alleviated behavioral impairment in Tg2576 mice only if administered early in the disease course, potentially highlighting the key importance of early sleep-based interventions in clinical cohorts.
Collapse
Affiliation(s)
- Sedef Kollarik
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich (ZNZ), Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
| | - Dorita Bimbiryte
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Aakriti Sethi
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Inês Dias
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich (ZNZ), Zurich, Switzerland
- D-HEST, ETHZurich, Zurich, Switzerland
| | - Carlos G. Moreira
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
| | - Daniela Noain
- Department of Neurology, University Hospital of Zurich, Zurich, Switzerland
- Neuroscience Centre Zurich (ZNZ), Zurich, Switzerland
- University of Zurich, Zurich, Switzerland
- University Center of Competence Sleep and Health Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
2
|
Haessler A, Gier S, Jung N, Windbergs M. The Aβ 42:Aβ 40 ratio modulates aggregation in beta-amyloid oligomers and drives metabolic changes and cellular dysfunction. Front Cell Neurosci 2024; 18:1516093. [PMID: 39717390 PMCID: PMC11664223 DOI: 10.3389/fncel.2024.1516093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 11/25/2024] [Indexed: 12/25/2024] Open
Abstract
The pathophysiological role of Aβ42 oligomers in the onset of Alzheimer's disease (AD) is heavily disputed, pivoting research toward investigating mixed oligomers composed of Aβ42 and Aβ40, which is more abundant but less aggregation-prone. This study investigates Aβ42:Aβ40 oligomers in different ratios, examining their adverse effects on endothelial cells, neurons, astroglia, and microglia, as well as in a human blood-brain barrier (BBB) model. Combining label-free Raman microscopy with complementary imaging techniques and biochemical assays, we show the prominent impact of Aβ40 on Aβ42 fibrillation, suggesting an inhibitory effect on aggregation. Mixed oligomers, especially with low proportions of Aβ42, were equally detrimental as pure Aβ42 oligomers regarding cell viability, functionality, and metabolism. They also differentially affected lipid droplet metabolism in BBB-associated microglia, indicating distinct pathophysiological responses. Our findings demonstrate the overarching significance of the Aβ42:Aβ40 ratio in Aβ oligomers, challenging the traditional focus on Aβ42 in AD research.
Collapse
Affiliation(s)
| | | | | | - Maike Windbergs
- Institute of Pharmaceutical Technology, Goethe University Frankfurt, Frankfurt am Main, Germany
| |
Collapse
|
3
|
Perrin F, Sinha P, Mitchell SPC, Sadek M, Maesako M, Berezovska O. Identification of PS1/gamma-secretase and glutamate transporter GLT-1 interaction sites. J Biol Chem 2024; 300:107172. [PMID: 38499151 PMCID: PMC11015137 DOI: 10.1016/j.jbc.2024.107172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 02/02/2024] [Accepted: 03/05/2024] [Indexed: 03/20/2024] Open
Abstract
The recently discovered interaction between Presenilin 1 (PS1), a catalytic subunit of γ-secretase responsible for generating amyloid-β peptides, and GLT-1, a major glutamate transporter in the brain (EAAT2), provides a mechanistic link between these two key factors involved in Alzheimer's disease (AD) pathology. Modulating this interaction can be crucial to understand the consequence of such crosstalk in AD context and beyond. However, the interaction sites between these two proteins are unknown. Herein, we utilized an alanine scanning approach coupled with FRET-based fluorescence lifetime imaging microscopy to identify the interaction sites between PS1 and GLT-1 in their native environment within intact cells. We found that GLT-1 residues at position 276 to 279 (TM5) and PS1 residues at position 249 to 252 (TM6) are crucial for GLT-1-PS1 interaction. These results have been cross validated using AlphaFold Multimer prediction. To further investigate whether this interaction of endogenously expressed GLT-1 and PS1 can be prevented in primary neurons, we designed PS1/GLT-1 cell-permeable peptides (CPPs) targeting the PS1 or GLT-1 binding site. We used HIV TAT domain to allow for cell penetration which was assayed in neurons. First, we assessed the toxicity and penetration of CPPs by confocal microscopy. Next, to ensure the efficiency of CPPs, we monitored the modulation of GLT-1-PS1 interaction in intact neurons by fluorescence lifetime imaging microscopy. We saw significantly less interaction between PS1 and GLT-1 with both CPPs. Our study establishes a new tool to study the functional aspect of GLT-1-PS1 interaction and its relevance in normal physiology and AD models.
Collapse
Affiliation(s)
- Florian Perrin
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Priyanka Sinha
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Shane Patrick Clancy Mitchell
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Michael Sadek
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Masato Maesako
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA
| | - Oksana Berezovska
- MassGeneral Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
| |
Collapse
|
4
|
Perrin F, Sinha P, Mitchell S, Maesako M, Berezovska O. Identification of PS1/gamma-secretase and glutamate transporter GLT-1 interaction sites. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.30.542955. [PMID: 37398024 PMCID: PMC10312500 DOI: 10.1101/2023.05.30.542955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The recently discovered interaction between Presenilin 1 (PS1), a catalytic subunit of γ-secretase responsible for generating amyloid-β (Aβ) peptides, and GLT-1, a major glutamate transporter in the brain (EAAT2) provides a mechanistic link between these two key factors involved in Alzheimer's disease (AD) pathology. Modulating this interaction can be crucial to understand the consequence of such crosstalk in AD context and beyond. However, the interaction sites between these two proteins are unknown. Herein, we utilized an alanine scanning approach coupled with FRET-based fluorescence lifetime imaging microscopy (FLIM) to identify the interaction sites between PS1 and GLT-1 in their native environment within intact cells. We found that GLT-1 residues at position 276 to 279 (TM5) and PS1 residues at position 249 to 252 (TM6) are crucial for GLT-1/PS1 interaction. These results have been cross validated using AlphaFold Multimer prediction. To further investigate whether this interaction of endogenously expressed GLT-1 and PS1 can be prevented in primary neurons, we designed PS1/GLT-1 cell-permeable peptides (CPPs) targeting the PS1 or GLT-1 binding site. We used HIV TAT domain to allow for cell penetration which was assayed in neurons. First, we assessed the toxicity and penetration of CPPs by confocal microscopy. Next, to ensure the efficiency of CPPs, we monitored the modulation of GLT-1/PS1 interaction in intact neurons by FLIM. We saw significantly less interaction between PS1 and GLT-1 with both CPPs. Our study establishes a new tool to study the functional aspect of GLT-1/PS1 interaction and its relevance in normal physiology and AD models.
Collapse
|
5
|
Huang Z. A Function of Amyloid-β in Mediating Activity-Dependent Axon/Synapse Competition May Unify Its Roles in Brain Physiology and Pathology. J Alzheimers Dis 2023; 92:29-57. [PMID: 36710681 PMCID: PMC10023438 DOI: 10.3233/jad-221042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Amyloid-β protein precursor (AβPP) gives rise to amyloid-β (Aβ), a peptide at the center of Alzheimer's disease (AD). AβPP, however, is also an ancient molecule dating back in evolution to some of the earliest forms of metazoans. This suggests a possible ancestral function that may have been obscured by those that evolve later. Based on literature from the functions of Aβ/AβPP in nervous system development, plasticity, and disease, to those of anti-microbial peptides (AMPs) in bacterial competition as well as mechanisms of cell competition uncovered first by Drosophila genetics, I propose that Aβ/AβPP may be part of an ancient mechanism employed in cell competition, which is subsequently co-opted during evolution for the regulation of activity-dependent neural circuit development and plasticity. This hypothesis is supported by foremost the high similarities of Aβ to AMPs, both of which possess unique, opposite (i.e., trophic versus toxic) activities as monomers and oligomers. A large body of data further suggests that the different Aβ oligomeric isoforms may serve as the protective and punishment signals long predicted to mediate activity-dependent axonal/synaptic competition in the developing nervous system and that the imbalance in their opposite regulation of innate immune and glial cells in the brain may ultimately underpin AD pathogenesis. This hypothesis can not only explain the diverse roles observed of Aβ and AβPP family molecules, but also provide a conceptual framework that can unify current hypotheses on AD. Furthermore, it may explain major clinical observations not accounted for and identify approaches for overcoming shortfalls in AD animal modeling.
Collapse
Affiliation(s)
- Zhen Huang
- Departments of Neuroscience and Neurology, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
6
|
Atlante A, Amadoro G, Latina V, Valenti D. Therapeutic Potential of Targeting Mitochondria for Alzheimer's Disease Treatment. J Clin Med 2022; 11:6742. [PMID: 36431219 PMCID: PMC9697019 DOI: 10.3390/jcm11226742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/11/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer's disease (AD), a chronic and progressive neurodegenerative disease, is characterized by memory and cognitive impairment and by the accumulation in the brain of abnormal proteins, more precisely beta-amyloid (β-amyloid or Aβ) and Tau proteins. Studies aimed at researching pharmacological treatments against AD have focused precisely on molecules capable, in one way or another, of preventing/eliminating the accumulations of the aforementioned proteins. Unfortunately, more than 100 years after the discovery of the disease, there is still no effective therapy in modifying the biology behind AD and nipping the disease in the bud. This state of affairs has made neuroscientists suspicious, so much so that for several years the idea has gained ground that AD is not a direct neuropathological consequence taking place downstream of the deposition of the two toxic proteins, but rather a multifactorial disease, including mitochondrial dysfunction as an early event in the pathogenesis of AD, occurring even before clinical symptoms. This is the reason why the search for pharmacological agents capable of normalizing the functioning of these subcellular organelles of vital importance for nerve cells is certainly to be considered a promising approach to the design of effective neuroprotective drugs aimed at preserving this organelle to arrest or delay the progression of the disease. Here, our intent is to provide an updated overview of the mitochondrial alterations related to this disorder and of the therapeutic strategies (both natural and synthetic) targeting mitochondrial dysfunction.
Collapse
Affiliation(s)
- Anna Atlante
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola122/O, 70126 Bari, Italy
| | - Giuseppina Amadoro
- Institute of Translational Pharmacology (IFT)-CNR, Via Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Valentina Latina
- European Brain Research Institute (EBRI), Viale Regina Elena 295, 00161 Rome, Italy
| | - Daniela Valenti
- Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM)-CNR, Via G. Amendola122/O, 70126 Bari, Italy
| |
Collapse
|
7
|
El Ganainy SO, Cijsouw T, Ali MA, Schoch S, Hanafy AS. Stereotaxic-assisted gene therapy in Alzheimer's and Parkinson's diseases: therapeutic potentials and clinical frontiers. Expert Rev Neurother 2022; 22:319-335. [PMID: 35319338 DOI: 10.1080/14737175.2022.2056446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Alzheimer's disease (AD) and Parkinson's disease (PD) are neurodegenerative disorders causing cognitive deficits and motor difficulties in the elderly. Conventional treatments are mainly symptomatic with little ability to halt disease progression. Gene therapies to correct or silence genetic mutations predisposing to AD or PD are currently being developed in preclinical studies and clinical trials, relying mostly on systemic delivery, which reduces their effectiveness. Imaging-guided stereotaxic procedures are used to locally deliver therapeutic cargos to well-defined brain sites, hence raising the question whether stereotaxic-assisted gene therapy has therapeutic potentials. AREAS COVERED The authors summarize the studies that investigated the use of gene therapy in PD and AD in animal and clinical studies over the past five years, with a special emphasis on the combinatorial potential with stereotaxic delivery. The advantages, limitations and futuristic challenges of this technique are discussed. EXPERT OPINION Robotic stereotaxis combined with intraoperative imaging has revolutionized brain surgeries. While gene therapies are bringing huge innovations to the medical field and new hope to AD and PD patients and medical professionals, the efficient and targeted delivery of such therapies is a bottleneck. We propose that careful application of stereotaxic delivery of gene therapies can improve PD and AD management. [Figure: see text].
Collapse
Affiliation(s)
- Samar O El Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Tony Cijsouw
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | - Mennatallah A Ali
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Susanne Schoch
- Institute of Neuropathology, Section for Translational Epilepsy Research, Medical Faculty, University of Bonn, Bonn, Germany
| | | |
Collapse
|
8
|
Kondo T, Hara N, Koyama S, Yada Y, Tsukita K, Nagahashi A, Ikeuchi T, Ishii K, Asada T, Arai T, Yamada R, Inoue H. Dissection of the polygenic architecture of neuronal Aβ production using a large sample of individual iPSC lines derived from Alzheimer's disease patients. NATURE AGING 2022; 2:125-139. [PMID: 37117761 DOI: 10.1038/s43587-021-00158-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 11/23/2021] [Indexed: 04/30/2023]
Abstract
Genome-wide association studies have demonstrated that polygenic risks shape Alzheimer's disease (AD). To elucidate the polygenic architecture of AD phenotypes at a cellular level, we established induced pluripotent stem cells from 102 patients with AD, differentiated them into cortical neurons and conducted a genome-wide analysis of the neuronal production of amyloid β (Aβ). Using such a cellular dissection of polygenicity (CDiP) approach, we identified 24 significant genome-wide loci associated with alterations in Aβ production, including some loci not previously associated with AD, and confirmed the influence of some of the corresponding genes on Aβ levels by the use of small interfering RNA. CDiP genotype sets improved the predictions of amyloid positivity in the brains and cerebrospinal fluid of patients in the Alzheimer's Disease Neuroimaging Initiative (ADNI) cohort. Secondary analyses of exome sequencing data from the Japanese ADNI and the ADNI cohorts focused on the 24 CDiP-derived loci associated with alterations in Aβ led to the identification of rare AD variants in KCNMA1.
Collapse
Affiliation(s)
- Takayuki Kondo
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
| | - Norikazu Hara
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Satoshi Koyama
- Unit of Statistical Genetics, Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yuichiro Yada
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
| | - Kayoko Tsukita
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan
| | - Ayako Nagahashi
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Ishii
- Research Team for Neuroimaging, Tokyo Metropolitan Institute of Gerontology, Tokyo, Japan
| | - Takashi Asada
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Tetsuaki Arai
- Department of Psychiatry, Division of Clinical Medicine, Faculty of Medicine, University of Tsukuba, Ibaraki, Japan
| | - Ryo Yamada
- Unit of Statistical Genetics, Center for Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruhisa Inoue
- Medical-risk Avoidance based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project (AIP), Kyoto, Japan.
- Center for iPS Cell Research and Application (CiRA), Kyoto University, Kyoto, Japan.
- iPSC-based Drug Discovery and Development Team, RIKEN BioResource Research Center (BRC), Kyoto, Japan.
- Institute for Advancement of Clinical and Translational Science (iACT), Kyoto University Hospital, Kyoto, Japan.
| |
Collapse
|
9
|
Michno W, Blennow K, Zetterberg H, Brinkmalm G. Refining the amyloid β peptide and oligomer fingerprint ambiguities in Alzheimer's disease: Mass spectrometric molecular characterization in brain, cerebrospinal fluid, blood, and plasma. J Neurochem 2021; 159:234-257. [PMID: 34245565 DOI: 10.1111/jnc.15466] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 06/11/2021] [Accepted: 07/06/2021] [Indexed: 01/05/2023]
Abstract
Since its discovery, amyloid-β (Aβ) has been the principal target of investigation of in Alzheimer's disease (AD). Over the years however, no clear correlation was found between the Aβ plaque burden and location, and AD-associated neurodegeneration and cognitive decline. Instead, diagnostic potential of specific Aβ peptides and/or their ratio, was established. For instance, a selective reduction in the concentration of the aggregation-prone 42 amino acid-long Aβ peptide (Aβ42) in cerebrospinal fluid (CSF) was put forward as reflective of Aβ peptide aggregation in the brain. With time, Aβ oligomers-the proposed toxic Aβ intermediates-have emerged as potential drivers of synaptic dysfunction and neurodegeneration in the disease process. Oligomers are commonly agreed upon to come in different shapes and sizes, and are very poorly characterized when it comes to their composition and their "toxic" properties. The concept of structural polymorphism-a diversity in conformational organization of amyloid aggregates-that depends on the Aβ peptide backbone, makes the characterization of Aβ aggregates and their role in AD progression challenging. In this review, we revisit the history of Aβ discovery and initial characterization and highlight the crucial role mass spectrometry (MS) has played in this process. We critically review the common knowledge gaps in the molecular identity of the Aβ peptide, and how MS is aiding the characterization of higher order Aβ assemblies. Finally, we go on to present recent advances in MS approaches for characterization of Aβ as single peptides and oligomers, and convey our optimism, as to how MS holds a promise for paving the way for progress toward a more comprehensive understanding of Aβ in AD research.
Collapse
Affiliation(s)
- Wojciech Michno
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK.,Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Kaj Blennow
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden.,Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK.,UK Dementia Research Institute at UCL, London, UK
| | - Gunnar Brinkmalm
- Institute of Neuroscience and Physiology, Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
10
|
Elsworthy RJ, King MC, Grainger A, Fisher E, Crowe JA, Alqattan S, Ludlam A, Hill DEJ, Aldred S. Amyloid-β precursor protein processing and oxidative stress are altered in human iPSC-derived neuron and astrocyte co-cultures carrying presenillin-1 gene mutations following spontaneous differentiation. Mol Cell Neurosci 2021; 114:103631. [PMID: 34022327 DOI: 10.1016/j.mcn.2021.103631] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/15/2021] [Indexed: 11/28/2022] Open
Abstract
INTRODUCTION Presenilin-1 (PSEN1) gene mutations are the most common cause of familial Alzheimer's disease (fAD) and are known to interfere with activity of the membrane imbedded γ-secretase complex. PSEN1 mutations have been shown to shift Amyloid-β precursor protein (AβPP) processing toward amyloid-β (Aβ) 1-42 production. However, less is known about whether PSEN1 mutations may alter the activity of enzymes such as ADAM10, involved with non-amyloidogenic AβPP processing, and markers of oxidative stress. MATERIALS AND METHODS Control and PSEN1 mutation (L286V and R278I) Human Neural Stem Cells were spontaneously differentiated into neuron and astrocyte co-cultures. Cell lysates and culture media were collected and stored at -80 °C until further analysis. ADAM10 protein expression, the ratio of AβPP forms and Aβ1-42/40 were assessed. In addition, cellular redox status was quantified. RESULTS The ratio of AβPP isoforms (130:110kDa) was significantly reduced in neuron and astrocyte co-cultures carrying PSEN1 gene mutations compared to control, and mature ADAM10 expression was lower in these cells. sAβPP-α was also significantly reduced in L286V mutation, but not in the R278I mutation cells. Both Aβ1-40 and Aβ1-42 were increased in conditioned cell media from L286V cells, however, this was not matched in R278I cells. The Aβ1-42:40 ratio was significantly elevated in R278I cells. Markers of protein carbonylation and lipid peroxidation were altered in both l286V and R278I mutations. Antioxidant status was significantly lower in R278I cells compared to control cells. CONCLUSIONS This data provides evidence that the PSEN1 mutations L286V and R278I significantly alter protein expression associated with AβPP processing and cellular redox status. In addition, this study highlights the potential for iPSC-derived neuron and astrocyte co-cultures to be used as an early human model of fAD.
Collapse
Affiliation(s)
- Richard J Elsworthy
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK; Centre for Human Brain Health (CHBH), University of Birmingham, Edgbaston, Birmingham, UK
| | - Marianne C King
- Aston Research Centre for Healthy Ageing (ARCHA), School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Alastair Grainger
- Aston Research Centre for Healthy Ageing (ARCHA), School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Emily Fisher
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - James A Crowe
- Aston Research Centre for Healthy Ageing (ARCHA), School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Sarah Alqattan
- Aston Research Centre for Healthy Ageing (ARCHA), School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Adele Ludlam
- Aston Research Centre for Healthy Ageing (ARCHA), School of Life and Health Sciences, Aston University, Birmingham, UK
| | - Dr Eric J Hill
- Aston Research Centre for Healthy Ageing (ARCHA), School of Life and Health Sciences, Aston University, Birmingham, UK.
| | - Sarah Aldred
- School of Sport, Exercise and Rehabilitation Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK; Centre for Human Brain Health (CHBH), University of Birmingham, Edgbaston, Birmingham, UK.
| |
Collapse
|
11
|
|
12
|
Scremin E, Agostini M, Leparulo A, Pozzan T, Greotti E, Fasolato C. ORAI2 Down-Regulation Potentiates SOCE and Decreases Aβ42 Accumulation in Human Neuroglioma Cells. Int J Mol Sci 2020; 21:ijms21155288. [PMID: 32722509 PMCID: PMC7432374 DOI: 10.3390/ijms21155288] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/23/2020] [Accepted: 07/23/2020] [Indexed: 12/18/2022] Open
Abstract
Senile plaques, the hallmarks of Alzheimer's Disease (AD), are generated by the deposition of amyloid-beta (Aβ), the proteolytic product of amyloid precursor protein (APP), by β and γ-secretase. A large body of evidence points towards a role for Ca2+ imbalances in the pathophysiology of both sporadic and familial forms of AD (FAD). A reduction in store-operated Ca2+ entry (SOCE) is shared by numerous FAD-linked mutations, and SOCE is involved in Aβ accumulation in different model cells. In neurons, both the role and components of SOCE remain quite obscure, whereas in astrocytes, SOCE controls their Ca2+-based excitability and communication to neurons. Glial cells are also directly involved in Aβ production and clearance. Here, we focus on the role of ORAI2, a key SOCE component, in modulating SOCE in the human neuroglioma cell line H4. We show that ORAI2 overexpression reduces both SOCE level and stores Ca2+ content, while ORAI2 downregulation significantly increases SOCE amplitude without affecting store Ca2+ handling. In Aβ-secreting H4-APPswe cells, SOCE inhibition by BTP2 and SOCE augmentation by ORAI2 downregulation respectively increases and decreases Aβ42 accumulation. Based on these findings, we suggest ORAI2 downregulation as a potential tool to rescue defective SOCE in AD, while preventing plaque formation.
Collapse
Affiliation(s)
- Elena Scremin
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
| | - Mario Agostini
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
| | - Alessandro Leparulo
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
| | - Tullio Pozzan
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
- Neuroscience Institute—Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
- Venetian Institute of Molecular Medicine (VIMM), Via G. Orus 2B, 35129 Padua, Italy
| | - Elisa Greotti
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
- Neuroscience Institute—Italian National Research Council (CNR), Via U. Bassi 58/B, 35131 Padua, Italy
- Correspondence: (E.G.); (C.F.)
| | - Cristina Fasolato
- Department of Biomedical Sciences, University of Padua, Via U. Bassi 58/B, 35131 Padua, Italy; (E.S.); (M.A.); (A.L.); (T.P.)
- Correspondence: (E.G.); (C.F.)
| |
Collapse
|
13
|
Presenilin 1 increases association with synaptotagmin 1 during normal aging. Neurobiol Aging 2019; 86:156-161. [PMID: 31864759 PMCID: PMC7325863 DOI: 10.1016/j.neurobiolaging.2019.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/10/2019] [Accepted: 10/10/2019] [Indexed: 12/05/2022]
Abstract
Presenilin 1 (PS1), the catalytic component of gamma secretase, associates with synaptotagmin 1 (Syt-1). This interaction is decreased in the brains of patients with sporadic Alzheimer’s disease. However, it remains unclear how this interaction changes during normal aging. Because aging is a risk factor for Alzheimer’s disease, we sought to identify changes in PS1 and Syt-1 association during aging in primary neurons in vitro and mouse brain sections ex vivo. We also tested the effect of aging on the calcium dependence of the interaction by treating neurons aged in vitro with KCl. We found that PS1 and Syt-1 increase their association with age, an effect that is more robust in neuronal processes than cell bodies. Treatment with KCl triggered the interaction in both young and old neurons. Baseline calcium levels and calcium in ux in response to KCl treatment were significantly higher in older neurons, which can partially explain the increase in PS1/Syt-1 binding with age. These results suggest a compensatory mechanism during normal aging to offset detrimental age-associated effects.
Collapse
|
14
|
Molecular dynamics of C99-bound γ-secretase reveal two binding modes with distinct compactness, stability, and active-site retention: implications for Aβ production. Biochem J 2019; 476:1173-1189. [PMID: 30910800 DOI: 10.1042/bcj20190023] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 03/20/2019] [Accepted: 03/22/2019] [Indexed: 12/11/2022]
Abstract
The membrane protease γ-secretase cleaves the C99 fragment of the amyloid precursor protein, thus producing the Aβ peptides central to Alzheimer's disease. Cryo-electron microscopy has provided the topology but misses the membrane and loop parts that contribute to substrate binding. We report here an essentially complete atomic model of C99 within wild-type γ-secretase that respects all the experimental constraints and additionally describes loop, helix, and C99 substrate dynamics in a realistic all-atom membrane. Our model represents the matured auto-cleaved state required for catalysis. From two independent 500-ns molecular dynamic simulations, we identify two conformation states of C99 in equilibrium, a compact and a loose state. Our simulations provide a basis for C99 processing and Aβ formation and explain the production of longer and shorter Aβ, as the compact state retains C99 for longer and thus probably trims to shorter Aβ peptides. We expect pathogenic presenilin mutations to stabilize the loose over the compact state. The simulations detail the role of the Lys53-Lys54-Lys55 anchor for C99 binding, a loss of helicity of bound C99, and positioning of Thr48 and Leu49 leading to alternative trimming pathways on opposite sides of the C99 helix in three amino acid steps. The C99 binding topology resembles that of C83-bound γ-secretase without membrane but lacks a presenilin 1-C99 β-sheet, which could be induced by C83's stronger binding. The loose state should be selectively disfavored by γ-secretase modulators to increase C99 trimming and reduce the formation of longer Aβ, a strategy that is currently much explored but has lacked a structural basis.
Collapse
|
15
|
Tang N, Kepp KP. Aβ42/Aβ40 Ratios of Presenilin 1 Mutations Correlate with Clinical Onset of Alzheimer’s Disease. J Alzheimers Dis 2018; 66:939-945. [DOI: 10.3233/jad-180829] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Ning Tang
- Technical University of Denmark, DTU Chemistry, Kgs. Lyngby, Denmark
| | - Kasper P. Kepp
- Technical University of Denmark, DTU Chemistry, Kgs. Lyngby, Denmark
| |
Collapse
|
16
|
Novel interaction between Alzheimer's disease-related protein presenilin 1 and glutamate transporter 1. Sci Rep 2018; 8:8718. [PMID: 29880815 PMCID: PMC5992168 DOI: 10.1038/s41598-018-26888-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 05/18/2018] [Indexed: 12/28/2022] Open
Abstract
Neuronal hyperactivity is one of the earliest events observed in Alzheimer’s disease (AD). Moreover, alterations in the expression of glutamate transporters have been reported to exacerbate amyloid pathology and cognitive deficits in transgenic AD mouse models. However, the molecular links between these pathophysiological changes remain largely unknown. Here, we report novel interaction between presenilin 1 (PS1), the catalytic component of the amyloid precursor protein-processing enzyme, γ-secretase, and a major glutamate transporter-1 (GLT-1). Our data demonstrate that the interaction occurs between PS1 and GLT-1 expressed at their endogenous levels in vivo and in vitro, takes place in both neurons and astrocytes, and is independent of the PS1 autoproteolysis and γ-secretase activity. This intriguing discovery may shed light on the molecular crosstalk between the proteins linked to the maintenance of glutamate homeostasis and Aβ pathology.
Collapse
|
17
|
Somavarapu AK, Kepp KP. Membrane Dynamics of γ-Secretase Provides a Molecular Basis for β-Amyloid Binding and Processing. ACS Chem Neurosci 2017; 8:2424-2436. [PMID: 28841371 DOI: 10.1021/acschemneuro.7b00208] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
γ-Secretase produces β-amyloid (Aβ) within its presenilin (PS1) subunit, mutations in which cause Alzheimer's disease, and current therapies thus seek to modulate its activity. While the general structure is known from recent electron microscopy studies, direct loop and membrane interactions and explicit dynamics relevant to substrate processing remain unknown. We report a modeled structure utilizing the optimal multitemplate information available, including loops and missing side chains, account of maturation cleavage, and explicit all-atom molecular dynamics in the membrane. We observe three distinct conformations of γ-secretase (open, semiopen, and closed) that remarkably differ by tilting of helices 2 and 3 of PS1, directly controlling active site availability. The large hydrophilic loop of PS1 where maturation occurs reveals a new helix segment that parallels the likely helix character of other substrates. The semiopen conformation consistently shows the best fit of Aβ peptides, that is, longer residence before release and by inference more trimming. In contrast, the closed, hydrophobic conformation is largely inactive and the open conformation is active but provides fewer optimal interactions and induces shorter residence time and by inference releases Aβ peptides of longer lengths. Our simulations thus provide a molecular basis for substrate processing and changes in the Aβ42/Aβ40 ratio. Accordingly, selective binding to protect the semiopen "innocent" conformation provides a molecular recipe for effective γ-secretase modulators; we provide the full atomic structures for these states that may play a key role in developing selective γ-secretase modulators for treatment of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Kasper P. Kepp
- Technical University of Denmark, DTU Chemistry, DK-2800 Kongens Lyngby, Denmark
| |
Collapse
|
18
|
Dynamic Nature of presenilin1/γ-Secretase: Implication for Alzheimer's Disease Pathogenesis. Mol Neurobiol 2017; 55:2275-2284. [PMID: 28332150 DOI: 10.1007/s12035-017-0487-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 03/12/2017] [Indexed: 12/27/2022]
Abstract
Presenilin 1 (PS1) is a catalytic component of the γ-secretase complex, responsible for the intramembraneous cleavage of more than 90 type I transmembrane proteins, including Alzheimer's disease (AD)-related amyloid precursor protein (APP). The γ-secretase-mediated cleavage of the APP C-terminal membrane stub leads to the production of various amyloid β (Aβ) species. The assembly of Aβ into neurotoxic oligomers, which causes synaptic dysfunction and neurodegeneration, is influenced by the relative ratio of the longer (Aβ42/43) to shorter Aβ (Aβ40) peptides. The ratio of Aβ42 to Aβ40 depends on the conformation and activity of the PS1/γ-secretase enzymatic complex. The latter exists in a dynamic equilibrium of the so called "closed" and "open" conformational states, as determined by the Förster resonance energy transfer (FRET)-based PS1 conformation assay. Here we review several factors that can allosterically influence conformational status of the enzyme, and hence the production of Aβ peptides. These include genetic variations in PS1, APP and other γ-secretase components, environmental stressors implicated in AD pathogenesis and pharmacological agents. Since "closed" PS1 conformation is the common outcome of many AD-related insults, the novel assays monitoring PS1 conformation in live/intact cells in vivo and in vitro might be utilized for diagnostic purposes and for validation of the potential therapeutic approaches.
Collapse
|
19
|
Zoltowska KM, Maesako M, Lushnikova I, Takeda S, Keller LJ, Skibo G, Hyman BT, Berezovska O. Dynamic presenilin 1 and synaptotagmin 1 interaction modulates exocytosis and amyloid β production. Mol Neurodegener 2017; 12:15. [PMID: 28193235 PMCID: PMC5307796 DOI: 10.1186/s13024-017-0159-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 02/09/2017] [Indexed: 01/09/2023] Open
Abstract
Background Alzheimer’s disease (AD)-linked protein, presenilin 1 (PS1), is present at the synapse, and the knock-out of presenilin in mice leads to synaptic dysfunction. On the other hand, synaptic activity was shown to influence PS1-dependent generation of distinct amyloid β (Aβ) species. However, the precise nature of these regulations remains unclear. The current study reveals novel role of PS1 at the synapse, and deciphers how PS1 and synaptic vesicle-associated protein, synaptotagmin 1 (Syt1) modulate each other functions in neurons via direct activity-triggered interaction. Additionally, the therapeutic potential of fostering PS1-Syt1 binding is investigated as a synapse-specific strategy for AD prevention. Methods PS1-based cell-permeable peptide targeting PS1-Syt1 binding site was designed to inhibit PS1-Syt1 interaction in neurons. PS1 conformation, synaptic vesicle exocytosis and trafficking were assayed by fluorescence lifetime imaging microscopy (FLIM), glutamate release/synaptopHluorin assay, and fluorescence recovery after photobleaching, respectively. Syt1 level and interaction with PS1 in control and sporadic AD brains were determined by immunohistochemistry and FLIM. AAV-mediated delivery of Syt1 into mouse hippocampi was used to investigate the therapeutic potential of strengthening PS1-Syt1 binding in vivo. Statistical significance was determined using two-tailed unpaired Student’s t-test, Mann-Whitney’s U-test or two-way ANOVA followed by a Bonferroni’s post-test. Results We demonstrate that targeted inhibition of the PS1-Syt1 binding in neurons, without changing the proteins’ expression level, triggers “pathogenic” conformational shift of PS1, and consequent increase in the Aβ42/40 ratio. Moreover, our data indicate that PS1, by binding directly to Syt1, regulates synaptic vesicle trafficking and facilitates exocytosis and neurotransmitter release. Analysis of human brain tissue revealed that not only Syt1 levels but also interactions between remaining Syt1 and PS1 are diminished in sporadic AD. On the other hand, overexpression of Syt1 in mouse hippocampi was found to potentiate PS1-Syt1 binding and promote “protective” PS1 conformation. Conclusions The study reports novel functions of PS1 and Syt1 at the synapse, and demonstrates the importance of PS1-Syt1 binding for exocytosis and safeguarding PS1 conformation. It suggests that reduction in the Syt1 level and PS1-Syt1 interactions in AD brain may present molecular underpinning of the pathogenic PS1 conformation, increased Aβ42/40 ratio, and impaired exocytosis. Electronic supplementary material The online version of this article (doi:10.1186/s13024-017-0159-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katarzyna Marta Zoltowska
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA
| | - Masato Maesako
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA
| | - Iryna Lushnikova
- Department of Cytology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Street, 01024, Kyiv, Ukraine
| | - Shuko Takeda
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA
| | - Laura J Keller
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA
| | - Galina Skibo
- Department of Cytology, Bogomoletz Institute of Physiology, National Academy of Sciences of Ukraine, 4 Bogomoletz Street, 01024, Kyiv, Ukraine
| | - Bradley T Hyman
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA
| | - Oksana Berezovska
- Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, 114 16th Street, Rm. 2006, 02129, Charlestown, MA, USA.
| |
Collapse
|
20
|
Maesako M, Horlacher J, Zoltowska KM, Kastanenka KV, Kara E, Svirsky S, Keller LJ, Li X, Hyman BT, Bacskai BJ, Berezovska O. Pathogenic PS1 phosphorylation at Ser367. eLife 2017; 6. [PMID: 28132667 PMCID: PMC5279945 DOI: 10.7554/elife.19720] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2016] [Accepted: 01/05/2017] [Indexed: 11/13/2022] Open
Abstract
The high levels of serine (S) and threonine (T) residues within the Presenilin 1 (PS1) N-terminus and in the large hydrophilic loop region suggest that the enzymatic function of PS1/γ-secretase can be modulated by its ‘phosphorylated’ and ‘dephosphorylated’ states. However, the functional outcome of PS1 phosphorylation and its significance for Alzheimer’s disease (AD) pathogenesis is poorly understood. Here, comprehensive analysis using FRET-based imaging reveals that activity-driven and Protein Kinase A-mediated PS1 phosphorylation at three domains (domain 1: T74, domain 2: S310 and S313, domain 3: S365, S366, and S367), with S367 being critical, is responsible for the PS1 pathogenic ‘closed’ conformation, and resulting increase in the Aβ42/40 ratio. Moreover, we have established novel imaging assays for monitoring PS1 conformation in vivo, and report that PS1 phosphorylation induces the pathogenic conformational shift in the living mouse brain. These phosphorylation sites represent potential new targets for AD treatment. DOI:http://dx.doi.org/10.7554/eLife.19720.001 Alzheimer’s disease is a widely recognised disorder caused by the progressive deterioration and death of brain cells. A key feature of the disease is the formation of structures called plaques in the brain. Plaques occur when many copies of a molecule known as amyloid beta stick together outside of the brain cells. Healthy brains also produce amyloid beta but it is in a different form, which cannot form plaques. One in twenty people with Alzheimer’s disease have a family history of the disease. Of these, many are linked to changes in a gene that produces a protein called Presenilin 1 (or PS1 for short). Cells need PS1 to make amyloid beta and the altered versions of PS1 produce the type of amyloid beta that causes Alzheimer’s disease. Yet, in cases that do not run in families, the gene for PS1 is unchanged but the PS1 protein still produces the form of amyloid beta that is linked to Alzheimer’s disease. Maesako, Horlacher et al. wanted to find out how seemingly healthy PS1 proteins can be made to produce plaque-forming amyloid betas. Studies of PS1 from mice revealed that small chemical modifications, called phosphate groups, could be attached to PS1 in a process called phosphorylation. Modified PS1 proteins produce harmful amyloid betas and removing the modifications was enough to make PS1 behave normally again. Maesako, Horlacher et al. found three points in the PS1 protein where phosphorylation could change the behaviour of the protein, the most important one is a site called Ser367. Further investigation showed that an enzyme called Protein Kinase A (PKA) phosphorylates PS1; this enzyme is also able to attach phosphate groups to many different proteins. Maesako, Horlacher et al. went on to show that PS1 is phosphorylated in samples from people with Alzheimer’s disease, suggesting that this is a plausible cause for some cases of the disease. Finding a way to prevent phosphorylation or remove phosphate groups from PS1 could be the first step towards treating these cases of Alzheimer’s disease. DOI:http://dx.doi.org/10.7554/eLife.19720.002
Collapse
Affiliation(s)
- Masato Maesako
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Jana Horlacher
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States.,Department of Neurology, University of Ulm, Ulm, Germany
| | - Katarzyna M Zoltowska
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Ksenia V Kastanenka
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Eleanna Kara
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Sarah Svirsky
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Laura J Keller
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Xuejing Li
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Bradley T Hyman
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Brian J Bacskai
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| | - Oksana Berezovska
- Alzheimer's Disease Research Laboratory, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Harvard Medical School, Charlestown, United States
| |
Collapse
|