1
|
Ayaz M, Ali Q, Zhao W, Chi YK, Ali F, Rashid KA, Cao S, He YQ, Bukero AA, Huang WK, Qi RD. Exploring plant growth promoting traits and biocontrol potential of new isolated Bacillus subtilis BS-2301 strain in suppressing Sclerotinia sclerotiorum through various mechanisms. FRONTIERS IN PLANT SCIENCE 2024; 15:1444328. [PMID: 39239197 PMCID: PMC11374654 DOI: 10.3389/fpls.2024.1444328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/30/2024] [Indexed: 09/07/2024]
Abstract
Sclerotinia sclerotiorum (Lib.) de Bary is the causative agent of stem white mold disease which severely reduces major crop productivity including soybean and rapeseed worldwide. The current study aimed to explore plant growth-promoting traits and biocontrol of new isolated Bacillus subtilis BS-2301 to suppress S. sclerotiorum through various mechanisms. The results indicated that the BS-2301 exhibited strong biocontrol potential against S. sclerotiorum up to 74% both in dual culture and partition plate experiments. The BS-2301 and its crude extract significantly suppressed S. sclerotiorum growth involving excessive reactive oxygen species (ROS) production in mycelia for rapid death. Furthermore, the treated hyphae produced low oxalic acid (OA), a crucial pathogenicity factor of S. sclerotiorum. The SEM and TEM microscopy of S. sclerotiorum showed severe damage in terms of cell wall, cell membrane breakage, cytoplasm displacement, and organelles disintegration compared to control. The pathogenicity of S. sclerotiorum exposed to BS-2301 had less disease progression potential on soybean leaves in the detached leaf assay experiment. Remarkably, the strain also demonstrated broad-range antagonistic activity with 70%, and 68% inhibition rates against Phytophthora sojae and Fusarium oxysporum, respectively. Furthermore, the strain exhibits multiple plant growth-promoting and disease-prevention traits, including the production of indole-3-acetic acid (IAA), siderophores, amylases, cellulases and proteases as well as harboring calcium phosphate decomposition activity. In comparison to the control, the BS-2301 also showed great potential for enhancing soybean seedlings growth for different parameters, including shoot length 31.23%, root length 29.87%, total fresh weight 33.45%, and total dry weight 27.56%. The antioxidant enzymes like CAT, POD, SOD and APX under BS-2301 treatment were up-regulated in S. sclerotiorum infected plants along with the positive regulation of defense-related genes (PR1-2, PR10, PAL1, AOS, CHS, and PDF1.2). These findings demonstrate that the BS-2301 strain possesses a notable broad-spectrum biocontrol potential against different phytopathogens and provides new insight in suppressing S. sclerotiorum through various mechanisms. Therefore, BS-2301 will be helpful in the development of biofertilizers for sustainable agricultural practices.
Collapse
Affiliation(s)
- Muhammad Ayaz
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Qurban Ali
- Department of Biology, College of Science, United Arab Emirates University, Al-Ain, Abu-Dhabi, United Arab Emirates
| | - Wei Zhao
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yuan-Kai Chi
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Farman Ali
- Department of Entomology, Abdul Wali Khan University, Mardan, Pakistan
| | - Khan Abdur Rashid
- Department of Plant Pathology, Key Laboratory of Monitoring and Management of Crop Diseases and Pest Insects, College of Plant Protection, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Shun Cao
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yan-Qiu He
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Abdul Aziz Bukero
- MARA-CABI Joint Laboratory for Bio-safety, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, China
| | - Wen-Kun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Ren-De Qi
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
2
|
Sharma P, Chukwuka A, Chatterjee S, Chakraborty D, Saha NC. Pathological and ultrastructural changes of Bellamya bengalensis under chronic carboxylic acid exposure at environmentally relevant levels: Inferences from general unified threshold model for survival (GUTS) predictions and hepatopancreatic integrity assessment. CHEMOSPHERE 2024; 361:142542. [PMID: 38844104 DOI: 10.1016/j.chemosphere.2024.142542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 05/20/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
This study aimed to understand the effects of freshwater acidification, driven by industrial runoff, agricultural activities, and atmospheric deposition, on the freshwater mollusk Bellamya bengalensis. By systematically investigating the impact of two common carboxylic acids, acetic acid (AA) and benzoic acid (BA), this research employed diverse toxicological, pathological, and ecological assessments. We explored survival predictions through the generic unified threshold model of survival (GUTS-SD), examined oxidative stress responses, and investigated hepatopancreatic alterations. In the experimental design, Bellamya bengalensis were subjected to environmentally relevant sublethal concentrations (10%, 20% LC50) of AA (39.77 and 79.54 mg/l) and BA (31.41 and 62.82 mg/l) over 28 days. Acute toxicity tests revealed increased LC50 values, indicating heightened toxicity with prolonged exposure, particularly due to the greater potency of benzoic acid compared to acetic acid. The GUTS-SD model provided accurate predictions of time-specific effects on populations, presenting long-term exposure (100 days) LC50 values for AA (263.7 mg/l) and BA (330.9 mg/l). Sequentially, the integrated biomarker response (IBR) analysis across study intervals highlighted the 28-day interval as the most sensitive, with GST emerging as the most responsive enzyme to oxidative stress induced by AA and BA. Histopathological and ultrastructural assessments of the hepatopancreas showed severe alterations, including necrosis, vacuolation and disrupted micro-villi, which were especially pronounced in higher BA exposure concentrations. These findings highlight the health and survival impacts of carboxylic acid toxicity on Bellamya bengalensis, emphasizing the need for proactive measures to mitigate acidification in aquatic ecosystems. The broader ecological implications underscore the importance of effective management and conservation strategies to address ongoing environmental challenges.
Collapse
Affiliation(s)
- Pramita Sharma
- Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Azubuike Chukwuka
- National Environmental Standards and Regulations Enforcement Agency, Osun State, Nigeria.
| | | | | | | |
Collapse
|
3
|
Barbosa P, Faria JMS, Cavaco T, Figueiredo AC, Mota M, Vicente CSL. Nematicidal Activity of Phytochemicals against the Root-Lesion Nematode Pratylenchus penetrans. PLANTS (BASEL, SWITZERLAND) 2024; 13:726. [PMID: 38475572 DOI: 10.3390/plants13050726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024]
Abstract
Plant-parasitic nematodes (PPNs) are highly damaging pests responsible for heavy losses in worldwide productivity in a significant number of important plant crops. Common pest management strategies rely on the use of synthetic chemical nematicides, which have led to serious concerns regarding their impacts on human health and the environment. Plant natural products, or phytochemicals, can provide a good source of agents for sustainable control of PPNs, due to their intrinsic characteristics such as higher biodegradability, generally low toxicity for mammals, and lower bioaccumulation in the environment. In this work, the nematicidal activity of 39 phytochemicals was determined against the root-lesion nematode (RLN) Pratylenchus penetrans using standard direct and indirect contact methodologies. Overall, the RLN was tolerant to the tested phytochemicals at the highest concentration, 2 mg/mL, seldom reaching full mortality. However, high activities were obtained for benzaldehyde, carvacrol, 3-octanol, and thymol, in comparison to other phytochemicals or the synthetic nematicide oxamyl. These phytochemicals were seen to damage nematode internal tissues but not its cuticle shape. Also, the environmental and (eco)toxicological parameters reported for these compounds suggest lower toxicity and higher safety of use than oxamyl. These compounds appear to be good candidates for the development of biopesticides for a more sustainable pest management strategy.
Collapse
Affiliation(s)
- Pedro Barbosa
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Jorge M S Faria
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Quinta do Marquês, 2780-157 Oeiras, Portugal
- GREEN-IT Bioresources for Sustainability, Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa (ITQB NOVA), Av. da República, 2780-157 Oeiras, Portugal
| | - Tomás Cavaco
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV, I.P.), Quinta do Marquês, 2780-157 Oeiras, Portugal
| | - Ana Cristina Figueiredo
- Centro de Estudos do Ambiente e do Mar (CESAM Lisboa), Faculdade de Ciências, Universidade de Lisboa, Biotecnologia Vegetal, DBV, C2, Piso 1, Campo Grande, 1749-016 Lisboa, Portugal
| | - Manuel Mota
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Cláudia S L Vicente
- MED-Mediterranean Institute for Agriculture, Environment and Development & CHANGE-Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| |
Collapse
|
4
|
Walkowiak-Nowicka K, Mirek J, Chowański S, Sobkowiak R, Słocińska M. Plant secondary metabolites as potential bioinsecticides? Study of the effects of plant-derived volatile organic compounds on the reproduction and behaviour of the pest beetle Tenebrio molitor. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 257:114951. [PMID: 37116454 DOI: 10.1016/j.ecoenv.2023.114951] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 04/21/2023] [Accepted: 04/22/2023] [Indexed: 05/08/2023]
Abstract
Modern agriculture has many environmental consequences, such as soil contamination, accumulation of toxic compounds in the environment or risk of adverse effects on nontarget organisms and for these reasons, scientists are seeking a more environmentally friendly alternative to synthetic insecticides. This study investigated the effects of four plant secondary metabolites classified as volatile organic compounds (VOCs), which have potential as bioinsecticides, (E)-2-decenal, furfural, 2-undecanone and (E,E)-2-4-decadienal, in concentrations 10-5 and 10-7 M, on female reproductive processes and larval hatchability of the Tenebrio molitor beetle. Our study indicates proper development of ovaries after application of compounds however the volume of terminal oocytes was significantly reduced, with the strongest effect of (E)- 2-decenal which reduced the volume approximately three times. The relative vitellogenin expression level was reduced, with the strongest effect observed after application of furfural, (E,E)- 2-4-decadienal and (E)- 2-decenal in concentration 10-7 M, at the same time patency index was significantly reduced up to 2-times after application of furfural at 10-7 M. What is more important morphological changes translated into physiological ones. The number of laid eggs was affected, with the strongest inhibition after application of furfural (∼43% reduction), (E,E)- 2-4-decadienal (∼33%) and (E)- 2-decenal at concentration 10-7 M (∼33%). Moreover, we observed up to 13% (in case of 2-undecanone) decrease in larval hatchability. Tested compounds exhibited a repellent effect and caused 60% reduction of insect survivability after (E)- 2-decenal at concentration 10-5 M. Altogether, VOCs seems like potential bioactive compounds in plant protection.
Collapse
Affiliation(s)
- K Walkowiak-Nowicka
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego St. 6, 61-614 Poznań, Poland.
| | - J Mirek
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego St. 6, 61-614 Poznań, Poland
| | - Sz Chowański
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego St. 6, 61-614 Poznań, Poland
| | - R Sobkowiak
- Department of Cell Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego St. 6, 61-614 Poznań, Poland
| | - M Słocińska
- Department of Animal Physiology and Developmental Biology, Faculty of Biology, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego St. 6, 61-614 Poznań, Poland
| |
Collapse
|
5
|
Tryfon P, Kamou NN, Ntalli N, Mourdikoudis S, Karamanoli K, Karfaridis D, Menkissoglu-Spiroudi U, Dendrinou-Samara C. Coated Cu-doped ZnO and Cu nanoparticles as control agents against plant pathogenic fungi and nematodes. NANOIMPACT 2022; 28:100430. [PMID: 36206943 DOI: 10.1016/j.impact.2022.100430] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/23/2022] [Accepted: 09/26/2022] [Indexed: 06/16/2023]
Abstract
In the current study, coated copper nanoparticles with polyethylene glycol 8000 (Cu@PEG NPs) and copper-doped zinc oxide nanoparticles with diethylene glycol (Cu-doped ZnO@DEG NPs) have been synthesized via solvothermal and microwave-assisted process, physicochemical characterized, and studied as nano-fungicides and nano-nematicides. Spheroidal Cu-doped ZnO@DEG NPs and urchin-like Cu@PEG NPs have been isolated with average crystallite sizes of 12 and 21 nm, respectively. The Cu doping (11.3 wt%) in ZnO lattice (88.7 wt%) was investigated by Rietveld refinement analysis and confirmed by X-ray Diffraction (XRD) and X-ray Photoelectron Spectroscopy (XPS). The Cu-doped ZnO@DEG and Cu@PEG NPs revealed a growth inhibition of fungi Botrytis cinerea (B. cinerea) and Sclerotinia sclerotiorum (S. sclerotiorum) and nematode paralysis of Meloidogyne javanica in a dose-dependent manner. Cu-doped ZnO@DEG NPs were more effective against M. javanica (EC50 = 2.60 μg/mL) than the Cu@PEG NPs (EC50 = 25 μg/mL). In contrast, the antifungal activity was approximately similar for both NPs, with EC50 values at 310 and 327 μg/mL against B. cinerea, respectively, and 260 and 278 μg/mL against S. sclerotiorum, respectively. Lettuce (Lactuca sativa) plants were inoculated with S. sclerotiorum or M. javanica and sprayed with either Cu-doped ZnO@DEG NPs or Cu@PEG NPs. The antifungal effect was evaluated based on a disease index (DI), and nematicidal activity was assessed based on the total number of galls and nematode females per root gram. NPs successfully inhibited the growth of both pathogens without causing phytotoxicity on lettuce. The DI were significantly decreased as compared to the positive control (DI = 5.2), estimated equal to 1.7, 2.9 and 2.5 for Cu@PEG NPs, Cu-doped ZnO@DEG NPs and the chemical control (KOCIDE 2000), respectively. The reduction in galling and population of M. javanica ranged from 39.32% to 32.29%, statistically like chemical control. The treatment of lettuce plants with Cu-doped ZnO@DEG NPs increased the leaf net photosynthetic value at 4.60 and 6.66 μmol CO2-2 s-1 in plants inoculated with S. sclerotiorum and M. javanica, respectively, as compared to the control (3.00 μmol CO2-2 s-1). The antioxidant capacity of NPs treated lettuce plants was evaluated as 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity in leaf extracts. Plants inoculated with S. sclerotiorum and sprayed with Cu-doped ZnO@DEG and Cu@PEG NPs, exhibited a 34.22% and 32.70% increase in antioxidant capacity, respectively, higher than the control. Similarly, an increase in antioxidant capacity was measured (39.49 and 37.36%) in lettuce inoculated with M. javanica and treated with Cu-doped ZnO@DEG and Cu@PEG NPs, respectively. Moreover, an increase of phenolic compounds in lettuce leaf tissue treated with NPs was measured as compared to the control. Overall, foliar applied Cu and Cu-doped ZnO NPs could be a promising tool to control phytopathogenic fungi and nematodes contributing to sustainability of agri-food sector.
Collapse
Affiliation(s)
- Panagiota Tryfon
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Nathalie N Kamou
- Pesticide Science Laboratory, School of Agriculture, Faculty of Agriculture Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Nikoletta Ntalli
- Analytical Chemistry and Pesticides Laboratory, Department of Agriculture Crop Production and Rural Environment, University of Thessaly, Volos, Greece
| | - Stefanos Mourdikoudis
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, United Kingdom; Biophysics Group, Department of Physics and Astronomy, University College London (UCL), London, United Kingdom
| | - Katerina Karamanoli
- Laboratory of Agricultural Chemistry, Faculty of Agriculture, Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Dimitrios Karfaridis
- Physics Department, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Urania Menkissoglu-Spiroudi
- Pesticide Science Laboratory, School of Agriculture, Faculty of Agriculture Forestry and Natural Environment, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| | - Catherine Dendrinou-Samara
- Laboratory of Inorganic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece.
| |
Collapse
|
6
|
Fluoroalkenyl-Grafted Chitosan Oligosaccharide Derivative: An Exploration for Control Nematode Meloidogyne Incognita. Int J Mol Sci 2022; 23:ijms23042080. [PMID: 35216195 PMCID: PMC8875637 DOI: 10.3390/ijms23042080] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/07/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
The exploration of novel, environmentally friendly, and efficient nematicides is essential, and modifying natural biomacromolecules is one feasible approach. In this study, 6-O-(trifluorobutenyl-oxadiazol)-chitosan oligosaccharide derivative was synthesized and characterized by FTIR, NMR, and TG/DTG. Its bioactivity and action mode against root-knot nematode M. incognita were estimated. The results show that the derivative shows high nematicidal activity against J2s, and egg hatching inhibitory activity at 1 mg/mL. The derivative may affect nematode ROS metabolism and further damage intestinal tissue to kill nematode. Meanwhile, by synergism with improving crop resistance, the derivative performed a high control effect on the nematode with low phytotoxicity. These findings suggested that chitosan oligosaccharide derivatives bearing fluoroalkenyl groups are promising green nematicides.
Collapse
|
7
|
Moo-Koh FA, Cristóbal-Alejo J, Andrés MF, Martín J, Reyes F, Tun-Suárez JM, Gamboa-Angulo M. In Vitro Assessment of Organic and Residual Fractions of Nematicidal Culture Filtrates from Thirteen Tropical Trichoderma Strains and Metabolic Profiles of Most-Active. J Fungi (Basel) 2022; 8:jof8010082. [PMID: 35050022 PMCID: PMC8779102 DOI: 10.3390/jof8010082] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/17/2021] [Accepted: 01/12/2022] [Indexed: 11/19/2022] Open
Abstract
The nematicidal properties of Trichoderma species have potential for developing safer biocontrol agents. In the present study, 13 native Trichoderma strains from T. citrinoviride, T. ghanense (2 strains), T. harzianum (4), T. koningiopsis, T. simmonsii, and T. virens (4) with nematicidal activity were selected and cultured in potato dextrose broth to obtain a culture filtrate (CF) for each. Each CF was partitioned with ethyl acetate to obtain organic (EA) and residual filtrate (RF) fractions, which were then tested on second-stage juveniles (J2s) of the nematodes Meloidogyne javanica and M. incognita in a microdilution assay. The most lethal strains were T. harzianum Th43-14, T. koningiopsis Th41-11, T. ghanense Th02-04, and T. virens Th32-09, which caused 51–100% mortality (%M) of J2s of both nematodes, mainly due to their RF fractions. Liquid chromatography–diode array detector-electrospray-high resolution mass spectrometry analysis of the most-active fractions revealed sesquiterpene and polyketide-like metabolites produced by the four active strains. These native Trichoderma strains have a high potential to develop safer natural products for the biocontrol of Meloidogyne species.
Collapse
Affiliation(s)
- Felicia Amalia Moo-Koh
- Centro de Investigación Científica de Yucatán, A. C. Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida 97205, Mexico;
- Tecnológico Nacional de México, Campus Conkal, Avenida Tecnológico s/n, Conkal 97345, Mexico;
| | - Jairo Cristóbal-Alejo
- Tecnológico Nacional de México, Campus Conkal, Avenida Tecnológico s/n, Conkal 97345, Mexico;
- Correspondence: (J.C.-A.); (M.G.-A.); Tel.: +52-99-9942-8330 (M.G.-A.)
| | - María Fé Andrés
- Instituto de Ciencias Agrarias, CSIC, Serrano 115-dpdo, 28006 Madrid, Spain;
| | - Jesús Martín
- Fundación MEDINA, 18016 Granada, Spain; (J.M.); (F.R.)
| | | | - Jose María Tun-Suárez
- Tecnológico Nacional de México, Campus Conkal, Avenida Tecnológico s/n, Conkal 97345, Mexico;
| | - Marcela Gamboa-Angulo
- Centro de Investigación Científica de Yucatán, A. C. Calle 43 No. 130, Col. Chuburná de Hidalgo, Mérida 97205, Mexico;
- Correspondence: (J.C.-A.); (M.G.-A.); Tel.: +52-99-9942-8330 (M.G.-A.)
| |
Collapse
|
8
|
Abd-Elgawad MMM. Optimizing Safe Approaches to Manage Plant-Parasitic Nematodes. PLANTS 2021; 10:plants10091911. [PMID: 34579442 PMCID: PMC8472902 DOI: 10.3390/plants10091911] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 11/16/2022]
Abstract
Plant-parasitic nematodes (PPNs) infect and cause substantial yield losses of many foods, feed, and fiber crops. Increasing concern over chemical nematicides has increased interest in safe alternative methods to minimize these losses. This review focuses on the use and potential of current methods such as biologicals, botanicals, non-host crops, and related rotations, as well as modern techniques against PPNs in sustainable agroecosystems. To evaluate their potential for control, this review offers overviews of their interactions with other biotic and abiotic factors from the standpoint of PPN management. The positive or negative roles of specific production practices are assessed in the context of integrated pest management. Examples are given to reinforce PPN control and increase crop yields via dual-purpose, sequential, and co-application of agricultural inputs. The involved PPN control mechanisms were reviewed with suggestions to optimize their gains. Using the biologicals would preferably be backed by agricultural conservation practices to face issues related to their reliability, inconsistency, and slow activity against PPNs. These practices may comprise offering supplementary resources, such as adequate organic matter, enhancing their habitat quality via specific soil amendments, and reducing or avoiding negative influences of pesticides. Soil microbiome and planted genotypes should be manipulated in specific nematode-suppressive soils to conserve native biologicals that serve to control PPNs. Culture-dependent techniques may be expanded to use promising microbial groups of the suppressive soils to recycle in their host populations. Other modern techniques for PPN control are discussed to maximize their efficient use.
Collapse
Affiliation(s)
- Mahfouz M M Abd-Elgawad
- Plant Pathology Department, National Research Centre, El-Behooth St., Dokki, Giza 12622, Egypt
| |
Collapse
|
9
|
Ntalli N, Skourti A, Nika EP, Boukouvala MC, Kavallieratos NG. Five natural compounds of botanical origin as wheat protectants against adults and larvae of Tenebrio molitor L. and Trogoderma granarium Everts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:42763-42775. [PMID: 33825104 DOI: 10.1007/s11356-021-13592-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 03/17/2021] [Indexed: 06/12/2023]
Abstract
The botanical substances constitute valuable alternatives to synthetic insecticides. In the last decades, numerous substances of natural origin have been tested against stored-product insects, mostly as fumigants or for contact toxicity, while there is limited knowledge on the efficacy of plant secondary metabolites if used as grain protectants. In the present study, we evaluated the lethal activity of 2-undecanone, acetic acid, trans-anethole, furfural, (E)-2-decenal and (E, E)-2,4-decadienal as wheat protectants for the management of larvae and adults of two important storage pests, Tenebrio molitor (Coleoptera: Tenebrionidae) and Trogoderma granarium (Coleoptera: Dermestidae). 2-undecanone caused 98.9% mortality to the exposed T. molitor adults at 1000 μl/kg wheat 7 days post-exposure, while acetic acid and furfural followed providing 94.4% and 92.2% mortality respectively. 2-Undecanone and (E)-2-decenal caused the highest mortalities to T. molitor larvae (i.e., 87.8% and 80.0% respectively) exposed to 1000 μl/kg wheat for 7 days. All T. granarium adults were dead at 1000 μl (E)-2-decenal or acetic acid/kg wheat 5 or 7 days post-exposure respectively. Complete (100%) mortality was assessed for larvae exposed to (E, E)-2,4-decadienal and (E)-2-decenal at 1000 μl/kg wheat after 4 and 6 days respectively. Our findings report for the first time that 2-undecanone, (E)-2-decenal, and (E, E)-2,4-decadienal are effective new candidate control agents of different developmental stages of T. molitor and T. granarium.
Collapse
Affiliation(s)
- Nikoletta Ntalli
- Laboratory of Efficacy Assessment of Pesticides, Scientific Directorate of Pesticides' Assessment and Phytopharmacy, Benaki Phytopathological Institute, 8 Stefanou Delta str., 14561, Attica, Kifissia, Greece.
| | - Anna Skourti
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos str, 11855, Attica, Athens, Greece
| | - Erifili P Nika
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos str, 11855, Attica, Athens, Greece
| | - Maria C Boukouvala
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos str, 11855, Attica, Athens, Greece
| | - Nickolas G Kavallieratos
- Laboratory of Agricultural Zoology and Entomology, Department of Crop Science, Agricultural University of Athens, 75 Iera Odos str, 11855, Attica, Athens, Greece.
| |
Collapse
|
10
|
Tauseef A, Hisamuddin, Khalilullah A, Uddin I. Role of MgO nanoparticles in the suppression of Meloidogyne incognita, infecting cowpea and improvement in plant growth and physiology. Exp Parasitol 2020; 220:108045. [PMID: 33220261 DOI: 10.1016/j.exppara.2020.108045] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 09/24/2020] [Accepted: 11/15/2020] [Indexed: 01/09/2023]
Abstract
Root-knot disease, caused by Meloidogyne spp., alters histology as well as physiology of the roots thus influencing metabolism of vegetative and reproductive parts leading to huge losses in crop productivity. The experimental plant, Vigna unguiculata L. (cowpea of Fabaceae family) var. Gomti is an economically important pulse crop plant. An experiment was conducted to evaluate the effects of different concentrations (0, 25, 50 or 100 ppm) and various modes of applications (root dip, soil drench or foliar spray) of MgO nanoparticles on cowpea infected with M. incognita. The MgO nanoparticles were synthesized chemically and characterized by transmission and scanning electron microscopy (TEM, SEM), UV-Vis spectroscopy, X-ray diffraction (XRD) and Fourier transform infrared spectroscopy (FTIR). The scanning electron microscopy images of second stage juveniles of M. incognita treated with MgO nanoparticles (50 and 100 ppm) exhibited indentations, roughness and distortions in the cuticular surface, in comparison to the control untreated juveniles. MgO nanoparticles, in varying concentrations (50, 100 and 200 ppm), were dispensed into the plants by root dip, soil drench and foliar spray methods and their efficacy was assessed in terms of morphological characteristics, yield parameters and biochemical attributes of M. incognita infected plants. In planta trials revealed that 100 ppm dose of MgO nanoparticles, as root dip application, demonstrated reduced nematode fecundity, decreased number and smaller size of galls; enhanced plant growth, increased chlorophyll, carotenoid, seed protein, and root and shoot nitrogen contents. From these findings it could be inferred that MgO nanoparticles played twin roles, first as a nematicidal agent and the other as growth promotion inducer.
Collapse
Affiliation(s)
- Atirah Tauseef
- Department of Botany, Aligarh Muslim University (AMU), Aligarh, 202002, India
| | - Hisamuddin
- Department of Botany, Aligarh Muslim University (AMU), Aligarh, 202002, India
| | - Ahmad Khalilullah
- Interdisciplinary Nanotechnology Centre, Zakir Husain College of Engineering and Technology (ZHCET), Aligarh Muslim University (AMU), Aligarh, 202002, India
| | - Imran Uddin
- Interdisciplinary Nanotechnology Centre, Zakir Husain College of Engineering and Technology (ZHCET), Aligarh Muslim University (AMU), Aligarh, 202002, India.
| |
Collapse
|
11
|
Forghani F, Hajihassani A. Recent Advances in the Development of Environmentally Benign Treatments to Control Root-Knot Nematodes. FRONTIERS IN PLANT SCIENCE 2020; 11:1125. [PMID: 32793271 PMCID: PMC7387703 DOI: 10.3389/fpls.2020.01125] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 07/08/2020] [Indexed: 05/17/2023]
Abstract
Root-knot nematodes (RKNs), Meloidogyne spp., are sedentary endoparasites that negatively affect almost every crop in the world. Current management practices are not enough to completely control RKN. Application of certain chemicals is also being further limited in recent years. It is therefore crucial to develop additional control strategies through the application of environmentally benign methods. There has been much research performed around the world on the topic, leading to useful outcomes and interesting findings capable of improving farmers' income. It is important to have dependable resources gathering the data produced to facilitate future research. This review discusses recent findings on the application of environmentally benign treatments to control RKN between 2015 and April 2020. A variety of biological control strategies, natural compounds, soil amendments and other emerging strategies have been included, among which, many showed promising results in RKN control in vitro and/or in vivo. Development of these methods continues to be an area of active research, and new information on their efficacy will continuously become available. We have discussed some of the control mechanisms involved and suggestions were given on maximizing the outcome of the future efforts.
Collapse
|
12
|
de Boer W, Li X, Meisner A, Garbeva P. Pathogen suppression by microbial volatile organic compounds in soils. FEMS Microbiol Ecol 2020; 95:5527321. [PMID: 31265069 DOI: 10.1093/femsec/fiz105] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Accepted: 06/30/2019] [Indexed: 12/15/2022] Open
Abstract
There is increasing evidence that microbial volatile organic compounds (mVOCs) play an important role in interactions between microbes in soils. In this minireview, we zoom in on the possible role of mVOCs in the suppression of plant-pathogenic soil fungi. In particular, we have screened the literature to see what the actual evidence is that mVOCs in soil atmospheres can contribute to pathogen suppression. Furthermore, we discuss biotic and abiotic factors that influence the production of suppressive mVOCs in soils. Since microbes producing mVOCs in soils are part of microbial communities, community ecological aspects such as diversity and assembly play an important role in the composition of produced mVOC blends. These aspects have not received much attention so far. In addition, the fluctuating abiotic conditions in soils, such as changing moisture contents, influence mVOC production and activity. The biotic and abiotic complexity of the soil environment hampers the extrapolation of the production and suppressing activity of mVOCs by microbial isolates on artificial growth media. Yet, several pathogen suppressive mVOCs produced by pure cultures do also occur in soil atmospheres. Therefore, an integration of lab and field studies on the production of mVOCs is needed to understand and predict the composition and dynamics of mVOCs in soil atmospheres. This knowledge, together with the knowledge of the chemistry and physical behaviour of mVOCs in soils, forms the basis for the development of sustainable management strategies to enhance the natural control of soil-borne pathogens with mVOCs. Possibilities for the mVOC-based control of soil-borne pathogens are discussed.
Collapse
Affiliation(s)
- Wietse de Boer
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Droevendaalsesteeg 10, 6708PB Wageningen, The Netherlands.,Soil Biology Group, Wageningen University, Droevendaalsesteeg 3, 6708PB Wageningen, The Netherlands
| | - Xiaogang Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, 210037 Nanjing, China
| | - Annelein Meisner
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Droevendaalsesteeg 10, 6708PB Wageningen, The Netherlands.,Microbial Ecology, Department of Biology, Lund University, Ecology Building, Sölvegatan 37, SE-22363 Lund, Sweden
| | - Paolina Garbeva
- Department of Microbial Ecology, Netherlands Institute of Ecology, NIOO-KNAW, Droevendaalsesteeg 10, 6708PB Wageningen, The Netherlands
| |
Collapse
|
13
|
Ntalli N, Adamski Z, Doula M, Monokrousos N. Nematicidal Amendments and Soil Remediation. PLANTS (BASEL, SWITZERLAND) 2020; 9:E429. [PMID: 32244565 PMCID: PMC7238745 DOI: 10.3390/plants9040429] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Revised: 03/03/2020] [Accepted: 03/21/2020] [Indexed: 12/20/2022]
Abstract
The intensification of agriculture has created concerns about soil degradation and toxicity of agricultural chemicals to non-target organisms. As a result, there is great urgency for discovering new ecofriendly tools for pest management and plant nutrition. Botanical matrices and their extracts and purified secondary metabolites have received much research interest, but time-consuming registration issues have slowed their adoption. In contrast, cultural practices such as use of plant matrices as soil amendments could be immediately used as plant protectants or organic fertilizers. Herein, we focus on some types of soil amendments of botanical origin and their utilization for nematicidal activity and enhancement of plant nutrition. The mode of action is discussed in terms of parasite control as well as plant growth stimulation.
Collapse
Affiliation(s)
- Nikoletta Ntalli
- Department of Pesticides Control and Phytopharmacy, Benaki Phytopathological Institute, 8 S. Delta Str., 14561 Athens, Greece
| | - Zbigniew Adamski
- Electron and Confocal Microscope Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznań, 61-614 Poznań, Poland;
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, ul. Uniwersytetu Poznańskiego 6, 61-614 Poznań, Poland
| | - Maria Doula
- Laboratory of Non-Parasitic Diseases, Benaki Phytopathological Institute, 8 S. Delta Str., 14561 Athens, Greece;
| | - Nikolaos Monokrousos
- Laboratory of Molecular Ecology, International Hellenic University, 57001 Thessaloniki, Greece;
| |
Collapse
|
14
|
Seo HJ, Park AR, Kim S, Yeon J, Yu NH, Ha S, Chang JY, Park HW, Kim JC. Biological Control of Root-Knot Nematodes by Organic Acid-Producing Lactobacillus brevis WiKim0069 Isolated from Kimchi. THE PLANT PATHOLOGY JOURNAL 2019; 35:662-673. [PMID: 31832046 PMCID: PMC6901259 DOI: 10.5423/ppj.oa.08.2019.0225] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 09/26/2019] [Accepted: 10/31/2019] [Indexed: 05/28/2023]
Abstract
Root-knot nematodes (RKNs) are among the most destructive plant-parasites worldwide, and RKN control has been attempted mainly using chemical nematicides. However, these chemical nematicides have negative effects on humans and the environment, thus necessitating the search for eco-friendly alternative RKN control methods. Here, we screened nematicidal lactic acid bacteria (LAB) isolated from kimchi and evaluated their efficacy as biocontrol agents against RKNs. Of 237 bacterial strains, Lactobacillus brevis WiKim0069 showed the strongest nematicidal activity against the second-stage juveniles (J2) of Meloidogyne incognita, M. arenaria, and M. hapla and inhibited the egg hatch of M. incognita. The culture filtrate of WiKim0069 had a pH of 4.2 and contained acetic acid (11,190 μg/ml), lactic acid (7,790 μg/ml), malic acid (470 μg/ml), and succinic acid (660 μg/ml). An artificial mixture of the four organic acids produced by WiKim0069 also induced 98% M. incognita J2 mortality at a concentration of 1.25%, indicating that its nematicidal activity was derived mainly from the four organic acids. Application of WiKim0069 culture filtrate suppressed the formation of galls and egg masses on tomato roots by M. incognita in a dose-dependent manner in a pot experiment. The fermentation broth of WiKim0069 also reduced gall formation on melon under field conditions, with a higher efficacy (62.8%) than that of fosthiazate (32.8%). This study is the first report to identify the effectiveness of kimchi LAB against RKNs and to demonstrate that the organic acids produced by LAB can be used for the RKN management.
Collapse
Affiliation(s)
- Hye Jeong Seo
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186,
Korea
| | - Ae Ran Park
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186,
Korea
| | - Seulbi Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186,
Korea
| | - Jehyeong Yeon
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186,
Korea
| | - Nan Hee Yu
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186,
Korea
| | - Sanghyun Ha
- R&D Division, World Institute of Kimchi, Gwangju 61755,
Korea
| | - Ji Yoon Chang
- R&D Division, World Institute of Kimchi, Gwangju 61755,
Korea
| | - Hae Woong Park
- R&D Division, World Institute of Kimchi, Gwangju 61755,
Korea
| | - Jin-Cheol Kim
- Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Science, Chonnam National University, Gwangju 61186,
Korea
| |
Collapse
|
15
|
Massawe VC, Hanif A, Farzand A, Mburu DK, Ochola SO, Wu L, Tahir HAS, Gu Q, Wu H, Gao X. Volatile Compounds of Endophytic Bacillus spp. have Biocontrol Activity Against Sclerotinia sclerotiorum. PHYTOPATHOLOGY 2018; 108:1373-1385. [PMID: 29927356 DOI: 10.1094/phyto-04-18-0118-r] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
To develop an effective biological agent to control Sclerotinia sclerotiorum, three endophytic Bacillus spp. strains with high antagonistic activity were isolated from maize seed and characterized. In vitro assays revealed that the Bacillus endophytes could produce volatile organic compounds (VOC) that reduced sclerotial production and inhibited mycelial growth of S. sclerotiorum. Gas chromatography-mass spectrometry revealed that the selected strains produced 16 detectable VOC. Eight of the produced VOC exhibited negative effects on S. sclerotiorum, while a further four induced accumulation of reactive oxygen species in mycelial cells. A mixture of VOC produced by Bacillus velezensis VM11 caused morphological changes in the ultrastructure and organelle membranes of S. sclerotiorum mycelial cells. The bromophenol blue assay revealed a yellow color of untreated fungal mycelium, which grew faster and deeper from 24 to 72 h postinoculation, as an indication of reduced pH. The potassium permanganate (KMnO4) titration assay showed that the rate of oxalic acid accumulation was higher in minimal salt liquid medium cultures inoculated with untreated fungal plugs compared with the Bacillus VOC-treated ones. Interestingly, biological control assays using host-plant leaves challenged with treated fungal mycelial plugs produced reduced lesions compared with the control. These findings provide new viable possibilities of controlling diseases caused by S. sclerotiorum using VOC produced by Bacillus endophytes.
Collapse
Affiliation(s)
- Venance Colman Massawe
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, PR China
| | - Alvina Hanif
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, PR China
| | - Ayaz Farzand
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, PR China
| | - David Kibe Mburu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, PR China
| | - Sylvans Ochieng Ochola
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, PR China
| | - Liming Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, PR China
| | - Hafiz Abdul Samad Tahir
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, PR China
| | - Qin Gu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, PR China
| | - Huijun Wu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, PR China
| | - Xuewen Gao
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, PR China
| |
Collapse
|
16
|
Sobkowiak R, Bojarska N, Krzyżaniak E, Wągiel K, Ntalli N. Chemoreception of botanical nematicides by Meloidogyne incognita and Caenorhabditis elegans. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART. B, PESTICIDES, FOOD CONTAMINANTS, AND AGRICULTURAL WASTES 2018; 53:493-502. [PMID: 29708833 DOI: 10.1080/03601234.2018.1462936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Plant-parasitic nematodes, such as Meloidogyne incognita, cause serious damage to various agricultural crops worldwide, and their control necessitates environmentally safe measures. We have studied the effects of plant secondary metabolites on M. incognita locomotion, as it is an important factor affecting host inoculation inside the soil. We compared the effects to the respective behavioral responses of the model saprophytic nematode Caenorhabditis elegans. The tested botanical nematicides, all reported to be active against Meloidogyne sp. in our previous works, are small molecular weight molecules (acids, alcohols, aldehydes, and ketones). Here, we specifically report on the attractant or repellent properties of trans-anethole, (E,E)-2,4-decadienal, (E)-2-decenal, fosthiazate, and 2-undecanone. The treatments for both nematode species were made at sublethal concentration levels, namely, 1 mM (<EC50), and the chemical controls used for the experiments were the commercial nematicides fosthiazate and oxamyl. According to our results, trans-anethole, decenal, and oxamyl attract C. elegans, while 2-undecanone strongly attracts M. incognita. These findings can be of use in the development of nematicidal formulations, contributing to the disruption of nematode chemotaxis to root systems.
Collapse
Affiliation(s)
- Robert Sobkowiak
- a Department of Cell Biology , Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University , Poznań , Poland
| | - Natalia Bojarska
- a Department of Cell Biology , Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University , Poznań , Poland
| | - Emilia Krzyżaniak
- a Department of Cell Biology , Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University , Poznań , Poland
| | - Karolina Wągiel
- a Department of Cell Biology , Faculty of Biology, Institute of Experimental Biology, Adam Mickiewicz University , Poznań , Poland
| | - Nikoletta Ntalli
- b Department of Pesticides Control & Phytopharmacy , Benaki Phytopathological Institute, Laboratory of Biological Control of Pesticides , Kifissia , Athens , Greece
| |
Collapse
|