1
|
Proshkina E, Koval L, Platonova E, Golubev D, Ulyasheva N, Babak T, Shaposhnikov M, Moskalev A. Polyphenols as Potential Geroprotectors. Antioxid Redox Signal 2024; 40:564-593. [PMID: 38251662 DOI: 10.1089/ars.2023.0247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
Significance: Currently, a large amount of evidence of beneficial effects of diets enriched with polyphenols on various aspects of health has been accumulated. These phytochemicals have a geroprotective potential slowing down the pathological processes associated with aging and ensuring longevity. In this study, a comprehensive analysis was conducted to determine the adherence of individual polyphenols to geroprotector criteria. Data from experimental models, clinical trials, and epidemiological studies were analyzed. Recent Advances: Sixty-two polyphenols have been described to increase the life span and improve biomarkers of aging in animal models. They act via evolutionarily conserved molecular mechanisms, including hormesis and maintenance of redox homeostasis, epigenetic regulation, response to cellular damage, metabolic control, and anti-inflammatory and senolytic activity. Epidemiological and clinical studies suggest that certain polyphenols have a potential for prevention and treatment of various diseases, including cancer, metabolic disorders, and cardiovascular conditions in humans. Critical Issues: Among the reviewed phytochemicals, chlorogenic acid, quercetin, epicatechin, genistein, resveratrol, and curcumin were identified as compounds with the highest geroprotective potential. However, there is a lack of unambiguous information on the effectiveness and safety of polyphenols for increasing health span, preventing and treating aging-associated diseases in humans. Future Directions: Further research is needed to fully understand the effects of polyphenols considering their long-term consumption, metabolic modification and bioavailability, complex interactions between different groups of polyphenols and with other phytochemicals, as well as their effects on individuals with different health status. Antioxid. Redox Signal. 40, 564-593.
Collapse
Affiliation(s)
- Ekaterina Proshkina
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Liubov Koval
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Elena Platonova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Denis Golubev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Natalia Ulyasheva
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Tatyana Babak
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Mikhail Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology of the Federal Research Center "Komi Scientific Centre" of the Ural Branch of the Russian Academy of Sciences, Syktyvkar, Russia
- Institute of Biogerontology, Lobachevsky State University, Nizhny Novgorod, Russia
| |
Collapse
|
2
|
Zou JH, Chen F, Li YL, Chen H, Sun TK, Du SM, Zhang J. Effects of green tea extract epigallocatechin-3-gallate (EGCG) on orthodontic tooth movement and root resorption in rats. Arch Oral Biol 2023; 150:105691. [PMID: 37043987 DOI: 10.1016/j.archoralbio.2023.105691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 03/31/2023]
Abstract
OBJECTIVE To study the effect of EGCG on tooth movement and root resorption during orthodontic treatment in rats. METHODS A total of thirty six male Wistar rats were randomly and equally divided into three groups: control, 50 mg/kg EGCG, and 100 mg/kg EGCG. During the experiment, the subjects were submitted to an orthodontic tooth movement (OTM) model, rats in the experimental groups were given the corresponding dose of EGCG, while rats in the control group were administrated with an equal volume of normal saline solution by gavage. After 14 days of OTM, the rats were sacrificed by transcardial perfusion. Micro-CT of rat maxillaes was taken to analyze OTM distance and root resorption. The maxillary samples were prepared as histological sections for H&E staining, tartrate-resistant acid phosphatase (TRAP) staining and immunohistochemical (IHC) staining to be observed and analyzed. RESULTS The OTM distance and root resorption of rats in the dosed group decreased, and the number of TRAP positive cells in their periodontium decreased significantly. The expression level of RANKL was decreased in the EGCG group compared to the control group, while that of OPG, OCN and Runx2 was increased. Effects were more pronounced in 100 mg/kg group than in 50 mg/kg group. CONCLUSION EGCG reduces OTM and orthodontic induced root resorption (OIRR) in rats, and is able to attenuate osteoclastogenesis on the pressure side and promote osteogenesis on the tension side.
Collapse
Affiliation(s)
- Jing-Hua Zou
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Fei Chen
- Department of Stomatology, Rizhao Traditional Chinese Medicine Hospital, Rizhao, China
| | - Yi-Lin Li
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Hao Chen
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Tong-Ke Sun
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Si-Meng Du
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China
| | - Jun Zhang
- Department of Orthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, China.
| |
Collapse
|
3
|
Tan R, Hu Z, Zhou M, Liu Y, Wang Y, Zou Y, Li K, Zhang S, Pan J, Peng Y, Li W, Zheng J. Diosbulbin B: An important component responsible for hepatotoxicity and protein covalent binding induced by Dioscorea bulbifera L. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 102:154174. [PMID: 35660353 DOI: 10.1016/j.phymed.2022.154174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 01/13/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Dioscorea bulbifera L. (DBL) is an herbal medicine used for the treatment of thyroid diseases and tumors in China. However, the hepatotoxicity of DBL limits its wide safe use. Diosbulbin B (DSB) is the most abundant diterpene lactone occurring in DBL. Numbers of studies showed that this furanoterpenoid plays an important role in DBL-induced liver injury and that DSB is metabolized to a cis-enedial intermediate which reacts with protein to form protein covalent binding and induces hepatotoxicity. PURPOSE The present study aimed to define the association of DSB content in DBL with the severity of DBL hepatotoxicity to ensure the safe use of the herbal medicine in clinical practice and to determine the role of DSB in DBL-induced liver injury. METHODS Chemical chromatographic fingerprints of DBL were established by UPLC-MS/MS. Their hepatotoxicity potencies were evaluated in vitro and in vivo. Metabolic activation of DSB was evaluated by liver microsomal incubation. Protein modification was assessed by mass spectrometry and immunostaining. RESULTS The contents of DSB in DBL herbs collected from 11 locations in China varied dramatically with as much as 47-fold difference. The hepatotoxicity potencies of DBL herbs were found to be proportional to the contents of DSB. Intensified protein adduction derived from the reactive metabolite of DSB was observed in mice administered DBL with high contents of DSB. CONCLUSION The findings not only demonstrated that contents of DSB can be quite different depending on harvest location and special attention needs to pay for quality control of DBL but also suggest DSB is a key contributor for DBL-induced hepatotoxicity.
Collapse
Affiliation(s)
- Rong Tan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Life and Health Science, Kaili University, Kaili, Guizhou 556011, China
| | - Zixia Hu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Mengyue Zhou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Ying Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Yang Wang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Ying Zou
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Kunna Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Shiyu Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Jie Pan
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Ying Peng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China
| | - Weiwei Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, China.
| | - Jiang Zheng
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Provincial Key Laboratory of Pharmaceutics, Guizhou Medical University, Guiyang, Guizhou 550004, China; Key Laboratory of Environmental Pollution, Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Pharmacy, Guizhou Medical University, Guiyang, Guizhou 550004, China; Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, Liaoning 110016, China.
| |
Collapse
|
4
|
Ma H, Zhang B, Hu Y, Wang J, Liu J, Qin R, Lv S, Wang S. Correlation Analysis of Intestinal Redox State with the Gut Microbiota Reveals the Positive Intervention of Tea Polyphenols on Hyperlipidemia in High Fat Diet Fed Mice. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:7325-7335. [PMID: 31184120 DOI: 10.1021/acs.jafc.9b02211] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Tea polyphenols (TP) possess the ability to regulate dyslipidemia and gut microbiota dysbiosis. However, the underlying mechanism is still elusive. The present study explored the intervention of TP on high fat diet induced metabolic disorders, gut microbiota dysbiosis in mice, and the underlying intestinal mechanism. As a result, TP significantly ameliorated hyperlipidemia, improved the expression levels of hepatic lipid metabolism genes, and modulated gut microbiota. The underlying mechanism was supposed to rely on the maintaining of intestinal redox state by TP. Intestinal redox related indicators were significantly correlated with the distribution of gut microbiota. An unidentified genus of Lachnospiraceae, Bacteroides, Alistipes, and Faecalibaculum were identified as the biomarkers for intestinal redox state. Importantly, different dosages of TP modulated intestinal redox state and gut microbiota in varied patterns, and an overdose intake attenuated the beneficial effects on gut health. Our findings offered novel insights into the mechanism of TP on intestinal homeostasis.
Collapse
Affiliation(s)
- Hui Ma
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , People's Republic of China
| | - Bowei Zhang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , People's Republic of China
| | - Yaozhong Hu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , People's Republic of China
| | - Jin Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , People's Republic of China
| | - Jingmin Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , People's Republic of China
| | - Renbing Qin
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| | - Shiwen Lv
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , People's Republic of China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine , Nankai University , Tianjin 300071 , People's Republic of China
- State Key Laboratory of Food Nutrition and Safety , Tianjin University of Science and Technology , Tianjin 300457 , People's Republic of China
| |
Collapse
|
5
|
Nakajima K, Oiso S, Kariyazono H. Inhibitory Effect of (-)-Epigallocatechin-3-O-gallate on Octanoylated Ghrelin Levels in Vitro and in Vivo. Biol Pharm Bull 2018; 41:524-529. [PMID: 29607924 DOI: 10.1248/bpb.b17-00805] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ghrelin is an orexigenic peptide hormone produced in the stomach. The major active form is octanoylated ghrelin, which is modified with an n-octanoic acid at the serine-3 residue. Inhibition of octanoylated ghrelin production is useful for the prevention and improvement of obesity. We previously developed a cell-based assay system employing a ghrelin-expressing cell line, AGS-GHRL8, and found various compounds that decreased octanoylated ghrelin levels using this system. (-)-Epigallocatechin-3-O-gallate (EGCG) is a bioactive catechin in green tea and reportedly has an anti-obesity effect; however, it remains unclear whether EGCG inhibits octanoylated ghrelin production. Therefore, in this study, we investigated the effect of EGCG on octanoylated ghrelin levels in AGS-GHRL8 cells and C57BL/6J mice. EGCG significantly reduced the octanoylated ghrelin level in AGS-GHRL8 cells. In mice, three days of treatment with TEAVIGO®, which contains 97.69% EGCG, lowered the plasma octanoylated ghrelin level by 40% from that in control mice. In addition, TEAVIGO® reduced the mRNA expression of ghrelin and prohormone convertase 1/3, an enzyme responsible for the processing of proghrelin to mature ghrelin, in the mouse stomach, suggesting that the reduced expression of these genes may contribute to the inhibition of octanoylated ghrelin production. These results suggest a decrease in the octanoylated ghrelin level to be involved in the anti-obesity effect of EGCG, which thus has potential for the development of anti-obesity agents with ghrelin-lowering effect.
Collapse
Affiliation(s)
- Kensuke Nakajima
- Graduate School of Pharmaceutical Sciences, Nagasaki International University
| | - Shigeru Oiso
- Graduate School of Pharmaceutical Sciences, Nagasaki International University
| | - Hiroko Kariyazono
- Graduate School of Pharmaceutical Sciences, Nagasaki International University
| |
Collapse
|
6
|
Younes M, Aggett P, Aguilar F, Crebelli R, Dusemund B, Filipič M, Frutos MJ, Galtier P, Gott D, Gundert-Remy U, Lambré C, Leblanc JC, Lillegaard IT, Moldeus P, Mortensen A, Oskarsson A, Stankovic I, Waalkens-Berendsen I, Woutersen RA, Andrade RJ, Fortes C, Mosesso P, Restani P, Arcella D, Pizzo F, Smeraldi C, Wright M. Scientific opinion on the safety of green tea catechins. EFSA J 2018; 16:e05239. [PMID: 32625874 PMCID: PMC7009618 DOI: 10.2903/j.efsa.2018.5239] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The EFSA ANS Panel was asked to provide a scientific opinion on the safety of green tea catechins from dietary sources including preparations such as food supplements and infusions. Green tea is produced from the leaves of Camellia sinensis (L.) Kuntze, without fermentation, which prevents the oxidation of polyphenolic components. Most of the polyphenols in green tea are catechins. The Panel considered the possible association between the consumption of (-)-epigallocatechin-3-gallate (EGCG), the most relevant catechin in green tea, and hepatotoxicity. This scientific opinion is based on published scientific literature, including interventional studies, monographs and reports by national and international authorities and data received following a public 'Call for data'. The mean daily intake of EGCG resulting from the consumption of green tea infusions ranges from 90 to 300 mg/day while exposure by high-level consumers is estimated to be up to 866 mg EGCG/day, in the adult population in the EU. Food supplements containing green tea catechins provide a daily dose of EGCG in the range of 5-1,000 mg/day, for adult population. The Panel concluded that catechins from green tea infusion, prepared in a traditional way, and reconstituted drinks with an equivalent composition to traditional green tea infusions, are in general considered to be safe according to the presumption of safety approach provided the intake corresponds to reported intakes in European Member States. However, rare cases of liver injury have been reported after consumption of green tea infusions, most probably due to an idiosyncratic reaction. Based on the available data on the potential adverse effects of green tea catechins on the liver, the Panel concluded that there is evidence from interventional clinical trials that intake of doses equal or above 800 mg EGCG/day taken as a food supplement has been shown to induce a statistically significant increase of serum transaminases in treated subjects compared to control.
Collapse
|
7
|
Bedrood Z, Rameshrad M, Hosseinzadeh H. Toxicological effects of Camellia sinensis (green tea): A review. Phytother Res 2018; 32:1163-1180. [PMID: 29575316 DOI: 10.1002/ptr.6063] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 01/14/2018] [Accepted: 01/26/2018] [Indexed: 12/21/2022]
Abstract
Many scientific articles proved that green tea (GT), Camellia sinensis, has a great potential to manage central nervous system, cardiovascular, and metabolic diseases and treat cancer and inflammatory disorders. However, it is important to consider that "natural" is not always "safe." Some relevant articles reported side effects of GT, detrimental effects on health. The aim of this study is to provide a classified report about the toxicity of GT and its main constituents in acute, subacute, subchronic, and chronic states. Furthermore, it discusses on the cytotoxicity, genotoxicity, mutagenicity, carcinogenicity, and developmental toxicity of GT and its main constituents. The most important side effects have been reported hepatotoxicity and gastrointestinal disorders specially while consumed on an empty stomach. GT and its main components are not major teratogen, mutagen, or carcinogen substances. However, there is limited data in using them during pregnancy, and they should be used with caution in pregnancy, breast-feeding, and susceptible people. Because GT and its main components have a wide variety of drug interactions, consideration should be taken in coadministration of them with narrow therapeutic indexed drugs. Furthermore, they evoke selective cytotoxicity on cancerous cells that could engage them as an adjuvant substance in cancer therapy.
Collapse
Affiliation(s)
- Zeinab Bedrood
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Rameshrad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamy and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
8
|
Hu J, Webster D, Cao J, Shao A. The safety of green tea and green tea extract consumption in adults - Results of a systematic review. Regul Toxicol Pharmacol 2018; 95:412-433. [PMID: 29580974 DOI: 10.1016/j.yrtph.2018.03.019] [Citation(s) in RCA: 208] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 03/17/2018] [Accepted: 03/20/2018] [Indexed: 12/22/2022]
Abstract
A systematic review of published toxicology and human intervention studies was performed to characterize potential hazards associated with consumption of green tea and its preparations. A review of toxicological evidence from laboratory studies revealed the liver as the target organ and hepatotoxicity as the critical effect, which was strongly associated with certain dosing conditions (e.g. bolus dose via gavage, fasting), and positively correlated with total catechin and epigallocatechingallate (EGCG) content. A review of adverse event (AE) data from 159 human intervention studies yielded findings consistent with toxicological evidence in that a limited range of concentrated, catechin-rich green tea preparations resulted in hepatic AEs in a dose-dependent manner when ingested in large bolus doses, but not when consumed as brewed tea or extracts in beverages or as part of food. Toxico- and pharmacokinetic evidence further suggests internal dose of catechins is a key determinant in the occurrence and severity of hepatotoxicity. A safe intake level of 338 mg EGCG/day for adults was derived from toxicological and human safety data for tea preparations ingested as a solid bolus dose. An Observed Safe Level (OSL) of 704 mg EGCG/day might be considered for tea preparations in beverage form based on human AE data.
Collapse
Affiliation(s)
- Jiang Hu
- Worldwide Scientific Affairs, Herbalife Nutrition, Torrance, CA 90502, USA.
| | - Donna Webster
- Product Science, Herbalife Nutrition, Torrance, CA 90502, USA.
| | - Joyce Cao
- Global Post Market Safety Surveillance, Herbalife Nutrition, Torrance, CA 90502, USA.
| | - Andrew Shao
- Independent Consultant, Rancho Palos Verdes, CA 90505, USA.
| |
Collapse
|
9
|
Hepatotoxic combination effects of three azole fungicides in a broad dose range. Arch Toxicol 2017; 92:859-872. [PMID: 29038839 PMCID: PMC5818588 DOI: 10.1007/s00204-017-2087-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/05/2017] [Indexed: 12/19/2022]
Abstract
Single active substances of pesticides are thoroughly examined for their toxicity before approval. In this context, the liver is frequently found to be the main target organ. Since consumers are generally exposed to multiple residues of different active substances via the diet, it is important to analyse combinations of active substances for potential mixture effects. For the (tri-)azoles, a group of agricultural fungicides and antifungal drugs, combination effects on the liver are likely because of a similar mode of action. Hepatotoxic effects of mixtures of two triazoles (cyproconazole and epoxiconazole) and an imidazole (prochloraz) were investigated in a 28-day feeding study in rats at three dose levels ranging from a typical toxicological reference value to a clear effect dose. Test parameters included organ weights, clinical chemistry, histopathology and morphometry. In addition, molecular parameters were investigated by means of pathway-focused gene expression arrays, quantitative real-time PCR and enzyme activity assays. Effects were compared to those caused by the individual substances as observed at the same dose levels in a previous study. Mixture effects were substantiated by increases in relative and absolute liver weights, histopathological findings and alterations in clinical chemistry parameters at the top dose level. On the molecular level also at lower dose levels, additive effects could be observed for the induction of several cytochrome P 450 enzymes (Cyp1a1, Cyp2b1, Cyp3a2), transporters (Abcb1a, Abcc3) and of genes encoding for enzymes involved in fatty acid or phospholipid metabolism (Ppargc1a, Sc4 mol). In most cases, treatment with mixtures caused a more pronounced effect as compared to the individual substances. However, the assumption of dose additivity was in general sufficiently conservative to cover mixture effects observed under the conditions of the present study.
Collapse
|
10
|
Safety assessment of green tea based beverages and dried green tea extracts as nutritional supplements. Toxicol Lett 2017; 277:104-108. [PMID: 28655517 DOI: 10.1016/j.toxlet.2017.06.008] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 06/14/2017] [Accepted: 06/21/2017] [Indexed: 11/24/2022]
Abstract
The safety of green tea infusions and green tea extract (GTE)-based products is reviewed regarding catechins. Epigallocatechin 3-gallate (EGCG), the major catechin present in green tea, is suspected of being responsible for liver toxicity reported in humans consuming food supplements. Intake of EGCG with green tea infusions and GTE-based beverages is up to about 450mg EGCG/person/day in Europe and higher in Asia. Consumption of green tea is not associated with liver damage in humans, and green tea infusion and GTE-based beverages are considered safe in the range of historical uses. In animal studies, EGCG's potency for liver effects is highly dependent on conditions of administration. Use of NOAELs from bolus administration to derive a tolerable upper intake level applying the margin of safety concept results in acceptable EGCG-doses lower than those from one cup of green tea. NOAELs from toxicity studies applying EGCG with diet/split of the daily dose are a better point of departure for risk characterization. In clinical intervention studies, liver effects were not observed after intakes below 600mg EGCG/person/day. Thus, a tolerable upper intake level of 300mg EGCG/person/day is proposed for food supplements; this gives a twofold safety margin to clinical studies that did not report liver effects and a margin of safety of 100 to the NOAELs in animal studies with dietary administration of green tea catechins.
Collapse
|
11
|
Isomura T, Suzuki S, Origasa H, Hosono A, Suzuki M, Sawada T, Terao S, Muto Y, Koga T. Liver-related safety assessment of green tea extracts in humans: a systematic review of randomized controlled trials. Eur J Clin Nutr 2016; 70:1221-1229. [PMID: 27188915 PMCID: PMC5193539 DOI: 10.1038/ejcn.2016.78] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 03/07/2016] [Accepted: 03/11/2016] [Indexed: 12/15/2022]
Abstract
There remain liver-related safety concerns, regarding potential hepatotoxicity in humans, induced by green tea intake, despite being supposedly beneficial. Although many randomized controlled trials (RCTs) of green tea extracts have been reported in the literature, the systematic reviews published to date were only based on subjective assessment of case reports. To more objectively examine the liver-related safety of green tea intake, we conducted a systematic review of published RCTs. A systematic literature search was conducted using three databases (PubMed, EMBASE and Cochrane Central Register of Controlled Trials) in December 2013 to identify RCTs of green tea extracts. Data on liver-related adverse events, including laboratory test abnormalities, were abstracted from the identified articles. Methodological quality of RCTs was assessed. After excluding duplicates, 561 titles and abstracts and 119 full-text articles were screened, and finally 34 trials were identified. Of these, liver-related adverse events were reported in four trials; these adverse events involved seven subjects (eight events) in the green tea intervention group and one subject (one event) in the control group. The summary odds ratio, estimated using a meta-analysis method for sparse event data, for intervention compared with placebo was 2.1 (95% confidence interval: 0.5-9.8). The few events reported in both groups were elevations of liver enzymes. Most were mild, and no serious liver-related adverse events were reported. Results of this review, although not conclusive, suggest that liver-related adverse events after intake of green tea extracts are expected to be rare.
Collapse
Affiliation(s)
- T Isomura
- Clinical Study Support Inc.,
Nagoya, Japan
- Institute of Medical Science, Tokyo
Medical University, Tokyo, Japan
- Department of Public Health, Nagoya City
University Graduate School of Medical Sciences, Nagoya,
Japan
- Division of Biostatistics and Clinical
Epidemiology, University of Toyama Graduate School of Medicine and Pharmaceutical
Sciences, Toyama, Japan
| | - S Suzuki
- Department of Public Health, Nagoya City
University Graduate School of Medical Sciences, Nagoya,
Japan
| | - H Origasa
- Division of Biostatistics and Clinical
Epidemiology, University of Toyama Graduate School of Medicine and Pharmaceutical
Sciences, Toyama, Japan
| | - A Hosono
- Department of Public Health, Nagoya City
University Graduate School of Medical Sciences, Nagoya,
Japan
| | - M Suzuki
- Clinical Study Support Inc.,
Nagoya, Japan
| | - T Sawada
- Clinical Study Support Inc.,
Nagoya, Japan
| | - S Terao
- Clinical Study Support Inc.,
Nagoya, Japan
| | - Y Muto
- Clinical Study Support Inc.,
Nagoya, Japan
| | - T Koga
- Clinical Study Support Inc.,
Nagoya, Japan
| |
Collapse
|
12
|
Grape Powder Improves Age-Related Decline in Mitochondrial and Kidney Functions in Fischer 344 Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6135319. [PMID: 27528887 PMCID: PMC4978843 DOI: 10.1155/2016/6135319] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 06/15/2016] [Accepted: 06/15/2016] [Indexed: 01/05/2023]
Abstract
We examined the effects and mechanism of grape powder- (GP-) mediated improvement, if any, on aging kidney function. Adult (3-month) and aged (21-month) Fischer 344 rats were treated without (controls) and with GP (1.5% in drinking water) and kidney parameters were measured. Control aged rats showed higher levels of proteinuria and urinary kidney injury molecule-1 (KIM-1), which decreased with GP treatment in these rats. Renal protein carbonyls (protein oxidation) and gp91phox-NADPH oxidase levels were high in control aged rats, suggesting oxidative stress burden in these rats. GP treatment in aged rats restored these parameters to the levels of adult rats. Moreover, glomerular filtration rate and sodium excretion were low in control aged rats suggesting compromised kidney function, which improved with GP treatment in aged rats. Interestingly, low renal mitochondrial respiration and ATP levels in control aged rats were associated with reduced levels of mitochondrial biogenesis marker MtTFA. Also, Nrf2 proteins levels were reduced in control aged rats. GP treatment increased levels of MtTFA and Nrf2 in aged rats. These results suggest that GP by potentially regulating Nrf2 improves aging mitochondrial and kidney functions.
Collapse
|
13
|
Chronic toxicity and carcinogenicity of semicarbazide hydrochloride in Wistar Hannover GALAS rats. Food Chem Toxicol 2014; 73:84-94. [DOI: 10.1016/j.fct.2014.08.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 08/08/2014] [Accepted: 08/10/2014] [Indexed: 11/30/2022]
|
14
|
Trudel D, Labbé DP, Bairati I, Fradet V, Bazinet L, Têtu B. Green tea for ovarian cancer prevention and treatment: a systematic review of the in vitro, in vivo and epidemiological studies. Gynecol Oncol 2012; 126:491-8. [PMID: 22564714 DOI: 10.1016/j.ygyno.2012.04.048] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2012] [Revised: 04/18/2012] [Accepted: 04/30/2012] [Indexed: 01/30/2023]
Abstract
OBJECTIVE This systematic review was conducted to examine the effects of green tea or green tea components on the prevention and progression of epithelial ovarian cancer. METHODS Using Medline, EMBASE and SciVerse (last researched: July 2011), we retrieved 22 articles including 5 epidemiological studies. RESULTS In epithelial ovarian cancer cell lines, green tea and green tea components have been shown to downregulate the expression of proteins involved in inflammation, cell signalization, cell motility and angiogenesis. Green tea and green tea components would induce apoptosis and could potentiate the effects of cisplatin, a chemotherapeutic agent. In human observational studies, significant associations between green tea intake and both decreased ovarian cancer occurrence and better prognosis were reported. CONCLUSIONS Available literature suggests potential molecular targets for green tea in ovarian cancer treatment and also provides data supporting the clinical evaluation of the role of green tea or green tea components in ovarian cancer prevention and treatment.
Collapse
Affiliation(s)
- Dominique Trudel
- Laval University Cancer Research Center, Hôtel-Dieu-de-Québec, University Hospital Center (CHUQ), 11 Côte du Palais, Québec, Québec, Canada.
| | | | | | | | | | | |
Collapse
|