1
|
Jiang SN, Cao JW, Liu LY, Zhou Y, Shan GY, Fu YH, Shao YC, Yu YC. Sncg, Mybpc1, and Parm1 Classify subpopulations of VIP-expressing interneurons in layers 2/3 of the somatosensory cortex. Cereb Cortex 2022; 33:4293-4304. [PMID: 36030380 DOI: 10.1093/cercor/bhac343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 08/04/2022] [Accepted: 08/05/2022] [Indexed: 11/13/2022] Open
Abstract
Neocortical vasoactive intestinal polypeptide-expressing (VIP+) interneurons display highly diverse morpho-electrophysiological and molecular properties. To begin to understand the function of VIP+ interneurons in cortical circuits, they must be clearly and comprehensively classified into distinct subpopulations based on specific molecular markers. Here, we utilized patch-clamp RT-PCR (Patch-PCR) to simultaneously obtain the morpho-electric properties and mRNA profiles of 155 VIP+ interneurons in layers 2 and 3 (L2/3) of the mouse somatosensory cortex. Using an unsupervised clustering method, we identified 3 electrophysiological types (E-types) and 2 morphological types (M-types) of VIP+ interneurons. Joint clustering based on the combined electrophysiological and morphological features resulted in 3 morpho-electric types (ME-types). More importantly, we found these 3 ME-types expressed distinct marker genes: ~94% of Sncg+ cells were ME-type 1, 100% of Mybpc1+ cells were ME-type 2, and ~78% of Parm1+ were ME-type 3. By clarifying the properties of subpopulations of cortical L2/3 VIP+ interneurons, this study establishes a basis for future investigations aiming to elucidate their physiological roles.
Collapse
Affiliation(s)
- Shao-Na Jiang
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Dong'an Rold 131, Shanghai 200032, China
| | - Jun-Wei Cao
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Dong'an Rold 131, Shanghai 200032, China
| | - Lin-Yun Liu
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Dong'an Rold 131, Shanghai 200032, China
| | - Ying Zhou
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Dong'an Rold 131, Shanghai 200032, China
| | - Guang-Yao Shan
- School of Clinical Medicine, Fudan University, Dong'an Road 131, Shanghai 200032, China
| | - Ying-Hui Fu
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Dong'an Rold 131, Shanghai 200032, China
| | - Yun-Chao Shao
- Orthopaedic Department of Zhongshan Hospital, Fudan University, Fenglin Road 180, Shanghai 200032, China
| | - Yong-Chun Yu
- Jing'an District Central Hospital of Shanghai, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Dong'an Rold 131, Shanghai 200032, China
| |
Collapse
|
2
|
Speigel IA, Hemmings Jr. HC. Relevance of Cortical and Hippocampal Interneuron Functional Diversity to General Anesthetic Mechanisms: A Narrative Review. Front Synaptic Neurosci 2022; 13:812905. [PMID: 35153712 PMCID: PMC8825374 DOI: 10.3389/fnsyn.2021.812905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/30/2021] [Indexed: 01/04/2023] Open
Abstract
General anesthetics disrupt brain processes involved in consciousness by altering synaptic patterns of excitation and inhibition. In the cerebral cortex and hippocampus, GABAergic inhibition is largely mediated by inhibitory interneurons, a heterogeneous group of specialized neuronal subtypes that form characteristic microcircuits with excitatory neurons. Distinct interneuron subtypes regulate specific excitatory neuron networks during normal behavior, but how these interneuron subtypes are affected by general anesthetics is unclear. This narrative review summarizes current principles of the synaptic architecture of cortical and interneuron subtypes, their contributions to different forms of inhibition, and their roles in distinct neuronal microcircuits. The molecular and cellular targets in these circuits that are sensitive to anesthetics are reviewed in the context of how anesthetics impact interneuron function in a subtype-specific manner. The implications of this functional interneuron diversity for mechanisms of anesthesia are discussed, as are their implications for anesthetic-induced changes in neural plasticity and overall brain function.
Collapse
Affiliation(s)
- Iris A. Speigel
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Iris A. Speigel
| | - Hugh C. Hemmings Jr.
- Department of Anesthesiology, Weill Cornell Medicine, New York, NY, United States
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, United States
| |
Collapse
|
3
|
Dudai A, Yayon N, Soreq H, London M. Cortical VIP
+
/ChAT
+
interneurons: From genetics to function. J Neurochem 2021; 158:1320-1333. [DOI: 10.1111/jnc.15263] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/05/2020] [Accepted: 11/30/2020] [Indexed: 12/31/2022]
Affiliation(s)
- Amir Dudai
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) The Department of Neurobiology The Life Sciences Institute The Hebrew University of Jerusalem Jerusalem Israel
| | - Nadav Yayon
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) The Department of Biological Chemistry The Life Sciences Institute The Hebrew University of Jerusalem Jerusalem Israel
| | - Hermona Soreq
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) The Department of Biological Chemistry The Life Sciences Institute The Hebrew University of Jerusalem Jerusalem Israel
| | - Michael London
- The Edmond and Lily Safra Center for Brain Sciences (ELSC) The Department of Neurobiology The Life Sciences Institute The Hebrew University of Jerusalem Jerusalem Israel
| |
Collapse
|