1
|
Bhattacharyya S, R L, Mk R. Polymeric liposomes of emtricitabine employing modified pullulan-an attempt to reduce associated hepatotoxicity. J Liposome Res 2024:1-10. [PMID: 38946524 DOI: 10.1080/08982104.2024.2362352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 05/27/2024] [Indexed: 07/02/2024]
Abstract
Emtricitabine (FTC) a BCS class I drug, is used for HIV prevention. The high solubility of the drug is the leading cause of severe hepatotoxicity and lactic acidosis. This research focuses on the use of modified pullulan for the preparation of polymeric liposomes of FTC. Modified pullulan was synthesized using cholesterol, and succinic anhydride in a controlled chemical environment. The formation of the polymer was established through analysis of spectra. Varying the drug-polymer ratio (1:1, 1:2, and 1:3), the drug-polymer composite was loaded in the vesicular system of soya phosphatidylcholine and cholesterol. Formulations were evaluated for drug entrapment, particle size, surface morphology, and in vitro and ex vivo drug release. An in vivo study of the pure drug and the best formulation on mice was conducted for 28 days following daily oral administration to evaluate the effect on liver and hematological parameters. The best formulation was further subjected to cytotoxicity study on hepatic cell lines. Spectral analysis confirmed the formation of modified pullulan. All formulations showed high drug entrapment in the nanovesicles. The in vitro and ex vivo drug release profiles depicted a controlled release of the drug. Hematological parameters were found to be under control in the animals throughout the experimentation. A comparative histopathology study on the livers and cytotoxicity study on hepatic cell lines revealed the safety of the best formulation over the pure drug. Hence it can be concluded that polymeric liposomes of FTC can be a promising mode of delivery to overcome its limitations.
Collapse
Affiliation(s)
- Sayani Bhattacharyya
- Department of Pharmaceutics, Krupanidhi College of Pharmacy, Bengaluru, Karnataka, India
| | - Lahari R
- Department of Pharmaceutics, Krupanidhi College of Pharmacy, Bengaluru, Karnataka, India
| | - Ranganath Mk
- Department of Pharmaceutical Analysis, Krupanidhi College of Pharmacy, Bengaluru, Karnataka, India
| |
Collapse
|
2
|
AboZaid OAR, Abdel-Maksoud MA, Saleh IA, El-Tayeb MA, El-Sonbaty SM, Shoker FE, Salem MA, Emad AM, Mani S, Deva Magendhra Rao AK, Mamdouh MA, Kotob MH, Aufy M, Kodous AS. Targeting the NF-κB p65/Bcl-2 signaling pathway in hepatic cellular carcinoma using radiation assisted synthesis of zinc nanoparticles coated with naturally isolated gallic acid. Biomed Pharmacother 2024; 172:116274. [PMID: 38364738 DOI: 10.1016/j.biopha.2024.116274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/01/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024] Open
Abstract
PURPOSE Oral diethylnitrosamine (DEN) is a known hepatocarcinogen that damages the liver and causes cancer. DEN damages the liver through reactive oxygen species-mediated inflammation and biological process regulation. MATERIALS AND METHODS Gallic acid-coated zinc oxide nanoparticles (Zn-GANPs) were made from zinc oxide (ZnO) synthesized by irradiation dose of 50 kGy utilizing a Co-60 γ-ray source chamber with a dose rate of 0.83 kGy/h and gallic acid from pomegranate peel. UV-visible (UV) spectrophotometry verified Zn-GANP synthesis. TEM, DLS, and FTIR were utilized to investigate ZnO-NPs' characteristics. Rats were orally exposed to DEN for 8 weeks at 20 mg/kg five times per week, followed by intraperitoneal injection of Zn-GANPs at 20 mg/kg for 5 weeks. Using oxidative stress, anti-inflammatory, liver function, histologic, apoptotic, and cell cycle parameters for evaluating Zn-GANPs treatment. RESULTS DEN exposure elevated inflammatory markers (AFP and NF-κB p65), transaminases (AST, ALT), γ-GT, globulin, and total bilirubin, with reduced protein and albumin levels. It also increased MDA levels, oxidative liver cell damage, and Bcl-2, while decreasing caspase-3 and antioxidants like GSH, and CAT. Zn-GANPs significantly mitigated these effects and lowered lipid peroxidation, AST, ALT, and γ-GT levels, significantly increased CAT and GSH levels (p<0.05). Zn-GANPs caused S and G2/M cell cycle arrest and G0/G1 apoptosis. These results were associated with higher caspase-3 levels and lower Bcl-2 and TGF-β1 levels. Zn-GANPs enhance and restore the histology and ultrastructure of the liver in DEN-induced rats. CONCLUSION The data imply that Zn-GANPs may prevent and treat DEN-induced liver damage and carcinogenesis.
Collapse
Affiliation(s)
- Omayma A R AboZaid
- Department of Biochemistry, Faculty of Veterinary Medicine, Moshtohor, Benha University, Egypt
| | | | | | - Mohamed A El-Tayeb
- Botany and Microbiology department- College of Science- King Saud University, Saudi Arabia
| | - Sawsan M El-Sonbaty
- Radiation Microbiology Department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic-Energy Authority (EAEA), Egypt
| | - Faten E Shoker
- Department of Biochemistry, Faculty of Veterinary Medicine, Moshtohor, Benha University, Egypt
| | - Maha A Salem
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Modern University for Technology and Information, Egypt
| | - Ayat M Emad
- Pharmacognosy Department, Faculty of Pharmacy, October 6 University, Sixth of October City, Giza 12585, Egypt
| | - Samson Mani
- Department of Research, Rajiv Gandhi Cancer Institute, and Research Centre, Sector 5, Rohini, Delhi 110085, India; Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, P.O. Box 600036, Chennai, Tamilnadu, India
| | | | - Mohamed A Mamdouh
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza 12585, Egypt
| | - Mohamed H Kotob
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria; Department of Pathology, Faculty of Veterinary Medicine, Assiut University, Assiut, Egypt
| | - Mohammed Aufy
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Vienna, Austria.
| | - Ahmad S Kodous
- Department of Molecular Oncology, Cancer Institute (WIA), 38, Sardar Patel Road, P.O. Box 600036, Chennai, Tamilnadu, India; Radiation Biology department, National Center for Radiation Research & Technology (NCRRT), Egyptian Atomic-Energy Authority (EAEA), Egypt.
| |
Collapse
|
3
|
Cuadra B, Silva V, Huang YL, Diaz Y, Rivas C, Molina C, Simon V, Bono MR, Morales B, Rosemblatt M, Silva S, Acuña R, Ezquer F, Ezquer M. The Immunoregulatory and Regenerative Potential of Activated Human Stem Cell Secretome Mitigates Acute-on-Chronic Liver Failure in a Rat Model. Int J Mol Sci 2024; 25:2073. [PMID: 38396750 PMCID: PMC10889754 DOI: 10.3390/ijms25042073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Acute-on-chronic liver failure (ACLF) is a syndrome marked by sudden liver function decline and multiorgan failure, predominantly acute kidney injury (AKY), in patients with chronic liver disease. Unregulated inflammation is a hallmark of ACLF; however, the key drivers of ACLF are not fully understood. This study explores the therapeutic properties of human mesenchymal stem cell (MSC) secretome, particularly focusing on its enhanced anti-inflammatory and pro-regenerative properties after the in vitro preconditioning of the cells. We evaluated the efficacy of the systemic administration of MSC secretome in preventing liver failure and AKI in a rat ACLF model where chronic liver disease was induced using by the administration of porcine serum, followed by D-galN/LPS administration to induce acute failure. After ACLF induction, animals were treated with saline (ACLF group) or MSC-derived secretome (ACLF-secretome group). The study revealed that MSC-secretome administration strongly reduced liver histological damage in the ACLF group, which was correlated with higher hepatocyte proliferation, increased hepatic and systemic anti-inflammatory molecule levels, and reduced neutrophil and macrophage infiltration. Additionally, renal examination revealed that MSC-secretome treatment mitigated tubular injuries, reduced apoptosis, and downregulated injury markers. These improvements were linked to increased survival rates in the ACLF-secretome group, endorsing MSC secretomes as a promising therapy for multiorgan failure in ACLF.
Collapse
Affiliation(s)
- Barbara Cuadra
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Veronica Silva
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Ya-Lin Huang
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Yael Diaz
- Departamento de Biotecnología, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile; (Y.D.); (C.R.); (C.M.)
| | - Claudio Rivas
- Departamento de Biotecnología, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile; (Y.D.); (C.R.); (C.M.)
| | - Cristobal Molina
- Departamento de Biotecnología, Facultad de Ciencias Naturales, Matemáticas y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile; (Y.D.); (C.R.); (C.M.)
| | - Valeska Simon
- Departamento de Biología, Facultad de Ciencias, Universidad del Chile, Las Encinas 3370, Ñuñoa, Santiago 7800020, Chile; (V.S.); (M.R.B.)
| | - Maria Rosa Bono
- Departamento de Biología, Facultad de Ciencias, Universidad del Chile, Las Encinas 3370, Ñuñoa, Santiago 7800020, Chile; (V.S.); (M.R.B.)
| | - Bernardo Morales
- Facultad de Ciencias de la Salud, Universidad del Alba, Atrys Chile, Guardia Vieja 339, Providencia, Santiago 7510249, Chile;
| | - Mario Rosemblatt
- Centro de Ciencia & Vida, Av. Del Valle Norte 725, Huechuraba, Santiago 8580702, Chile;
| | - Sebastian Silva
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Rodrigo Acuña
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Av. La Plaza 680, Las Condes, Santiago 7610658, Chile; (B.C.); (V.S.); (Y.-L.H.); (S.S.); (R.A.); (F.E.)
| |
Collapse
|
4
|
Jaber M, Kahwaji H, Nasr S, Baz R, Kim YK, Fakhoury M. Precision Medicine in Depression: The Role of Proteomics and Metabolomics in Personalized Treatment Approaches. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1456:359-378. [PMID: 39261438 DOI: 10.1007/978-981-97-4402-2_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Depression, or major depressive disorder (MDD), is a widespread mental health condition marked by enduring feelings of sorrow and loss of interest. Treatment of depression frequently combines psychotherapy, medication, and lifestyle modifications. However, the occurrence of treatment resistance in certain individuals makes it difficult for physicians to effectively manage this disorder, calling for the implementation of alternative therapeutic strategies. Recently, precision medicine has gained increased attention in the field of mental health, paving the way for more personalized and effective therapeutic interventions in depression. Also known as personalized medicine, this approach relies on genetic composition, molecular profiles, and environmental variables to customize therapies to individual patients. In particular, precision medicine has offered novel viewpoints on depression through two specific domains: proteomics and metabolomics. On one hand, proteomics is the thorough study of proteins in a biological system, while metabolomics focuses on analyzing the complete set of metabolites in a living being. In the past few years, progress in research has led to the identification of numerous depression-related biomarkers using proteomics and metabolomics techniques, allowing for early identification, precise diagnosis, and improved clinical outcome. However, despite significant progress in these techniques, further efforts are required for advancing precision medicine in the diagnosis and treatment of depression. The overarching goal of this chapter is to provide the current state of knowledge regarding the use of proteomics and metabolomics in identifying biomarkers related to depression. It also highlights the potential of proteomics and metabolomics in elucidating the intricate processes underlying depression, opening the door for tailored therapies that could eventually enhance clinical outcome in depressed patients. This chapter finally discusses the main challenges in the use of proteomics and metabolomics and discusses potential future research directions.
Collapse
Affiliation(s)
- Mohamad Jaber
- School of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hamza Kahwaji
- School of Medicine, Lebanese American University, Byblos, Lebanon
| | - Sirine Nasr
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Reine Baz
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon
| | - Yong-Ku Kim
- Department of Psychiatry, Korea University College of Medicine, Seoul, Republic of Korea
| | - Marc Fakhoury
- Department of Natural Sciences, School of Arts and Sciences, Lebanese American University, Beirut, Lebanon.
| |
Collapse
|
5
|
Huang YL, De Gregorio C, Silva V, Elorza ÁA, Léniz P, Aliaga-Tobar V, Maracaja-Coutinho V, Budini M, Ezquer F, Ezquer M. Administration of Secretome Derived from Human Mesenchymal Stem Cells Induces Hepatoprotective Effects in Models of Idiosyncratic Drug-Induced Liver Injury Caused by Amiodarone or Tamoxifen. Cells 2023; 12:cells12040636. [PMID: 36831304 PMCID: PMC9954258 DOI: 10.3390/cells12040636] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 01/19/2023] [Accepted: 02/07/2023] [Indexed: 02/18/2023] Open
Abstract
Drug-induced liver injury (DILI) is one of the leading causes of acute liver injury. While many factors may contribute to the susceptibility to DILI, obese patients with hepatic steatosis are particularly prone to suffer DILI. The secretome derived from mesenchymal stem cell has been shown to have hepatoprotective effects in diverse in vitro and in vivo models. In this study, we evaluate whether MSC secretome could improve DILI mediated by amiodarone (AMI) or tamoxifen (TMX). Hepatic HepG2 and HepaRG cells were incubated with AMI or TMX, alone or with the secretome of MSCs obtained from human adipose tissue. These studies demonstrate that coincubation of AMI or TMX with MSC secretome increases cell viability, prevents the activation of apoptosis pathways, and stimulates the expression of priming phase genes, leading to higher proliferation rates. As proof of concept, in a C57BL/6 mouse model of hepatic steatosis and chronic exposure to AMI, the MSC secretome was administered endovenously. In this study, liver injury was significantly attenuated, with a decrease in cell infiltration and stimulation of the regenerative response. The present results indicate that MSC secretome administration has the potential to be an adjunctive cell-free therapy to prevent liver failure derived from DILI caused by TMX or AMI.
Collapse
Affiliation(s)
- Ya-Lin Huang
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Cristian De Gregorio
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Verónica Silva
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
| | - Álvaro A. Elorza
- Instituto de Ciencias Biomédicas, Facultad de Medicina y Ciencias de la Vida, Universidad Andres Bello, Santiago 7610658, Chile
| | - Patricio Léniz
- Unidad de Cirugía Plástica, Reparadora y Estética, Clínica Alemana, Santiago 7610658, Chile
| | - Víctor Aliaga-Tobar
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Laboratorio de Bioingeniería, Instituto de Ciencias de la Ingeniería, Universidad de O’Higgins, Rancagua 7610658, Chile
| | - Vinicius Maracaja-Coutinho
- Advanced Center for Chronic Diseases (ACCDiS), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
- Centro de Modelamiento Molecular, Biofísica y Bioinformática (CM2B2), Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago 7610658, Chile
| | - Mauricio Budini
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago 7610658, Chile
| | - Fernando Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
- Correspondence: (F.E.); (M.E.); Tel.: +56-990-699-272 (F.E.); +56-976-629-880 (M.E.)
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Instituto de Ciencias e Innovación en Medicina, Facultad de Medicina, Clínica Alemana-Universidad del Desarrollo, Santiago 7610658, Chile
- Correspondence: (F.E.); (M.E.); Tel.: +56-990-699-272 (F.E.); +56-976-629-880 (M.E.)
| |
Collapse
|
6
|
Golovenko M. METABOLIC PROFILE AND MECHANISMS OF GABA-TARGETED RECEPTOR PROPOXAZEPAM METABOLIZATION IN HUMAN HEPATOCYTES. BIOTECHNOLOGIA ACTA 2022. [DOI: 10.15407/biotech15.01.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The aim of this study was to identify the Propoxazepam metabolites, formed by suspension of cryopreserved human hepatocytes, using the precise method of mass LC-MS/MS analysis. Methods. A suitable chromatographic method was developed for the profiling of Propoxazepam and its metabolites. Samples were analyzed using a Waters Vion high resolution LC-MS/MS instrument, and data were examined using Waters Unifi software to determine the identity of the most abundant metabolites. Following a 4-hour incubation with human hepatocytes, intact Propoxazepam molecule accounted for 96.0% of the profile. Its most abundant metabolite was the oxidize. Results. Propoxazepam (3-hydroxyderivative), which accounted for approximately 2.5% of the total peak response in the 4-hour sample. Two minor components were also found, each accounting for < 10% of the total peak response. Glucuronic conjugates have not been found under the experimental conditions. All metabolites formed represented less than 10% of the total chromatographic peak response. Coclusion. The data obtained indicate the absence of reactive electrophilic derivatives among the metabolites of Propoxazepam.
Collapse
|
7
|
Reddoch-Cardenas KM, Cheppudira BP, Garza T, Hopkins CD, Bunker KD, Slee DH, Cap AP, Bynum JA, Christy RJ. Evaluation of KP-1199: a novel acetaminophen analog for hemostatic function and antinociceptive effects. Transfusion 2021; 61 Suppl 1:S234-S242. [PMID: 34269435 DOI: 10.1111/trf.16497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/08/2021] [Accepted: 02/08/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Acetaminophen (APAP) is a widely self-prescribed analgesic for mild to moderate pain, but overdose or repeat doses can lead to liver injury and death. Kalyra Pharmaceuticals has developed a novel APAP analog, KP-1199, currently in Phase 1 clinical studies, which lacks hepatotoxicity. In this study, the authors evaluated the antinociceptive effect of KP-1199 on thermal injury-induced nociceptive behaviors as well as hemostatic parameters using human blood samples. METHODS Full-thickness thermal injury was induced in anesthetized adult male Sprague-Dawley rats. On day 7 post-injury, KP-1199 (30 and 60 mg/kg) or APAP (60 mg/kg) was administered orally. Antinociception of KP-1199 and APAP were assessed at multiple time points using Hargreaves' test. In separate experiments, human whole blood was collected and treated with either KP-1199, APAP, or Vehicle (citrate buffer) at 1× (214 μg/ml) and 10× (2140 μg/ml) concentrations. The treated blood samples were assessed for: clotting function, thrombin generation, and platelet activation. RESULTS APAP did not produce antinociceptive activity. KP-1199 treatment significantly increased the nociceptive threshold, and the antinociceptive activity persisted up to 3 h post-treatment. In human samples, 10× APAP caused significantly prolonged clotting times and increased platelet activation, whereas KP-1199 had caused no negative effects on either parameter tested. CONCLUSION These results suggest that KP-1199 possesses antinociceptive activity in a rat model of thermal injury. Since KP-1199 does not induce platelet activation or inhibit coagulation, it presents an attractive alternative to APAP for analgesia, especially for battlefield or surgical scenarios where blood loss and blood clotting are of concern.
Collapse
Affiliation(s)
| | - Bopaiah P Cheppudira
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, USA
| | - Thomas Garza
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, USA
| | - Chad D Hopkins
- Kalyra Pharmaceuticals, Inc., San Diego, California, USA
| | - Kevin D Bunker
- Kalyra Pharmaceuticals, Inc., San Diego, California, USA
| | | | - Andrew P Cap
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, USA
| | - James A Bynum
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, USA
| | - Robert J Christy
- United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, Texas, USA
| |
Collapse
|
8
|
Dludla PV, Nkambule BB, Mazibuko-Mbeje SE, Nyambuya TM, Silvestri S, Orlando P, Mxinwa V, Louw J, Tiano L. The impact of dimethyl sulfoxide on oxidative stress and cytotoxicity in various experimental models. Toxicology 2021. [DOI: 10.1016/b978-0-12-819092-0.00025-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
9
|
Abd-Allah ER, Abd El-Rahman HA. Influence of doxycycline administration on rat embryonic development during organogenesis. J Biochem Mol Toxicol 2020; 35:e22613. [PMID: 33016600 DOI: 10.1002/jbt.22613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/03/2020] [Accepted: 08/15/2020] [Indexed: 11/06/2022]
Abstract
This experiment was performed to evaluate the possible embryotoxic and teratogenic effects of doxycycline during rat development. Twenty-one female rats were used and distributed into three groups equally (seven animals/group). The low dose group received doxycycline at a dose of 5 mg/kg bw/day orally from the 6th to 14th day of gestation. The high dose group received 10 mg/kg bw/day orally for the same period, the Control group received 1 mL distilled water orally for the same period. The dams were dissected on the 20th day of gestation and their fetuses were subjected to morphological, skeletal, and histological examination. Moreover, DNA damage analysis of liver cells of pregnant rats and their fetuses or fetal skull was assessed by Comet assay. The obtained results showed a significant decrease in fetal body weight, several morphological anomalies, and severe lack of ossification on the skull bones, phalanges, and sternum bone as well as shortness in the ulna and radius bones. Histological studies of pregnant rats revealed congestion and dilatation of the central vein of the liver lobules and fatty degeneration of the hepatocytes. In addition, 20 day-fetuses showed a marked increase of necrotic hepatocytes associated with an increased average of megakaryocytes and periportal leukocytic infiltration. Moreover, doxycycline induced a significant increase in the percentage of DNA damage and tail length of examined samples. Conclusively, doxycycline caused certain fetal abnormalities, so it is advisable to avoid using this drug during pregnancy.
Collapse
Affiliation(s)
- Entsar R Abd-Allah
- Department of Zoology, Faculty of Science, Al-Azhar University, Nasr City, Egypt
| | | |
Collapse
|
10
|
Use of 3D Human Liver Organoids to Predict Drug-Induced Phospholipidosis. Int J Mol Sci 2020; 21:ijms21082982. [PMID: 32340283 PMCID: PMC7216064 DOI: 10.3390/ijms21082982] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Drug-induced phospholipidosis (PL) is a storage disorder caused by the formation of phospholipid-drug complexes in lysosomes. Because of the diversity of PL between species, human cell-based assays have been used to predict drug-induced PL in humans. We established three-dimensional (3D) human liver organoids as described previously and investigated their liver characteristics through multiple analyses. Drug-induced PL was initiated in these organoids and in monolayer HepG2 cultures, and cellular changes were systemically examined. Organoids that underwent differentiation showed characteristics of hepatocytes rather than HepG2 cells. The organoids also survived under PL-inducing drug conditions for 48 h and maintained a more stable albumin secretion level than the HepG2 cells. More cytoplasmic vacuoles were observed in organoids and HepG2 cells treated with more potent PL-induced drugs, but to a greater extent in organoids than in HepG2 cells. Lysosome-associated membrane protein 2, a marker of lysosome membranes, showed a stronger immunohistochemical signal in the organoids. PL-distinctive lamellar bodies were observed only in amiodarone-treated organoids by transmission electron microscopy. Human liver organoids are thus more sensitive to drug-induced PL and less affected by cytotoxicity than HepG2 cells. Since PL is a chronic condition, these results indicate that organoids better reflect metabolite-mediated hepatotoxicity in vivo and could be a valuable system for evaluating the phospholipidogenic effects of different compounds during drug development.
Collapse
|
11
|
Kim G, Choi HK, Lee H, Moon KS, Oh JH, Lee J, Shin JG, Kim DH. Increased hepatic acylcarnitines after oral administration of amiodarone in rats. J Appl Toxicol 2020; 40:1004-1013. [PMID: 32084307 DOI: 10.1002/jat.3960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 02/06/2023]
Abstract
Amiodarone is known to induce hepatic injury in some recipients. We applied an untargeted metabolomics approach to identify endogenous metabolites with potential as biomarkers for amiodarone-induced liver injury. Oral amiodarone administration for 1 week in rats resulted in significant elevation of acylcarnitines and phospholipids in the liver. Hepatic short- and medium-chain acylcarnitines were dramatically increased in a dose-dependent manner, while the serum levels of these acylcarnitines did not change substantially. In addition, glucose levels were significantly increased in both the serum and liver. Gene expression profiling showed that the hepatic mRNA levels of Cpt1, Cpt2, and Acat1 were significantly suppressed, whereas those of Acot1, Acly, Acss2, and Acsl3 were increased. These results suggest that hepatic acylcarnitines and glucose levels might be increased due to disruption of mitochondrial function and suppression of glucose metabolism. Perturbation of energy metabolism might be associated with amiodarone-induced hepatotoxicity.
Collapse
Affiliation(s)
- Gabin Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, South Korea
| | | | - Hwanhui Lee
- College of Pharmacy, Chung-Ang University, Seoul, South Korea
| | | | - Jung Hwa Oh
- Korea Institute of Toxicology, Daejeon, South Korea
| | - Jaeick Lee
- Doping Control Center, Korea Institute of Science and Technology, Seoul, South Korea
| | - Jae Gook Shin
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, South Korea
| | - Dong Hyun Kim
- Department of Pharmacology and PharmacoGenomics Research Center, Inje University College of Medicine, Busan, South Korea
| |
Collapse
|
12
|
Pannala VR, Vinnakota KC, Rawls KD, Estes SK, O'Brien TP, Printz RL, Papin JA, Reifman J, Shiota M, Young JD, Wallqvist A. Mechanistic identification of biofluid metabolite changes as markers of acetaminophen-induced liver toxicity in rats. Toxicol Appl Pharmacol 2019; 372:19-32. [PMID: 30974156 DOI: 10.1016/j.taap.2019.04.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/22/2019] [Accepted: 04/05/2019] [Indexed: 12/12/2022]
Abstract
Acetaminophen (APAP) is the most commonly used analgesic and antipyretic drug in the world. Yet, it poses a major risk of liver injury when taken in excess of the therapeutic dose. Current clinical markers do not detect the early onset of liver injury associated with excess APAP-information that is vital to reverse injury progression through available therapeutic interventions. Hence, several studies have used transcriptomics, proteomics, and metabolomics technologies, both independently and in combination, in an attempt to discover potential early markers of liver injury. However, the casual relationship between these observations and their relation to the APAP mechanism of liver toxicity are not clearly understood. Here, we used Sprague-Dawley rats orally gavaged with a single dose of 2 g/kg of APAP to collect tissue samples from the liver and kidney for transcriptomic analysis and plasma and urine samples for metabolomic analysis. We developed and used a multi-tissue, metabolism-based modeling approach to integrate these data, characterize the effect of excess APAP levels on liver metabolism, and identify a panel of plasma and urine metabolites that are associated with APAP-induced liver toxicity. Our analyses, which indicated that pathways involved in nucleotide-, lipid-, and amino acid-related metabolism in the liver were most strongly affected within 10 h following APAP treatment, identified a list of potential metabolites in these pathways that could serve as plausible markers of APAP-induced liver injury. Our approach identifies toxicant-induced changes in endogenous metabolism, is applicable to other toxicants based on transcriptomic data, and provides a mechanistic framework for interpreting metabolite alterations.
Collapse
Affiliation(s)
- Venkat R Pannala
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA.
| | - Kalyan C Vinnakota
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA; Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Kristopher D Rawls
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, Virginia 22908, USA
| | - Shanea K Estes
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Tracy P O'Brien
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Richard L Printz
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jason A Papin
- Department of Biomedical Engineering, University of Virginia, Box 800759, Health System, Charlottesville, Virginia 22908, USA
| | - Jaques Reifman
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA
| | - Masakazu Shiota
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Jamey D Young
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Chemical and Biomolecular Engineering, Vanderbilt University School of Engineering, Nashville, TN 37232, USA.
| | - Anders Wallqvist
- Department of Defense Biotechnology High Performance Computing Software Applications Institute, Telemedicine and Advanced Technology Research Center, U.S. Army Medical Research and Materiel Command, Fort Detrick, MD 21702, USA.
| |
Collapse
|
13
|
Han W, Wu Q, Zhang X, Duan Z. Innovation for hepatotoxicity in vitro research models: A review. J Appl Toxicol 2018; 39:146-162. [PMID: 30182494 DOI: 10.1002/jat.3711] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Revised: 07/11/2018] [Accepted: 07/13/2018] [Indexed: 12/18/2022]
Abstract
Many categories of drugs can induce hepatotoxicity, so improving the prediction of toxic drugs is important. In vitro models using human hepatocytes are more accurate than in vivo animal models. Good in vitro models require an abundance of metabolic enzyme activities and normal cellular polarity. However, none of the in vitro models can completely simulate hepatocytes in the human body. There are two ways to overcome this limitation: enhancing the metabolic function of hepatocytes and changing the cultural environment. In this review, we summarize the current state of research, including the main characteristics of in vitro models and their limitations, as well as improved technology and developmental prospects. We hope that this review provides some new ideas for hepatotoxicity research.
Collapse
Affiliation(s)
- Weijia Han
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Qiao Wu
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Xiaohui Zhang
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| | - Zhongping Duan
- Artificial Liver Center, Beijing Youan Hospital; Capital Medical University; Beijing China
- Beijing Key Laboratory of Liver Failure; Artificial Liver Treatment and Research; Beijing China
| |
Collapse
|
14
|
Orbach SM, Cassin ME, Ehrich MF, Rajagopalan P. Investigating acetaminophen hepatotoxicity in multi-cellular organotypic liver models. Toxicol In Vitro 2017; 42:10-20. [DOI: 10.1016/j.tiv.2017.03.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 02/24/2017] [Accepted: 03/17/2017] [Indexed: 01/06/2023]
|
15
|
Rodrigues S, Antunes SC, Nunes B, Correia AT. Histological alterations in gills and liver of rainbow trout (Oncorhynchus mykiss) after exposure to the antibiotic oxytetracycline. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2017; 53:164-176. [PMID: 28599186 DOI: 10.1016/j.etap.2017.05.012] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 05/19/2017] [Accepted: 05/24/2017] [Indexed: 06/07/2023]
Abstract
The aim of this study was to investigate the histopathological effects of oxytetracycline (OTC) on the gill and liver tissues of rainbow trouts (Oncorhynchus mykiss) following acute (96h: 0.005-50mg/L) and chronic (28days: 0.3125-5μg/L) exposures. Results suggest the existence of a cause-and-effect relationship between the exposure to OTC and tissue damage. Most predominant disorders observed in gills were progressive (e.g. hypertrophy of mucous cells and hyperplasia of epithelial cells) in acute exposure and regressive (e.g. lamellar fusion, epithelial lifting of lamellae and some changes in tissue architecture) in chronic exposure. However, only the acute exposure was responsible for a significant increase of the total gill pathological index. PAGE index, reflecting the extent of gill tissue available for gas exchanges in fish, remained unchanged for both exposures. In liver, circulatory (e.g. hemorrhage and increase of sinusoidal space), regressive (e.g. pyknotic nucleus, vacuolization and hepatocellular degenerations) and progressive (e.g. hypertrophy of hepatocytes) changes were observed, but just after acute exposure. After chronic exposure, only inflammatory changes (e.g. leucocytes infiltration) were observed. Following both exposures, a significant increase of the total liver pathological index was recorded. Despite the increase of the histological damage in individuals exposed to OTC, lesions observed were of minimal or moderate pathological importance, non-specific and reversible. The data gathered following acute and chronic exposures also suggest the onset of adaptive mechanisms of fish, namely for longer exposure periods. Furthermore the observed histological alterations appear to be result of several physio-metabolic disorders consequence of the biochemical and molecular modes of action of OTC.
Collapse
Affiliation(s)
- S Rodrigues
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - S C Antunes
- Departamento de Biologia da Faculdade de Ciências da Universidade do Porto (FCUP), Rua do Campo Alegre s/n, 4169-007 Porto, Portugal; Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - B Nunes
- Departamento de Biologia, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal; Centro de Estudos do Ambiente e do Mar (CESAM), Campus de Santiago, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - A T Correia
- Centro Interdisciplinar de Investigação Marinha e Ambiental (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; Faculdade de Ciências da Saúde da Universidade Fernando Pessoa (FCS-UFP), Rua Carlos da Maia, 296, 4200-150, Porto, Portugal.
| |
Collapse
|
16
|
Tamai S, Iguchi T, Niino N, Mikamoto K, Sakurai K, Sayama A, Shimoda H, Takasaki W, Mori K. A monkey model of acetaminophen-induced hepatotoxicity; phenotypic similarity to human. J Toxicol Sci 2017; 42:73-84. [PMID: 28070111 DOI: 10.2131/jts.42.73] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Species-specific differences in the hepatotoxicity of acetaminophen (APAP) have been shown. To establish a monkey model of APAP-induced hepatotoxicity, which has not been previously reported, APAP at doses up to 2,000 mg/kg was administered orally to fasting male and female cynomolgus monkeys (n = 3-5/group) pretreated intravenously with or without 300 mg/kg of the glutathione biosynthesis inhibitor, L-buthionine-(S,R)-sulfoximine (BSO). In all the animals, APAP at 2,000 mg/kg with BSO but not without BSO induced hepatotoxicity, which was characterized histopathologically by centrilobular necrosis and vacuolation of hepatocytes. Plasma levels of APAP and its reactive metabolite N-acethyl-p-benzoquinone imine (NAPQI) increased 4 to 7 hr after the APAP treatment. The mean Cmax level of APAP at 2,000 mg/kg with BSO was approximately 200 µg/mL, which was comparable to high-risk cutoff value of the Rumack-Matthew nomogram. Interestingly, plasma alanine aminotransferase (ALT) did not change until 7 hr and increased 24 hr or later after the APAP treatment, indicating that this phenotypic outcome was similar to that in humans. In addition, circulating liver-specific miR-122 and miR-192 levels also increased 24 hr or later compared with ALT, suggesting that circulating miR-122 and miR-192 may serve as potential biomarkers to detect hepatotoxicity in cynomolgus monkeys. These results suggest that the hepatotoxicity induced by APAP in the monkey model shown here was translatable to humans in terms of toxicokinetics and its toxic nature, and this model would be useful to investigate mechanisms of drug-induced liver injury and also potential translational biomarkers in humans.
Collapse
Affiliation(s)
- Satoshi Tamai
- Medicinal Safety Research Laboratories, Daiichi Sankyo Co., Ltd
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
TAMH: A Useful In Vitro Model for Assessing Hepatotoxic Mechanisms. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4780872. [PMID: 28074186 PMCID: PMC5198153 DOI: 10.1155/2016/4780872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/10/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023]
Abstract
In vitro models for hepatotoxicity can be useful tools to predict in vivo responses. In this review, we discuss the use of the transforming growth factor-α transgenic mouse hepatocyte (TAMH) cell line, which is an attractive model to study drug-induced liver injury due to its ability to retain a stable phenotype and express drug-metabolizing enzymes. Hepatotoxicity involves damage to the liver and is often associated with chemical exposure. Since the liver is a major site for drug metabolism, drug-induced liver injury is a serious health concern for certain agents. At the molecular level, various mechanisms may protect or harm the liver during drug-induced hepatocellular injury including signaling pathways and endogenous factors (e.g., Bcl-2, GSH, Nrf2, or MAPK). The interplay between these and other pathways in the hepatocyte can change upon drug or drug metabolite exposure leading to intracellular stress and eventually cell death and liver injury. This review focuses on mechanistic studies investigating drug-induced toxicity in the TAMH line and how alterations to hepatotoxic mechanisms in this model relate to the in vivo situation. The agents discussed herein include acetaminophen (APAP), tetrafluoroethylcysteine (TFEC), flutamide, PD0325901, lapatinib, and flupirtine.
Collapse
|
18
|
Gao Y, Cao Z, Yang X, Abdelmegeed MA, Sun J, Chen S, Beger RD, Davis K, Salminen WF, Song BJ, Mendrick DL, Yu LR. Proteomic analysis of acetaminophen-induced hepatotoxicity and identification of heme oxygenase 1 as a potential plasma biomarker of liver injury. Proteomics Clin Appl 2016; 11. [PMID: 27634590 DOI: 10.1002/prca.201600123] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 09/02/2016] [Accepted: 09/13/2016] [Indexed: 02/06/2023]
Abstract
PURPOSE Overdose of acetaminophen (APAP) is a major cause of acute liver failure. This study was aimed to identify pathways related to hepatotoxicity and potential biomarkers of liver injury. EXPERIMENTAL DESIGN Rats were treated with low (100 mg/kg) and high (1250 mg/kg) doses of APAP, and liver tissues at 6 and 24 h post-treatment were analyzed using a proteomic approach of 16O/18O labeling and 2D-LC-MS/MS. RESULTS Molecular pathways evolved progressively from scattered and less significant perturbations to more focused and significant alterations in a dose- and time-dependent manner upon APAP treatment. Imbalanced expression of hemeoxygenase 1 (HMOX1) and biliverdin reductase A (BLVRA) was associated with hepatotoxicity. Protein abundance changes of a total of 31 proteins were uniquely correlated to liver damage, among which a dramatic increase of HMOX1 levels in plasma was observed. Liver injury-associated significant elevation of plasma HMOX1 was further validated in mice treated with APAP. CONCLUSIONS AND CLINICAL RELEVANCE This study unveiled molecular changes associated with APAP-induced liver toxicity at the pathway levels and identified HMOX1 as a potential plasma biomarker of liver injury.
Collapse
Affiliation(s)
- Yuan Gao
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Zhijun Cao
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Xi Yang
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Mohamed A Abdelmegeed
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Jinchun Sun
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Si Chen
- Division of Biochemical Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Richard D Beger
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Kelly Davis
- Toxicologic Pathology Associates, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - William F Salminen
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Byoung-Joon Song
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Donna L Mendrick
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Li-Rong Yu
- Division of Systems Biology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| |
Collapse
|
19
|
Takai S, Oda S, Tsuneyama K, Fukami T, Nakajima M, Yokoi T. Establishment of a mouse model for amiodarone-induced liver injury and analyses of its hepatotoxic mechanism. J Appl Toxicol 2016; 36:35-47. [DOI: 10.1002/jat.3141] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Affiliation(s)
- Shohei Takai
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences; Kanazawa University; Kakuma-machi Kanazawa 920-1192 Japan
| | - Shingo Oda
- Department of Drug Safety Sciences; Nagoya University Graduate School of Medicine; 65 Tsurumai-cho, Showa-ku Nagoya 466-8550 Japan
| | - Koichi Tsuneyama
- Department of Diagnostic Pathology, Graduate School of Medicine and Pharmaceutical Science for Research; University of Toyama; Sugitani Toyama 930-0194 Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences; Kanazawa University; Kakuma-machi Kanazawa 920-1192 Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences; Kanazawa University; Kakuma-machi Kanazawa 920-1192 Japan
| | - Tsuyoshi Yokoi
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences; Kanazawa University; Kakuma-machi Kanazawa 920-1192 Japan
- Department of Drug Safety Sciences; Nagoya University Graduate School of Medicine; 65 Tsurumai-cho, Showa-ku Nagoya 466-8550 Japan
| |
Collapse
|
20
|
Antioxidant activity of extract and its major constituents from okra seed on rat hepatocytes injured by carbon tetrachloride. BIOMED RESEARCH INTERNATIONAL 2014; 2014:341291. [PMID: 24719856 PMCID: PMC3955651 DOI: 10.1155/2014/341291] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 01/16/2014] [Indexed: 11/18/2022]
Abstract
The antioxidant activities and protective effects of total phenolic extracts (TPE) and their major components from okra seeds on oxidative stress induced by carbon tetrachloride (CCl4) in rat hepatocyte cell line were investigated. The major phenolic compounds were identified as quercetin 3-O-glucosyl (1 → 6) glucoside (QDG) and quercetin 3-O-glucoside (QG). TPE, QG, and QDG from okra seeds exhibited excellent reducing power and free radical scavenging capabilities including α, α-diphenyl-β-picrylhydrazyl (DPPH), superoxide anions, and hydroxyl radical. Overall, DPPH radical scavenging activity and reducing power of QG and QDG were higher than those of TPE while superoxide and hydroxyl radical scavenging activities of QG and TPE were higher than those of QDG. Furthermore, TPE, QG, and QDG pretreatments significantly alleviated the cytotoxicity of CCl4 on rat hepatocytes, with attenuated lipid peroxidation, increased SOD and CAT activities, and decreased GPT and GOT activities. The protective effects of TPE and QG on rat hepatocytes were stronger than those of QDG. However, the cytotoxicity of CCl4 on rat hepatocytes was not affected by TPE, QG, and QDG posttreatments. It was suggested that the protective effects of TPE, QG, and QDG on rat hepatocyte against oxidative stress were related to the direct antioxidant capabilities and the induced antioxidant enzymes activities.
Collapse
|
21
|
Ingawale DK, Mandlik SK, Naik SR. Models of hepatotoxicity and the underlying cellular, biochemical and immunological mechanism(s): a critical discussion. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 37:118-133. [PMID: 24322620 DOI: 10.1016/j.etap.2013.08.015] [Citation(s) in RCA: 160] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 08/27/2013] [Accepted: 08/31/2013] [Indexed: 06/03/2023]
Abstract
Liver is a primary organ involved in biotransformation of food and drugs. Hepatic diseases are a major worldwide problem. Hepatic disorders are mainly caused by toxic chemicals (alcohol), xenobiotics (carbon tetrachloride, chlorinated hydrocarbons and gases CO₂ and O₂) anticancer (azathioprine, doxorubicin, cisplatin), immunosuppressant (cyclosporine), analgesic anti-inflammatory (paracetamol, thioacetamide), anti-tubercular (isoniazid, rifampicin) drugs, biologicals (Bacillus-Calmette-Guerin vaccine), radiations (gamma radiations), heavy metals (cadmium, arsenic), mycotoxin (aflatoxin), galactosamine, lipopolysaccharides, etc. Various risk factors for hepatic injury include concomitant hepatic diseases, age, gender, alcoholism, nutrition and genetic polymorphisms of cytochrome P450 enzymes have also been emphasized. The present review enumerates various in vivo animal models and in vitro methods of hepatic injury using diverse toxicants, their probable metabolic pathways, and numerous biochemical changes viz. serum biomarkers enzymes, liver function, oxidative stress associated events like free radicals formation, lipid peroxidation, enzyme antioxidants and participation of cytokines (tumour necrosis factor-α, transforming growth factor-β, tumour necrosis factor-related apoptosis inducing ligand), and other biomolecules (Fas and C-jun N-terminal kinase) are also discussed. The underlying cellular, molecular, immunological, and biochemical mechanism(s) of action responsible for liver damage (toxicity) are also been discussed. This review should be immensely useful for researchers especially for phytochemists, pharmacologists and toxicologists working on hepatotoxicity, hepatotoxic chemicals and drugs, hepatoprotective agents and drug research organizations involved especially in phytopharmaceuticals and other natural products.
Collapse
Affiliation(s)
- Deepa K Ingawale
- Sinhgad Technical Education Society's, Sinhgad Institute of Pharmaceutical Sciences, S. No. 309/310, Off Mumbai-Pune Expressway, Kusgaon (Bk.), Lonavala, Pune 410 401, Maharashtra, India
| | - Satish K Mandlik
- Sinhgad College of Pharmacy, S. No. 44/1, Vadgaon (Bk.), Off Sinhgad Road, Pune 411 041, Maharashtra, India
| | - Suresh R Naik
- Sinhgad Technical Education Society's, Sinhgad Institute of Pharmaceutical Sciences, S. No. 309/310, Off Mumbai-Pune Expressway, Kusgaon (Bk.), Lonavala, Pune 410 401, Maharashtra, India.
| |
Collapse
|
22
|
Tolosa L, Rodeiro I, Donato MT, Herrera JA, Delgado R, Castell JV, Gómez-Lechón MJ. Multiparametric evaluation of the cytoprotective effect of the Mangifera indica L. stem bark extract and mangiferin in HepG2 cells. ACTA ACUST UNITED AC 2013; 65:1073-82. [PMID: 23738735 DOI: 10.1111/jphp.12071] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 03/18/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Mango (Mangifera indica L.) stem bark extract (MSBE) is a natural product with biological properties and mangiferin is the major component. This paper reported the evaluation of the protective effects of MSBE and mangiferin against the toxicity induced in HepG2 cells by tert-butyl hydroperoxide or amiodarone. METHOD Nuclear morphology, cell viability, intracellular calcium concentration and reactive oxygen species (ROS) production were measured by using a high-content screening multiparametric assay. KEY FINDINGS MSBE and mangiferin produced no toxicity below 500 mg/ml doses. A marked recovery in cell viability, which was reduced by the toxicants, was observed in cells pre-exposed to MSBE or mangiferin at 5-100 mg/ml doses. We also explored the possible interaction of both products over P-glycoprotein (P-gp). MSBE and mangiferin above 100 mg/ml inhibited the activity of P-gp in HepG2 cells. CONCLUSIONS MSBE and mangiferin showed cytoprotective effects of against oxidative damage and mitochondrial toxicity induced by xenobiotics to human hepatic cells but it seemed that other constituents of the extract could contribute to MSBE protective properties. In addition, the drug efflux should be taken into account because of the inhibition of the P-gp function observed in those cells exposed to both natural products.
Collapse
Affiliation(s)
- Laia Tolosa
- Unidad de Hepatología Experimental, Centro de Investigación, Hospital La Fe, Valencia, Spain
| | | | | | | | | | | | | |
Collapse
|
23
|
Cho YE, Kim SH, Baek MC. Proteome profiling of tolbutamide-treated rat primary hepatocytes using nano LC-MS/MS and label-free protein quantitation. Electrophoresis 2012; 33:2806-17. [PMID: 22911336 DOI: 10.1002/elps.201200193] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Revised: 05/10/2012] [Accepted: 05/15/2012] [Indexed: 11/06/2022]
Abstract
Tolbutamide is used as a first line oral antihyperglycemic drug for type 2 diabetes. One side effect of this drug, hepatotoxicity, is well recognized; however, the precise mechanisms underlying tolbutamide-induced hepatotoxicity remain unclear. In this respect, proteomics techniques were used to gain further insight into the mechanistic processes of the hepatotoxicity induced by this drug. In this study, we aimed to identify molecular pathways based on proteins responding to cellular toxicity in tolbutamide-treated primary hepatocytes, using nano UPLC-MS/MS analysis. Rat primary hepatocytes were treated with an IC(20) concentration for 24 h to study the hepatotoxic effects of tolbutamide. For high-throughput label-free quantitation, tryptic-digested peptides of proteins from cell lysates were analyzed using LC-MS/MS and quantitated using the IDEAL-Q software, in which several parameters, such as assisted sequence, elution time, and mass-to-charge ratio were included. We quantified a total of 330 distinct proteins from the tolbutamide-treated hepatocytes and identified 55 upregulated and 82 downregulated proteins with expression changes. Among these differentially expressed proteins, we focused mainly on the 18 upregulated proteins belonging to xenobiotic cytochrome P450 (CYP), drug metabolism/detoxification, oxidative stress/antioxidant response, and cell damage pathway. CYP2D1, CYP2C11, UDP-glucuronosyltransferase 2B (UGT2B), superoxide dismutase 2 (SOD2), 60 kDa heat shock protein (HSPD1), heat shock protein 90 (HSP90), and catalase (CAT) were confirmed by Western blot analysis. In addition, various xenobiotic CYP proteins upregulated in the tolbutamide-treated group, CYP2D1, CYP2C13, and CYP2C11 were confirmed by reverse transcriptase-PCR analysis. Our results offer important new insights into the molecular mechanisms of tolbutamide-induced hepatotoxicity.
Collapse
Affiliation(s)
- Young-Eun Cho
- Department of Molecular Medicine, Kyungpook National University, Daegu, Republic of Korea
| | | | | |
Collapse
|
24
|
Van Summeren A, Renes J, van Delft JH, Kleinjans JC, Mariman EC. Proteomics in the search for mechanisms and biomarkers of drug-induced hepatotoxicity. Toxicol In Vitro 2012; 26:373-85. [DOI: 10.1016/j.tiv.2012.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2011] [Revised: 12/22/2011] [Accepted: 01/09/2012] [Indexed: 10/14/2022]
|
25
|
Jetten MJA, Gaj S, Ruiz-Aracama A, de Kok TM, van Delft JHM, Lommen A, van Someren EP, Jennen DGJ, Claessen SM, Peijnenburg AACM, Stierum RH, Kleinjans JCS. 'Omics analysis of low dose acetaminophen intake demonstrates novel response pathways in humans. Toxicol Appl Pharmacol 2012; 259:320-8. [PMID: 22285215 DOI: 10.1016/j.taap.2012.01.009] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2011] [Revised: 01/10/2012] [Accepted: 01/11/2012] [Indexed: 12/25/2022]
Abstract
Acetaminophen is the primary cause of acute liver toxicity in Europe/USA, which led the FDA to reconsider recommendations concerning safe acetaminophen dosage/use. Unfortunately, the current tests for liver toxicity are no ideal predictive markers for liver injury, i.e. they only measure acetaminophen exposure after profound liver toxicity has already occurred. Furthermore, these tests do not provide mechanistic information. Here, 'omics techniques (global analysis of metabolomic/gene-expression responses) may provide additional insight. To better understand acetaminophen-induced responses at low doses, we evaluated the effects of (sub-)therapeutic acetaminophen doses on metabolite formation and global gene-expression changes (including, for the first time, full-genome human miRNA expression changes) in blood/urine samples from healthy human volunteers. Many known and several new acetaminophen-metabolites were detected, in particular in relation to hepatotoxicity-linked, oxidative metabolism of acetaminophen. Transcriptomic changes indicated immune-modulating effects (2g dose) and oxidative stress responses (4g dose). For the first time, effects of acetaminophen on full-genome human miRNA expression have been considered and confirmed the findings on mRNA level. 'Omics techniques outperformed clinical chemistry tests and revealed novel response pathways to acetaminophen in humans. Although no definitive conclusion about potential immunotoxic effects of acetaminophen can be drawn from this study, there are clear indications that the immune system is triggered even after intake of low doses of acetaminophen. Also, oxidative stress-related gene responses, similar to those seen after high dose acetaminophen exposure, suggest the occurrence of possible pre-toxic effects of therapeutic acetaminophen doses. Possibly, these effects are related to dose-dependent increases in levels of hepatotoxicity-related metabolites.
Collapse
Affiliation(s)
- Marlon J A Jetten
- Department of Toxicogenomics, Maastricht University, Universitiessingel 50 6229 ER Maastricht, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
ANENE-NZELU CHUKWUEMEKA, WANG YAN, YU HANRY, LIANG LEOHWA. LIVER TISSUE MODEL FOR DRUG TOXICITY SCREENING. J MECH MED BIOL 2011. [DOI: 10.1142/s0219519411004083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Understanding the mechanisms involved in the biotransformation of new drugs and their toxicological implications is important for drug development. In this regard, a lot of effort has been put into research to recreate the liver tissue in the laboratory for the purpose of drug screening. This has also helped to minimize the use of laboratory animal and reduce incidence of post-market withdrawal of drugs. Despite the progress made so far, cell source remains a major limitation since primary human hepatocytes are scarce and the various cell alternatives do not express all the genes found in the normal liver. In terms of tissue construct, there is a current shift to 3D models since the cell–cell interactions found in the 3D configuration enhance the morphology and function of hepatocytes. Furthermore, the engineered tissue's performance can be optimized by cocultures, perfusion-based systems, and the use of scaffolds. Nanotechnology seems promising in the field of tissue engineering, as it has been proven that cell–matrix interactions at the nano level can influence greatly on the outcome of the tissue. The review explores the various cell sources, the 3D model, flow-based systems, cocultures, and nanoscaffolds use in hepatocytes in vitro drug testing
Collapse
Affiliation(s)
| | - YAN WANG
- Zhujiang Hospital, Southern Medical University, Guangzhou, China
- Institute of Bioengineering and Nanotechnology, Singapore
| | - HANRY YU
- Institute of Bioengineering and Nanotechnology, Singapore
- Department of Physiology, National University of Singapore, Singapore
| | - LEO HWA LIANG
- Division of Bioengineering, National University of Singapore, Singapore
| |
Collapse
|
27
|
Moeller TA, Shukla SJ, Xia M. Assessment of compound hepatotoxicity using human plateable cryopreserved hepatocytes in a 1536-well-plate format. Assay Drug Dev Technol 2011; 10:78-87. [PMID: 22053711 DOI: 10.1089/adt.2010.0365] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hepatotoxicity is a major concern for both drug development and toxicological evaluation of environmental chemicals. The assessment of compound-induced hepatotoxicity has traditionally relied on in vivo testing; however, it is being replaced by human in vitro models due to an emphasis on the reduction of animal testing and species-specific differences. Since most cell lines and hybridomas lack the full complement of enzymes at physiological levels found in the liver, primary hepatocytes are the gold standard to study liver toxicities in vitro due to the retention of most of their in vivo activities. Here, we optimized a cell viability assay using plateable cryopreserved human hepatocytes in a 1536-well-plate format. The assay was validated by deriving inhibitory concentration at 50% values for 12 known compounds, including tamoxifen, staurosporine, and phenylmercuric acetate, with regard to hepatotoxicity and general cytotoxicity using multiple hepatocyte donors. The assay performed well, and the cytotoxicity of these compounds was confirmed in comparison to HepG2 cells. This is the first study to report the reliability of using plateable cryopreserved human hepatocytes for cytotoxicity studies in a 1536-well-plate format. These results suggest that plateable cryopreserved human hepatocytes can be scaled up for screening a large compound library and may be amenable to other hepatocytic assays such as metabolic or drug safety studies.
Collapse
|
28
|
Toyoda Y, Tamai M, Kashikura K, Kobayashi S, Fujiyama Y, Soga T, Tagawa YI. Acetaminophen-Induced Hepatotoxicity in a Liver Tissue Model Consisting of Primary Hepatocytes Assembling around an Endothelial Cell Network. Drug Metab Dispos 2011; 40:169-77. [DOI: 10.1124/dmd.111.041137] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
|
29
|
Adler S, Basketter D, Creton S, Pelkonen O, van Benthem J, Zuang V, Andersen KE, Angers-Loustau A, Aptula A, Bal-Price A, Benfenati E, Bernauer U, Bessems J, Bois FY, Boobis A, Brandon E, Bremer S, Broschard T, Casati S, Coecke S, Corvi R, Cronin M, Daston G, Dekant W, Felter S, Grignard E, Gundert-Remy U, Heinonen T, Kimber I, Kleinjans J, Komulainen H, Kreiling R, Kreysa J, Leite SB, Loizou G, Maxwell G, Mazzatorta P, Munn S, Pfuhler S, Phrakonkham P, Piersma A, Poth A, Prieto P, Repetto G, Rogiers V, Schoeters G, Schwarz M, Serafimova R, Tähti H, Testai E, van Delft J, van Loveren H, Vinken M, Worth A, Zaldivar JM. Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 2011; 85:367-485. [PMID: 21533817 DOI: 10.1007/s00204-011-0693-2] [Citation(s) in RCA: 358] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/03/2011] [Indexed: 01/09/2023]
Abstract
The 7th amendment to the EU Cosmetics Directive prohibits to put animal-tested cosmetics on the market in Europe after 2013. In that context, the European Commission invited stakeholder bodies (industry, non-governmental organisations, EU Member States, and the Commission's Scientific Committee on Consumer Safety) to identify scientific experts in five toxicological areas, i.e. toxicokinetics, repeated dose toxicity, carcinogenicity, skin sensitisation, and reproductive toxicity for which the Directive foresees that the 2013 deadline could be further extended in case alternative and validated methods would not be available in time. The selected experts were asked to analyse the status and prospects of alternative methods and to provide a scientifically sound estimate of the time necessary to achieve full replacement of animal testing. In summary, the experts confirmed that it will take at least another 7-9 years for the replacement of the current in vivo animal tests used for the safety assessment of cosmetic ingredients for skin sensitisation. However, the experts were also of the opinion that alternative methods may be able to give hazard information, i.e. to differentiate between sensitisers and non-sensitisers, ahead of 2017. This would, however, not provide the complete picture of what is a safe exposure because the relative potency of a sensitiser would not be known. For toxicokinetics, the timeframe was 5-7 years to develop the models still lacking to predict lung absorption and renal/biliary excretion, and even longer to integrate the methods to fully replace the animal toxicokinetic models. For the systemic toxicological endpoints of repeated dose toxicity, carcinogenicity and reproductive toxicity, the time horizon for full replacement could not be estimated.
Collapse
Affiliation(s)
- Sarah Adler
- Centre for Documentation and Evaluation of Alternatives to Animal Experiments (ZEBET), Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Van Summeren A, Renes J, Bouwman FG, Noben JP, van Delft JHM, Kleinjans JCS, Mariman ECM. Proteomics Investigations of Drug-Induced Hepatotoxicity in HepG2 Cells. Toxicol Sci 2010; 120:109-22. [DOI: 10.1093/toxsci/kfq380] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
31
|
Kienhuis AS, Bessems JGM, Pennings JLA, Driessen M, Luijten M, van Delft JHM, Peijnenburg AACM, van der Ven LTM. Application of toxicogenomics in hepatic systems toxicology for risk assessment: acetaminophen as a case study. Toxicol Appl Pharmacol 2010; 250:96-107. [PMID: 20970440 DOI: 10.1016/j.taap.2010.10.013] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/06/2010] [Accepted: 10/14/2010] [Indexed: 11/18/2022]
Abstract
Hepatic systems toxicology is the integrative analysis of toxicogenomic technologies, e.g., transcriptomics, proteomics, and metabolomics, in combination with traditional toxicology measures to improve the understanding of mechanisms of hepatotoxic action. Hepatic toxicology studies that have employed toxicogenomic technologies to date have already provided a proof of principle for the value of hepatic systems toxicology in hazard identification. In the present review, acetaminophen is used as a model compound to discuss the application of toxicogenomics in hepatic systems toxicology for its potential role in the risk assessment process, to progress from hazard identification towards hazard characterization. The toxicogenomics-based parallelogram is used to identify current achievements and limitations of acetaminophen toxicogenomic in vivo and in vitro studies for in vitro-to-in vivo and interspecies comparisons, with the ultimate aim to extrapolate animal studies to humans in vivo. This article provides a model for comparison of more species and more in vitro models enhancing the robustness of common toxicogenomic responses and their relevance to human risk assessment. To progress to quantitative dose-response analysis needed for hazard characterization, in hepatic systems toxicology studies, generation of toxicogenomic data of multiple doses/concentrations and time points is required. Newly developed bioinformatics tools for quantitative analysis of toxicogenomic data can aid in the elucidation of dose-responsive effects. The challenge herein is to assess which toxicogenomic responses are relevant for induction of the apical effect and whether perturbations are sufficient for the induction of downstream events, eventually causing toxicity.
Collapse
Affiliation(s)
- Anne S Kienhuis
- Laboratory for Health Protection Research, National Institute of Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Evaluation of amiodarone-induced phospholipidosis by in vitro system of 3D cultured rat hepatocytes in gel entrapment. Biochem Eng J 2010. [DOI: 10.1016/j.bej.2009.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
33
|
Meng Q. Three-dimensional culture of hepatocytes for prediction of drug-induced hepatotoxicity. Expert Opin Drug Metab Toxicol 2010; 6:733-46. [DOI: 10.1517/17425251003674356] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Identification of potential genomic biomarkers for early detection of chemically induced cardiotoxicity in rats. Toxicology 2010; 271:36-44. [DOI: 10.1016/j.tox.2010.02.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2009] [Revised: 02/25/2010] [Accepted: 02/26/2010] [Indexed: 11/22/2022]
|
35
|
Gómez-Lechón MJ, Castell JV, Donato MT. The use of hepatocytes to investigate drug toxicity. Methods Mol Biol 2010; 640:389-415. [PMID: 20645064 DOI: 10.1007/978-1-60761-688-7_21] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The liver is very active in metabolizing foreign compounds and the major target for toxicity caused by drugs. Hepatotoxicity may be the result of the drug itself or, more frequently, a result of the bioactivation process and the production of reactive metabolites. Prioritization of compounds based on human hepatotoxicity potential is currently a key unmet need in drug discovery, as it can become a major problem for several lead compounds in later stages of the drug discovery pipeline. Therefore, evaluation of potential hepatotoxicity represents a critical step in the development of new drugs. Cultured hepatocytes are increasingly used by the pharmaceutical industry for the screening of hepatotoxic potential of new molecules. Hepatocytes in culture retain hepatic key functions and constitute a valuable tool to identify chemically induced cellular damage. Their use has notably contributed to the understanding of mechanisms responsible for hepatotoxicity (disruption of cellular energy status, alteration of Ca(2+) homeostasis, inhibition of transport systems, metabolic activation, oxidative stress, covalent binding, etc.). Assessment of current cytotoxicity and hepatic-specific biochemical effects is limited by the inability to measure a wide spectrum of potential mechanistic changes involved in the drug-induced toxic injury. A convenient selection of endpoints allows a multiparametric evaluation of drug toxicity. In this regard, cytomic, proteomic, toxicogenomic and metabonomic approaches help to define patterns of hepatotoxicity for early identification of potential adverse effects of the drug to the liver.
Collapse
Affiliation(s)
- María José Gómez-Lechón
- Unidad de Hepatología Experimental, Centro de Investigación, Hospital La Fe, Valencia, Spain
| | | | | |
Collapse
|
36
|
A toxicogenomics-based parallelogram approach to evaluate the relevance of coumarin-induced responses in primary human hepatocytes in vitro for humans in vivo. Toxicol In Vitro 2009; 23:1163-9. [DOI: 10.1016/j.tiv.2009.06.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 06/02/2009] [Accepted: 06/09/2009] [Indexed: 11/23/2022]
|
37
|
Yoshikawa Y, Morita M, Hosomi H, Tsuneyama K, Fukami T, Nakajima M, Yokoi T. Knockdown of superoxide dismutase 2 enhances acetaminophen-induced hepatotoxicity in rat. Toxicology 2009; 264:89-95. [PMID: 19647030 DOI: 10.1016/j.tox.2009.07.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2009] [Revised: 07/22/2009] [Accepted: 07/23/2009] [Indexed: 01/03/2023]
Abstract
Drug-induced hepatotoxicity is a major problem in drug development, and oxidative stress is known as one of the causes. Superoxide dismutases (SODs) are important antioxidant enzymes against reactive oxygen species (ROS). Mitochondria are the major source of superoxide production, and SOD2 is mainly localized in mitochondria and, with other SODs, plays an important role in scavenging superoxide. Previously, we reported the establishment of an adenovirus vector with short hairpin RNA against rat SOD2 (AdSOD2-shRNA), and applied this to evaluate drug-induced cytotoxicity. In this study, infection of AdSOD2-shRNA to Fisher 344 rats resulted in a significant decrease of SOD2 mRNA, protein expression, and SOD2 enzyme activity to 28%, 35%, and 39%, respectively, 7 days after infection. Serum AST and ALT were significantly increased by single oral administration of acetaminophen (1000 mg/kg) to these SOD2-knockdown rats without fasting compared with the control adenovirus infected groups. Heme oxygenase-1 protein, known to be induced by oxidative stress, was detected in SOD2-knockdown rats administered acetaminophen. In addition, protein carbonyl and lipid peroxidation, also known to be induced by oxidative stress, were significantly increased in SOD2 knockdown rats. This is the first report of a SOD2-knockdown rat model that could be useful to evaluate the drug-induced hepatotoxicity with high sensitivity.
Collapse
Affiliation(s)
- Yukitaka Yoshikawa
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
38
|
Ge F, He QY. Genomic and proteomic approaches for predicting toxicity and adverse drug reactions. Expert Opin Drug Metab Toxicol 2009; 5:29-37. [PMID: 19236227 DOI: 10.1517/17425250802661895] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND In the toxicology field, it remains a major challenge to predict and understand drug toxicity and adverse drug reactions (ADRs) in man. OBJECTIVE Recent progress in genomics and proteomics technologies and their application in predicting drug toxicity and ADRs. METHODS The key genomic and proteomic approaches are outlined, their applications in predicting toxicity and ADRs are described and their future developments in this field are discussed. CONCLUSION These technologies, used to measure expression at the transcript and protein levels, each convey different information and have different technical capabilities that can complement each other. The fields of genomics and proteomics continue to develop rapidly and it is already evident that genomic and proteomic approaches have much to contribute to the early prediction of drug toxicity and ADRs.
Collapse
Affiliation(s)
- Feng Ge
- Jinan University, Institute of Life and Health Engineering, Guangzhou, China
| | | |
Collapse
|
39
|
Serum-free collagen sandwich cultures of adult rat hepatocytes maintain liver-like properties long term: a valuable model for in vitro toxicity and drug-drug interaction studies. Chem Biol Interact 2009; 181:124-37. [PMID: 19482013 DOI: 10.1016/j.cbi.2009.05.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2009] [Revised: 05/21/2009] [Accepted: 05/22/2009] [Indexed: 12/29/2022]
Abstract
Cultures of primary hepatocytes from various species, including human, are used in several applications during pre-clinical drug development. Their use is however limited by cell survival and conservation of liver-specific functions in vitro. The differentiation status of hepatocytes in culture strongly depends on medium formulation and the extracellular matrix environment. We incubated primary rat hepatocytes for 10 days on collagen monolayer and in collagen sandwich cultures with or without serum. Restoration of polygonal cell shape and formation of functional bile canaliculi-like structures was stable only in serum-free sandwich cultures. Variations in general cell viability, as judged by the cellular ATP content, LDH release or apoptosis, were less pronounced between alternative cultures. The intracellular glutathione content was preserved close to in vivo levels especially in serum-free sandwich cultures. Basal activities of cytochrome P450 enzymes (P450) varied strongly between cultures. There was a minor effect on CYP1A but CYP2B activity was only detectable in the serum-free sandwich culture after 3 days and beyond. CYP2C activity was slightly elevated in both sandwich cultures, whereas CYP3A showed increased levels in both serum-free cultures. Inducibility of these P450s was fully maintained over time in serum-free collagen sandwich only. Gene expression was largely constant over time in serum-free sandwich cultures that was closest to liver. This liver-like property was supported by protein profiling results. Taken together, the serum-free collagen sandwich culture of primary rat hepatocytes maintained liver-like features over 10 days and is therefore a suitable model for long-term toxicity and drug-drug interaction studies.
Collapse
|
40
|
Shen C, Meng Q, Schmelzer E, Bader A. Gel entrapment culture of rat hepatocytes for investigation of tetracycline-induced toxicity. Toxicol Appl Pharmacol 2009; 238:178-87. [PMID: 19463838 DOI: 10.1016/j.taap.2009.05.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2009] [Revised: 05/04/2009] [Accepted: 05/12/2009] [Indexed: 10/20/2022]
Abstract
This paper aimed to explore three-dimensionally cultured hepatocytes for testing drug-induced nonalcoholic steatohepatitis. Gel entrapped rat hepatocytes were applied for investigation of the tetracycline-induced steatohepatitis, while hepatocyte monolayer was set as a control. The toxic responses of hepatocytes were systematically evaluated by measuring cell viability, liver-specific function, lipid accumulation, oxidative stress, adenosine triphosphate content and mitochondrial membrane potential. The results suggested that gel entrapped hepatocytes showed cell death after 96 h of tetracycline treatment at 25 muM which is equivalent to toxic serum concentration in rats, while hepatocyte monolayer showed cell death at a high dose of 200 muM. The concentration-dependent accumulation of lipid as well as mitochondrial damage were regarded as two early events for tetracycline hepatotoxicity in gel entrapment culture due to their detectability ahead of subsequent increase of oxidative stress and a final cell death. Furthermore, the potent protection of fenofibrate and fructose-1,6-diphosphate were evidenced in only gel entrapment culture with higher expressions on the genes related to beta-oxidation than hepatocyte monolayer, suggesting the mediation of lipid metabolism and mitochondrial damage in tetracycline toxicity. Overall, gel entrapped hepatocytes in three-dimension reflected more of the tetracycline toxicity in vivo than hepatocyte monolayer and thus was suggested as a more relevant system for evaluating steatogenic drugs.
Collapse
Affiliation(s)
- Chong Shen
- College of Materials Science and Chemical Engineering, Zhejiang University, Zhejiang 310027, PR China
| | | | | | | |
Collapse
|
41
|
Kiyosawa N, Ando Y, Manabe S, Yamoto T. Toxicogenomic biomarkers for liver toxicity. J Toxicol Pathol 2009; 22:35-52. [PMID: 22271975 PMCID: PMC3246017 DOI: 10.1293/tox.22.35] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2008] [Accepted: 11/26/2008] [Indexed: 12/15/2022] Open
Abstract
Toxicogenomics (TGx) is a widely used technique in the preclinical stage of drug development to investigate the molecular mechanisms of toxicity. A number of candidate TGx biomarkers have now been identified and are utilized for both assessing and predicting toxicities. Further accumulation of novel TGx biomarkers will lead to more efficient, appropriate and cost effective drug risk assessment, reinforcing the paradigm of the conventional toxicology system with a more profound understanding of the molecular mechanisms of drug-induced toxicity. In this paper, we overview some practical strategies as well as obstacles for identifying and utilizing TGx biomarkers based on microarray analysis. Since clinical hepatotoxicity is one of the major causes of drug development attrition, the liver has been the best documented target organ for TGx studies to date, and we therefore focused on information from liver TGx studies. In this review, we summarize the current resources in the literature in regard to TGx studies of the liver, from which toxicologists could extract potential TGx biomarker gene sets for better hepatotoxicity risk assessment.
Collapse
Affiliation(s)
- Naoki Kiyosawa
- Medicinal Safety Research Labs., Daiichi Sankyo Co., Ltd., 717 Horikoshi, Fukuroi, Shizuoka 437-0065, Japan
| | | | | | | |
Collapse
|
42
|
Kienhuis AS, van de Poll MCG, Wortelboer H, van Herwijnen M, Gottschalk R, Dejong CHC, Boorsma A, Paules RS, Kleinjans JCS, Stierum RH, van Delft JHM. Parallelogram Approach Using Rat-Human In Vitro and Rat In Vivo Toxicogenomics Predicts Acetaminophen-induced Hepatotoxicity in Humans. Toxicol Sci 2008; 107:544-52. [DOI: 10.1093/toxsci/kfn237] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
43
|
Vickers A. Toxicogenomics in Non-Clinical Safety Studies. Genomics 2008. [DOI: 10.3109/9781420067064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
44
|
Tetracycline-induced reproductive toxicity in male rats: Effects of vitamin C and N-acetylcysteine. ACTA ACUST UNITED AC 2008; 60:77-85. [DOI: 10.1016/j.etp.2008.02.002] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2007] [Accepted: 02/21/2008] [Indexed: 01/18/2023]
|
45
|
Judson R, Elloumi F, Setzer RW, Li Z, Shah I. A comparison of machine learning algorithms for chemical toxicity classification using a simulated multi-scale data model. BMC Bioinformatics 2008; 9:241. [PMID: 18489778 PMCID: PMC2409339 DOI: 10.1186/1471-2105-9-241] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2008] [Accepted: 05/19/2008] [Indexed: 01/29/2023] Open
Abstract
BACKGROUND Bioactivity profiling using high-throughput in vitro assays can reduce the cost and time required for toxicological screening of environmental chemicals and can also reduce the need for animal testing. Several public efforts are aimed at discovering patterns or classifiers in high-dimensional bioactivity space that predict tissue, organ or whole animal toxicological endpoints. Supervised machine learning is a powerful approach to discover combinatorial relationships in complex in vitro/in vivo datasets. We present a novel model to simulate complex chemical-toxicology data sets and use this model to evaluate the relative performance of different machine learning (ML) methods. RESULTS The classification performance of Artificial Neural Networks (ANN), K-Nearest Neighbors (KNN), Linear Discriminant Analysis (LDA), Naïve Bayes (NB), Recursive Partitioning and Regression Trees (RPART), and Support Vector Machines (SVM) in the presence and absence of filter-based feature selection was analyzed using K-way cross-validation testing and independent validation on simulated in vitro assay data sets with varying levels of model complexity, number of irrelevant features and measurement noise. While the prediction accuracy of all ML methods decreased as non-causal (irrelevant) features were added, some ML methods performed better than others. In the limit of using a large number of features, ANN and SVM were always in the top performing set of methods while RPART and KNN (k = 5) were always in the poorest performing set. The addition of measurement noise and irrelevant features decreased the classification accuracy of all ML methods, with LDA suffering the greatest performance degradation. LDA performance is especially sensitive to the use of feature selection. Filter-based feature selection generally improved performance, most strikingly for LDA. CONCLUSION We have developed a novel simulation model to evaluate machine learning methods for the analysis of data sets in which in vitro bioassay data is being used to predict in vivo chemical toxicology. From our analysis, we can recommend that several ML methods, most notably SVM and ANN, are good candidates for use in real world applications in this area.
Collapse
Affiliation(s)
- Richard Judson
- National Center for Computational Toxicology, Office of Research and Development, US Environmental Protection Agency, Research Triangle Park, North Carolina 27711, USA.
| | | | | | | | | |
Collapse
|
46
|
Endocannabinoid and serotonergic systems are needed for acetaminophen-induced analgesia. Pain 2008; 139:190-200. [PMID: 18485596 DOI: 10.1016/j.pain.2008.03.030] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Revised: 01/18/2008] [Accepted: 03/24/2008] [Indexed: 11/23/2022]
Abstract
Acetaminophen is the most used analgesic/antipyretic drug. Its unclear mechanism of action could rely on cyclooxygenase inhibition, NO synthesis blockade or reinforcement of the serotonergic system. Here we show that in thermal, mechanical and chemical pain tests, AM-251, a specific CB(1) receptor antagonist, abolished the analgesic action of acetaminophen, which was also lost in CB(1) receptor knockout mice. Moreover, acetaminophen was shown unable to bind to CB(1) receptors demonstrating an indirect involvement of these receptors in the analgesic effect of this compound. Accordingly with these results, we also demonstrated that the inhibition of FAAH, an enzyme involved in the cerebral metabolism of acetaminophen into AM404, known to reinforce the activity of the endocannabinoid system, suppressed the antinociceptive effect of acetaminophen. In addition, similarly to the interaction of acetaminophen with bulbospinal serotonergic pathways and spinal serotonin receptors, we observed that the antinociceptive activity of ACEA, a CB(1) receptor agonist, was inhibited by lesion of bulbospinal serotonergic pathways and antagonists of spinal 5-HT receptors. We therefore propose that acetaminophen-induced analgesia could involve the following sequence: (1) FAAH-dependent metabolism of acetaminophen into AM404; (2) indirect involvement of CB(1) receptors by this metabolite; (3) endocannabinoid-dependent reinforcement of the serotonergic bulbospinal pathways, and (4) involvement of spinal pain-suppressing serotonergic receptors.
Collapse
|
47
|
Collins BC, Clarke A, Kitteringham NR, Gallagher WM, Pennington SR. Use of proteomics for the discovery of early markers of drug toxicity. Expert Opin Drug Metab Toxicol 2007; 3:689-704. [DOI: 10.1517/17425255.3.5.689] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
48
|
Akai S, Hosomi H, Minami K, Tsuneyama K, Katoh M, Nakajima M, Yokoi T. Knock Down of γ-Glutamylcysteine Synthetase in Rat Causes Acetaminophen-induced Hepatotoxicity. J Biol Chem 2007; 282:23996-4003. [PMID: 17573345 DOI: 10.1074/jbc.m702819200] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Drug-induced hepatotoxicity is mainly caused by hepatic glutathione (GSH) depletion. In general, the activity of rodent glutathione S-transferase is 10 to 20 times higher than that of humans, which could make the prediction of drug-induced hepatotoxicity in human more difficult. Gamma-glutamylcysteine synthetase (gamma-GCS) mainly regulates de novo synthesis of GSH in mammalian cells and plays a central role in the antioxidant capacity of cells. In this study, we constructed a GSH-depletion experimental rat model for the prediction of human hepatotoxicity. An adenovirus vector with short hairpin RNA against rat gamma-GCS heavy chain subunit (GCSh) (AdGCSh-shRNA) was constructed and used to knock down the GCSh. In in vitro study in H4IIE cells, a rat hepatoma cell line, GCSh mRNA and protein were significantly decreased by 80% and GSH was significantly decreased by 50% 3 days after AdGCSh-shRNA infection. In the in vivo study in rat, the hepatic GSH level was decreased by 80% 14 days after a single dose of AdGCSh-shRNA (2 x 10(11) pfu/ml/body), and this depletion continued for at least 2 weeks. Using this GSH knockdown rat model, acetaminophen-induced hepatotoxicity was shown to be significantly potentiated compared with normal rats. This is the first report of a GSH knockdown rat model, which could be useful for highly sensitive tests of acute and subacute toxicity for drug candidates in preclinical drug development.
Collapse
Affiliation(s)
- Sho Akai
- Division of Pharmaceutical Sciences, Graduate School of Medical Science, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | | | | | | | | | | | | |
Collapse
|
49
|
Boess F, Durr E, Schaub N, Haiker M, Albertini S, Suter L. An in vitro study on 5-HT6 receptor antagonist induced hepatotoxicity based on biochemical assays and toxicogenomics. Toxicol In Vitro 2007; 21:1276-86. [PMID: 17513084 DOI: 10.1016/j.tiv.2007.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2006] [Revised: 02/15/2007] [Accepted: 03/23/2007] [Indexed: 10/23/2022]
Abstract
We investigated the effects of two 5-HT(6) receptor antagonists on rat primary hepatocytes using a combined biochemical and toxicogenomics approach. Both compounds share the same pharmacological target, but displayed strikingly different toxicity profiles in pre-clinical animal studies: While R7199 caused hepatic steatosis in rats, no hepatotoxicity was observed with R0074. Here, we partially reproduced the steatosis findings seen in vivo using primary rat hepatocytes. Biochemical analyses and gene expression results generally supported the findings observed in the animal model and also allowed the differentiation of both compounds with regards to hepatotoxic potential. In particular, the induction of Cyp 2B and Cyp 3A1 directly correlates to the findings in the livers of treated animals. The effects on genes of the steroideogenic pathway relate to the deregulation of cholesterol homeostasis. We also observed the inhibition of beta-oxidation, indicating impaired lipid metabolism. Hence, gene expression analysis in combination with biochemical parameters can provide additional insight into the possible mechanisms underlying adverse events.
Collapse
Affiliation(s)
- F Boess
- F. Hoffmann-La Roche AG, Toxicology Department, 4070 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
50
|
Bodzon-Kulakowska A, Bierczynska-Krzysik A, Dylag T, Drabik A, Suder P, Noga M, Jarzebinska J, Silberring J. Methods for samples preparation in proteomic research. J Chromatogr B Analyt Technol Biomed Life Sci 2007; 849:1-31. [PMID: 17113834 DOI: 10.1016/j.jchromb.2006.10.040] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Accepted: 10/23/2006] [Indexed: 01/04/2023]
Abstract
Sample preparation is one of the most crucial processes in proteomics research. The results of the experiment depend on the condition of the starting material. Therefore, the proper experimental model and careful sample preparation is vital to obtain significant and trustworthy results, particularly in comparative proteomics, where we are usually looking for minor differences between experimental-, and control samples. In this review we discuss problems associated with general strategies of samples preparation, and experimental demands for these processes.
Collapse
Affiliation(s)
- Anna Bodzon-Kulakowska
- Department of Neurobiochemistry, Faculty of Chemistry, Jagiellonian University, Ingardena St. 3, 30-060 Krakow, Poland
| | | | | | | | | | | | | | | |
Collapse
|