1
|
Ozawa S, Ojiro R, Tang Q, Zou X, Jin M, Yoshida T, Shibutani M. Involvement of multiple epigenetic mechanisms by altered DNA methylation from the early stage of renal carcinogenesis before proliferative lesion formation upon repeated administration of ochratoxin A. Toxicology 2024; 506:153875. [PMID: 38945198 DOI: 10.1016/j.tox.2024.153875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
Ochratoxin A (OTA) is a rat renal carcinogen that induces karyomegaly and micronuclei in proximal tubular epithelial cells (PTECs). We previously performed comprehensive gene profiling of alterations in promoter-region methylation and gene expression in PTECs of rats treated with OTA for 13 weeks. The OTA-specific gene profile was obtained by excluding genes showing expression changes similar to those upon treatment with 3-chloro-1,2-propanediol, a renal carcinogen not inducing karyomegaly. In this study, we validated the candidate genes using methylated DNA enrichment PCR and real-time RT-PCR, and identified Gen1, Anxa3, Cdkn1a, and Osm as genes showing OTA-specific epigenetic changes. These genes and related molecules were subjected to gene expression and immunohistochemical analyses in the PTECs of rats treated with OTA, other renal carcinogens, or non-carcinogenic renal toxicants for 4 or 13 weeks. Cdkn1a upregulation and increase of p21WAF1/CIP1+ karyomegalic PTECs were observed with OTA, matching the findings associated with micronucleus-inducing carcinogens. This suggested that the increase of p21WAF1/CIP1+ karyomegalic PTECs is linked to micronucleus formation, which in turn accelerates chromosomal instability. The upregulation of Cdkn1a-related genes with OTA suggests the acquisition of a senescence-associated secretory phenotype, which promotes the establishment of a carcinogenic environment. Meanwhile, OTA specifically caused a decrease of GEN1+ PTECs reflecting Gen1 downregulation and an increase of ANXA3+ PTECs reflecting Anxa3 upregulation, as well as Osm upregulation. OTA may efficiently disrupt pathways for repairing the DNA double-strand breaks that it itself causes, via Gen1 downregulation, and enhance cell proliferation through the upregulation of Anxa3 and Osm. This may exacerbate the chromosomal instability from the early stage of OTA-induced renal carcinogenesis before proliferative lesions form. OTA may cause renal carcinogenesis involving multiple epigenetic mechanisms.
Collapse
Affiliation(s)
- Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Qian Tang
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing 400715, PR China.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
2
|
Ozawa S, Ojiro R, Tang Q, Zou X, Jin M, Yoshida T, Shibutani M. In vitro and in vivo induction of ochratoxin A exposure-related micronucleus formation in rat proximal tubular epithelial cells and expression profiling of chromosomal instability-related genes. Food Chem Toxicol 2024; 185:114486. [PMID: 38301995 DOI: 10.1016/j.fct.2024.114486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 01/13/2024] [Accepted: 01/24/2024] [Indexed: 02/03/2024]
Abstract
Ochratoxin A (OTA) is a renal carcinogen in rats, and repeated administration induces karyomegaly in proximal tubular epithelial cells (PTECs) of the outer stripe of the outer medulla (OSOM) before inducing proliferative lesions. To investigate whether OTA induces micronuclei (MN) in PTECs, we performed an in vitro MN assay using rat renal NRK-52E PTECs after treatment for ≤21 days, and an in vivo OSOM MN assay in rats treated with OTA, other renal carcinogens, or non-carcinogenic renal toxicants for 4 or 13 weeks. The in vitro assay revealed an increased frequency of micronucleated cells from the acceptable dose level for cell viability, even after 21 days of treatment. The in vivo assay also revealed a dose- and treatment period-dependent increase in PTECs with γ-H2AX+ MN. OTA-specific gene expression profiling by OSOM RNA sequencing after week 13 revealed the altered expression of genes related to microtubule-kinetochore binding, the kinesin superfamily, centriole assembly, DNA damage repair, and cell cycle regulation. MN formation was also observed with other renal carcinogens that induce karyomegaly similarly to OTA. These results imply that γ-H2AX+ MN formation by OTA treatment is related to the induction of chromosomal instability accompanying karyomegaly formation before proliferative lesions form, providing a new insight into the carcinogenic mechanism that may be relevant to humans.
Collapse
Affiliation(s)
- Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Qian Tang
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Veterinary Medicine, Southwest University, No. 2 Tiansheng Road, BeiBei District, Chongqing, 400715, PR China.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
3
|
Ozawa S, Ojiro R, Tang Q, Zou X, Woo GH, Yoshida T, Shibutani M. Identification of genes showing altered DNA methylation and gene expression in the renal proximal tubular cells of rats treated with ochratoxin A for 13 weeks. J Appl Toxicol 2023; 43:1533-1548. [PMID: 37162024 DOI: 10.1002/jat.4495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/07/2023] [Accepted: 05/08/2023] [Indexed: 05/11/2023]
Abstract
Ochratoxin A (OTA) is a mycotoxin that causes renal carcinogenicity following the induction of karyomegaly in proximal tubular cells after repeated administration to rats. Here, we performed gene profiling regarding altered DNA methylation and gene expression in the renal tubules focusing on the mechanism of OTA-induced carcinogenesis. For this purpose, OTA or 3-chloro-1,2-propanediol (3-MCPD), a renal carcinogen not inducing karyomegaly, was administered to rats for 13 weeks, and DNA methylation array and RNA sequencing analyses were performed on proximal tubular cells. Genes for which OTA altered the methylation status and gene expression level, after excluding genes showing similar expression changes by 3-MCPD, were subjected to confirmation analysis of the transcript level by real-time reverse-transcription PCR. Gene Ontology (GO)-based functional annotation analysis of validated genes revealed a cluster of hypermethylated and downregulated genes enriched under the GO term "mitochondrion," such as those associated with metabolic reprogramming in carcinogenic process (Clpx, Mrpl54, Mrps34, and Slc25a23). GO terms enriched for hypomethylated and upregulated genes included "response to arsenic-containing substance," represented by Cdkn1a involved in cell cycle arrest, and "positive regulation of IL-17 production," represented by Osm potentiating cell proliferation promotion. Other genes that did not cluster under any GO term included Lrrc14 involved in NF-κB-mediated inflammation, Gen1 linked to DNA repair, Has1 related to chromosomal aberration, and Anxa3 involved in tumor development and progression. In conclusion, a variety of genes engaged in carcinogenic processes were obtained by epigenetic gene profiling in rat renal tubular cells specific to OTA treatment for 13 weeks.
Collapse
Affiliation(s)
- Shunsuke Ozawa
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Ryota Ojiro
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Qian Tang
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Xinyu Zou
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Gye-Hyeong Woo
- Laboratory of Histopathology, Department of Clinical Laboratory Science, Semyung University, Jecheon, Republic of Korea
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Japan
| |
Collapse
|
4
|
Chen H, Tao L, Liang J, Pan C, Wei H. Ubiquitin D promotes the progression of rheumatoid arthritis via activation of the p38 MAPK pathway. Mol Med Rep 2023; 27:53. [PMID: 36660934 PMCID: PMC9879075 DOI: 10.3892/mmr.2023.12940] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/18/2022] [Indexed: 01/19/2023] Open
Abstract
Ubiquitin D (UBD), a member of the ubiquitin‑like modifier family, has been reported to be highly expressed in various types of cancer and its overexpression is positively associated with tumor progression. However, the role and mechanism of UBD in rheumatoid arthritis (RA) remain elusive. In the present study, the gene expression profiles of GSE55457 were downloaded from the Gene Expression Omnibus database to assess differentially expressed genes and perform functional enrichment analyses. UBD was overexpressed by lentivirus transfection. The protein level of UBD, p‑p38 and p38 in RA‑fibroblast‑like synoviocytes (FLSs) were examined by western blotting. Cell Counting Kit‑8 and flow cytometry assays were used to detect the functional changes of RA‑FLSs transfected with UBD and MAPK inhibitor SB202190. The concentrations of inflammatory factors (IL‑2, IL‑6, IL‑10 and TNF‑α) were evaluated using ELISA kits. The results revealed that UBD was overexpressed in RA tissues compared with in the healthy control tissues. Functionally, UBD significantly accelerated the viability and proliferation of RA‑FLSs, whereas it inhibited their apoptosis. Furthermore, UBD significantly promoted the secretion of inflammatory factors (IL‑2, IL‑6, IL‑10 and TNF‑α). Mechanistically, elevated UBD activated phospohorylated‑p38 in RA‑FLSs. By contrast, UBD overexpression and treatment with the p38 MAPK inhibitor SB202190 not only partially relieved the UBD‑dependent effects on cell viability and proliferation, but also reversed its inhibitory effects on cell apoptosis. Furthermore, SB202190 partially inhibited the effects of UBD overexpression on the enhanced secretion of inflammatory factors. The present study indicated that UBD may mediate the activation of p38 MAPK, thereby facilitating the proliferation of RA‑FLSs and ultimately promoting the progression of RA. Therefore, UBD may be considered a potential therapeutic target and a promising prognostic biomarker for RA.
Collapse
Affiliation(s)
- Hong Chen
- Department of Rheumatology and Immunology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Liju Tao
- Department of Rheumatology and Immunology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Juhua Liang
- Laboratory Department, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Chunfeng Pan
- Department of Rheumatology and Immunology, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China
| | - Hua Wei
- Department of General Practice, Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi 533000, P.R. China,Correspondence to: Professor Hua Wei, Department of General Practice, Affiliated Hospital of Youjiang Medical University for Nationalities, 18 Zhongshan Second Road, Youjiang, Baise, Guangxi 533000, P.R. China, E-mail:
| |
Collapse
|
5
|
Ito Y, Nakajima K, Masubuchi Y, Kikuchi S, Okano H, Saito F, Akahori Y, Jin M, Yoshida T, Shibutani M. Downregulation of low-density lipoprotein receptor class A domain-containing protein 4 (Ldlrad4) in the liver of rats treated with nongenotoxic hepatocarcinogen to induce transforming growth factor β signaling promoting cell proliferation and suppressing apoptosis in early hepatocarcinogenesis. J Appl Toxicol 2020; 40:1467-1479. [PMID: 32596862 DOI: 10.1002/jat.3998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/12/2020] [Accepted: 04/18/2020] [Indexed: 11/07/2022]
Abstract
We previously found downregulation of low-density lipoprotein receptor class A domain-containing protein 4 (LDLRAD4), a negative regulator of transforming growth factor (TGF)-β signaling, in glutathione S-transferase placental form (GST-P) expressing (+ ) pre-neoplastic lesions produced by treatment with nongenotoxic hepatocarcinogens for up to 90 days in rats. Here, we investigated the relationship between LDLRAD4 downregulation and TGFβ signaling in nongenotoxic hepatocarcinogenesis. The transcripts of Tgfb and Hb-egf increased after ≥28 days of treatment. After 84 or 90 days, Snai1 increased transcripts and the subpopulation of GST-P+ foci downregulating LDLRAD4 co-expressed TGFβ1, phosphorylated EGFR, or phosphorylated AKT2, and downregulated PTEN, showing higher incidences than those in GST-P+ foci expressing LDLRAD4. The subpopulation of GST-P+ foci downregulating LDLRAD4 also co-expressed caveolin-1 or TACE/ADAM17, suggesting that disruptive activation of TGFβ signaling through a loss of LDLRAD4 enhances EGFR and PTEN/AKT-dependent pathways via caveolin-1-dependent activation of TACE/ADAM17 during nongenotoxic hepatocarcinogenesis. The numbers of c-MYC+ cells and PCNA+ cells were higher in LDLRAD4-downregulated GST-P+ foci than in LDLRAD4-expressing GST-P+ foci, suggesting a preferential proliferation of pre-neoplastic cells by LDLRAD4 downregulation. Nongenotoxic hepatocarcinogens markedly downregulated Nox4 after 28 days and later decreased cleaved caspase 3+ cells in LDLRAD4-downregulated GST-P+ foci, suggesting an attenuation of apoptosis by LDLRAD4 downregulation through activation of the EGFR pathway. At the late hepatocarcinogenesis stage in a two-stage model, LDLRAD4 downregulation was higher in adenoma and carcinoma than in pre-neoplastic cell foci, suggesting a role of LDLRAD4 downregulation in tumor development. Our results suggest that nongenotoxic hepatocarcinogens cause disruptive activation of TGFβ signaling through downregulating LDLRAD4 toward carcinogenesis in the rat liver.
Collapse
Affiliation(s)
- Yuko Ito
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Kota Nakajima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Yasunori Masubuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | - Satomi Kikuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Hiromu Okano
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Fumiyo Saito
- Chemicals Evaluation and Research Institute, Tokyo, Japan.,Department of Toxicology, Faculty of Veterinary Medicine, Okayama University of Science, Ehime, Japan
| | - Yumi Akahori
- Chemicals Evaluation and Research Institute, Tokyo, Japan
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Animal Science and Technology Veterinary Medicine, Southwest University, Chongqing, China
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Tokyo, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Tokyo, Japan
| |
Collapse
|
6
|
Schrenk D, Bodin L, Chipman JK, del Mazo J, Grasl‐Kraupp B, Hogstrand C, Hoogenboom L(R, Leblanc J, Nebbia CS, Nielsen E, Ntzani E, Petersen A, Sand S, Schwerdtle T, Vleminckx C, Wallace H, Alexander J, Dall'Asta C, Mally A, Metzler M, Binaglia M, Horváth Z, Steinkellner H, Bignami M. Risk assessment of ochratoxin A in food. EFSA J 2020; 18:e06113. [PMID: 37649524 PMCID: PMC10464718 DOI: 10.2903/j.efsa.2020.6113] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The European Commission asked EFSA to update their 2006 opinion on ochratoxin A (OTA) in food. OTA is produced by fungi of the genus Aspergillus and Penicillium and found as a contaminant in various foods. OTA causes kidney toxicity in different animal species and kidney tumours in rodents. OTA is genotoxic both in vitro and in vivo; however, the mechanisms of genotoxicity are unclear. Direct and indirect genotoxic and non-genotoxic modes of action might each contribute to tumour formation. Since recent studies have raised uncertainty regarding the mode of action for kidney carcinogenicity, it is inappropriate to establish a health-based guidance value (HBGV) and a margin of exposure (MOE) approach was applied. For the characterisation of non-neoplastic effects, a BMDL 10 of 4.73 μg/kg body weight (bw) per day was calculated from kidney lesions observed in pigs. For characterisation of neoplastic effects, a BMDL 10 of 14.5 μg/kg bw per day was calculated from kidney tumours seen in rats. The estimation of chronic dietary exposure resulted in mean and 95th percentile levels ranging from 0.6 to 17.8 and from 2.4 to 51.7 ng/kg bw per day, respectively. Median OTA exposures in breastfed infants ranged from 1.7 to 2.6 ng/kg bw per day, 95th percentile exposures from 5.6 to 8.5 ng/kg bw per day in average/high breast milk consuming infants, respectively. Comparison of exposures with the BMDL 10 based on the non-neoplastic endpoint resulted in MOEs of more than 200 in most consumer groups, indicating a low health concern with the exception of MOEs for high consumers in the younger age groups, indicating a possible health concern. When compared with the BMDL 10 based on the neoplastic endpoint, MOEs were lower than 10,000 for almost all exposure scenarios, including breastfed infants. This would indicate a possible health concern if genotoxicity is direct. Uncertainty in this assessment is high and risk may be overestimated.
Collapse
|
7
|
Ito Y, Nakajima K, Masubuchi Y, Kikuchi S, Saito F, Akahori Y, Jin M, Yoshida T, Shibutani M. Expression Characteristics of Genes Hypermethylated and Downregulated in Rat Liver Specific to Nongenotoxic Hepatocarcinogens. Toxicol Sci 2020; 169:122-136. [PMID: 30690589 PMCID: PMC6484883 DOI: 10.1093/toxsci/kfz027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study examined hypermethylated and downregulated genes specific to carbon tetrachloride (CCl4) by Methyl-Seq analysis combined with expression microarray analysis in the liver of rats treated with CCl4 or N-nitrosodiethylamine (DEN) for 28 days, by excluding those with DEN. Among 52 genes, Ldlrad4, Proc, Cdh17, and Nfia were confirmed to show promoter-region hypermethylation by methylation-specific quantitative PCR analysis on day 28. The transcript levels of these 4 genes decreased by real-time reverse transcription-PCR analysis in the livers of rats treated with nongenotoxic hepatocarcinogens for up to 90 days compared with untreated controls and genotoxic hepatocarcinogens. Immunohistochemically, LDLRAD4 and PROC showed decreased immunoreactivity, forming negative foci, in glutathione S-transferase placental form (GST-P)+ foci, and incidences of LDLRAD4− and PROC− foci in GST-P+ foci induced by treatment with nongenotoxic hepatocarcinogens for 84 or 90 days were increased compared with those with genotoxic hepatocarcinogens. In contrast, CDH17 and NFIA responded to hepatocarcinogens without any relation to the genotoxic potential of carcinogens. All 4 genes did not respond to renal carcinogens after treatment for 28 days. Considering that Ldlrad4 is a negative regulator of transforming growth factor-β signaling, Proc participating in p21WAF1/CIP1 upregulation by activation, Cdh17 inducing cell cycle arrest by gene knockdown, and Nfia playing a role in a tumor-suppressor, all these genes may be potential in vivo epigenetic markers of nongenotoxic hepatocarcinogens from the early stages of treatment in terms of gene expression changes. LDLRAD4 and PROC may have a role in the development of preneoplastic lesions produced by nongenotoxic hepatocarcinogens.
Collapse
Affiliation(s)
- Yuko Ito
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Kota Nakajima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Yasunori Masubuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Satomi Kikuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Fumiyo Saito
- Chemicals Evaluation and Research Institute, Bunkyo-ku, Tokyo, Japan
| | - Yumi Akahori
- Chemicals Evaluation and Research Institute, Bunkyo-ku, Tokyo, Japan
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Animal Science and Technology Veterinary Medicine, Southwest University, Chongqing, P.R. China
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| |
Collapse
|
8
|
Ito Y, Nakajima K, Masubuchi Y, Kikuchi S, Saito F, Akahori Y, Jin M, Yoshida T, Shibutani M. Differential responses on energy metabolic pathway reprogramming between genotoxic and non-genotoxic hepatocarcinogens in rat liver cells. J Toxicol Pathol 2019; 32:261-274. [PMID: 31719753 PMCID: PMC6831489 DOI: 10.1293/tox.2019-0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
To clarify difference in the responses on the reprogramming of metabolism toward carcinogenesis between genotoxic and non-genotoxic hepatocarcinogens in the liver, rats were repeatedly administered genotoxic hepatocarcinogens (N-nitrosodiethylamine, aflatoxin B1, N-nitrosopyrrolidine, or carbadox) or non-genotoxic hepatocarcinogens (carbon tetrachloride, thioacetamide, or methapyrilene hydrochloride) for 28, 84, or 90 days. Non-genotoxic hepatocarcinogens revealed transcript expression changes suggestive of suppressed mitochondrial oxidative phosphorylation (OXPHOS) after 28 days and increased glutathione S-transferase placental form-positive (GST-P+) foci downregulating adenosine triphosphate (ATP) synthase subunit beta, mitochondrial precursor (ATPB), compared with genotoxic hepatocarcinogens after 84 or 90 days, suggesting that non-genotoxic hepatocarcinogens are prone to suppress OXPHOS from the early stage of treatment, which is in contrast to genotoxic hepatocarcinogens. Both genotoxic and non-genotoxic hepatocarcinogens upregulated glycolytic enzyme genes and increased cellular membrane solute carrier family 2, facilitated glucose transporter member 1 (GLUT1) expression in GST-P+ foci for up to 90 days, suggesting induction of a metabolic shift from OXPHOS to glycolysis at early hepatocarcinogenesis by hepatocarcinogens unrelated to genotoxic potential. Non-genotoxic hepatocarcinogens increased c-MYC+ cells after 28 days and downregulated Tp53 after 84 or 90 days, suggesting a commitment to enhanced metabolic shift and cell proliferation. Genotoxic hepatocarcinogens also enhanced c-MYC activation-related metabolic shift until 84 or 90 days. In addition, both genotoxic and non-genotoxic hepatocarcinogens upregulated glutaminolysis-related Slc1a5 or Gls, or both, after 28 days and induced liver cell foci immunoreactive for neutral amino acid transporter B(0) (SLC1A5) in the subpopulation of GST-P+ foci after 84 or 90 days, suggesting glutaminolysis-mediated facilitation of cell proliferation toward hepatocarcinogenesis. These results suggest differential responses between genotoxic and non-genotoxic hepatocarcinogens on reprogramming of energy metabolic pathways toward carcinogenesis in liver cells from the early stage of hepatocarcinogen treatment.
Collapse
Affiliation(s)
- Yuko Ito
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Kota Nakajima
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Yasunori Masubuchi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Satomi Kikuchi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Fumiyo Saito
- Chemicals Evaluation and Research Institute, Japan, 1-4-25 Kouraku, Bunkyo-ku, Tokyo 112-0004, Japan
| | - Yumi Akahori
- Chemicals Evaluation and Research Institute, Japan, 1-4-25 Kouraku, Bunkyo-ku, Tokyo 112-0004, Japan
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Animal Science and Technology Veterinary Medicine, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400715, P.R. China
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|
9
|
Mizukami S, Watanabe Y, Saegusa Y, Nakajima K, Ito Y, Masubuchi Y, Yoshida T, Shibutani M. Downregulation of UBE2E2 in rat liver cells after hepatocarcinogen treatment facilitates cell proliferation and slowing down of DNA damage response in GST-P-expressing preneoplastic lesions. Toxicol Appl Pharmacol 2017; 334:207-216. [PMID: 28899750 DOI: 10.1016/j.taap.2017.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 08/20/2017] [Accepted: 09/06/2017] [Indexed: 10/18/2022]
Abstract
We previously found downregulation of ubiquitin-conjugating enzyme E2E 2 (UBE2E2) in GST-P-positive (+) proliferative lesions produced by tumor promotion from early hepatocarcinogenesis stages in rats. Here we investigated the role of UBE2E2 downregulation in preneoplastic lesions of the liver and other target organs produced by tumor promotion in rats. Increased number of UBE2E2-related ubiquitination target proteins, phosphorylated c-MYC, KDM4A and KMT5A, was found in the UBE2E2-downregulated GST-P+ foci, compared with GST-P+ foci expressing UBE2E2. However, p21WAF1/CIP1, another UBE2E2 target protein, did not increase in the positive cells. Furthermore, the numbers of PCNA+ cells and γH2AX+ cells were increased in UBE2E2-downregulated foci. These results suggest sustained activation of c-MYC and stabilization of KMT5A to result in c-MYC-mediated transcript upregulation and following KMT5A-mediated protein stabilization of PCNA in GST-P+ foci, as well as KDM4A stabilization resulting in slowing down of DNA damage response in these lesions. Similar results were also observed in GST-P+ foci produced by repeated treatment of rats with a hepatocarcinogen, thioacetamide, for 90days. Hepatocarcinogen treatment for 28 or 90days also increased the numbers of liver cells expressing UBE2E2-related ubiquitination target proteins, as well as PCNA+ or γH2AX+ cells. Conversely, UBE2E2 downregulation was lacking in PPARα agonist-induced hepatocarcinogenesis, as well as in carcinogenic processes targeting other organs, suggestive of the loss of UBE2E2-related ubiquitination limited to hepatocarcinogenesis producing GST-P+ proliferative lesions. Our results suggest that repeated hepatocarcinogen treatment of rats causes stabilization of UBE2E2-related ubiquitination target proteins in liver cells to promote carcinogenesis.
Collapse
Affiliation(s)
- Sayaka Mizukami
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan.
| | - Yousuke Watanabe
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan.
| | - Yukie Saegusa
- Environment Health and Safety Division, Environment Directorate, OECD, 2, rue André Pascal, 75775 Paris, Cedex 16, France.
| | - Kota Nakajima
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan.
| | - Yuko Ito
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan.
| | - Yasunori Masubuchi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan.
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
10
|
Mizukami S, Watanabe Y, Nakajima K, Hasegawa-Baba Y, Jin M, Yoshida T, Shibutani M. Downregulation of TMEM70 in Rat Liver Cells After Hepatocarcinogen Treatment Related to the Warburg Effect in Hepatocarcinogenesis Producing GST-P-Expressing Proliferative Lesions. Toxicol Sci 2017; 159:211-223. [DOI: 10.1093/toxsci/kfx131] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Identification of epigenetically downregulated Tmem70 and Ube2e2 in rat liver after 28-day treatment with hepatocarcinogenic thioacetamide showing gene product downregulation in hepatocellular preneoplastic and neoplastic lesions produced by tumor promotion. Toxicol Lett 2017; 266:13-22. [DOI: 10.1016/j.toxlet.2016.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/13/2016] [Accepted: 11/30/2016] [Indexed: 12/19/2022]
|
12
|
Kimura M, Mizukami S, Watanabe Y, Onda N, Yoshida T, Shibutani M. Aberrant cell cycle regulation in rat liver cells induced by post-initiation treatment with hepatocarcinogens/hepatocarcinogenic tumor promoters. ACTA ACUST UNITED AC 2016; 68:399-408. [PMID: 27402199 DOI: 10.1016/j.etp.2016.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/22/2016] [Accepted: 06/07/2016] [Indexed: 01/23/2023]
Abstract
The present study aimed to determine the onset time of hepatocarcinogen/hepatocarcinogenic tumor promoter-specific cell proliferation, apoptosis and aberrant cell cycle regulation after post-initiation treatment. Six-week-old rats were treated with the genotoxic hepatocarcinogen, carbadox (CRB), the marginally hepatocarcinogenic leucomalachite green (LMG), the tumor promoter, β-naphthoflavone (BNF) or the non-carcinogenic hepatotoxicant, acetaminophen, for 2, 4 or 6 weeks during the post-initiation phase using a medium-term liver bioassay. Cell proliferation activity, expression of G2 to M phase- and spindle checkpoint-related molecules, and apoptosis were immunohistochemically analyzed at week 2 and 4, and tumor promotion activity was assessed at week 6. At week 2, hepatocarcinogen/tumor promoter-specific aberrant cell cycle regulation was not observed. At week 4, BNF and LMG increased cell proliferation together with hepatotoxicity, while CRB did not. Additionally, BNF and CRB reduced the number of cells expressing phosphorylated-histone H3 in both ubiquitin D (UBD)(+) cells and Ki-67(+) proliferating cells, suggesting development of spindle checkpoint dysfunction, regardless of cell proliferation activity. At week 6, examined hepatocarcinogens/tumor promoters increased preneoplastic hepatic foci expressing glutathione S-transferase placental form. These results suggest that some hepatocarcinogens/tumor promoters increase their toxicity after post-initiation treatment, causing regenerative cell proliferation. In contrast, some genotoxic hepatocarcinogens may disrupt the spindle checkpoint without facilitating cell proliferation at the early stage of tumor promotion. This suggests that facilitation of cell proliferation and disruption of spindle checkpoint function are induced by different mechanisms during hepatocarcinogenesis. Four weeks of post-initiation treatment may be sufficient to induce hepatocarcinogen/tumor promoter-specific cellular responses.
Collapse
Affiliation(s)
- Masayuki Kimura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Sayaka Mizukami
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Yousuke Watanabe
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Nobuhiko Onda
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
13
|
Kimura M, Mizukami S, Watanabe Y, Hasegawa-Baba Y, Onda N, Yoshida T, Shibutani M. Disruption of spindle checkpoint function in rats following 28 days of repeated administration of renal carcinogens. J Toxicol Sci 2016; 41:91-104. [PMID: 26763396 DOI: 10.2131/jts.41.91] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We previously reported that 28-day exposure to hepatocarcinogens that facilitate cell proliferation specifically alters the expression of G1/S checkpoint-related genes and proteins, induces aberrant early expression of ubiquitin D (UBD) at the G2 phase, and increases apoptosis in the rat liver, indicating G1/S and spindle checkpoint dysfunction. The present study aimed to determine the time of onset of carcinogen-specific cell-cycle disruption after repeated administration of renal carcinogens for up to 28 days. Rats were orally administered the renal carcinogens nitrofurantoin (NFT), 1-amino-2,4-dibromoantraquinone (ADAQ), and 1,2,3-trichloropropane (TCP) or the non-carcinogenic renal toxicants 1-chloro-2-propanol, triamterene, and carboxin for 3, 7 or 28 days. Both immunohistochemical single-molecule analysis and real-time RT-PCR analysis revealed that carcinogen-specific expression changes were not observed after 28 days of administration. However, the renal carcinogens ADAQ and TCP specifically reduced the number of cells expressing phosphorylated-histone H3 at Ser10 in both UBD(+) cells and proliferating cells, suggestive of insufficient UBD expression at the M phase and early transition of proliferating cells from the M phase, without increasing apoptosis, after 28 days of administration. In contrast, NFT, which has marginal carcinogenic potential, did not induce such cellular responses. These results suggest that it may take 28 days to induce spindle checkpoint dysfunction by renal carcinogens; however, induction of apoptosis may not be essential. Thus, induction of spindle checkpoint dysfunction may be dependent on carcinogenic potential of carcinogen examined, and marginal carcinogens may not exert sufficient responses even after 28 days of administration.
Collapse
Affiliation(s)
- Masayuki Kimura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | | | | | | | | | | | | |
Collapse
|
14
|
Kimura M, Abe H, Mizukami S, Tanaka T, Itahashi M, Onda N, Yoshida T, Shibutani M. Onset of hepatocarcinogen-specific cell proliferation and cell cycle aberration during the early stage of repeated hepatocarcinogen administration in rats. J Appl Toxicol 2015; 36:223-37. [DOI: 10.1002/jat.3163] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/08/2015] [Accepted: 03/17/2015] [Indexed: 01/26/2023]
Affiliation(s)
- Masayuki Kimura
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
- Pathogenetic Veterinary Science; United Graduate School of Veterinary Sciences, Gifu University; Gifu-shi Gifu Japan
| | - Hajime Abe
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
- Pathogenetic Veterinary Science; United Graduate School of Veterinary Sciences, Gifu University; Gifu-shi Gifu Japan
| | - Sayaka Mizukami
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
- Pathogenetic Veterinary Science; United Graduate School of Veterinary Sciences, Gifu University; Gifu-shi Gifu Japan
| | - Takeshi Tanaka
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
- Pathogenetic Veterinary Science; United Graduate School of Veterinary Sciences, Gifu University; Gifu-shi Gifu Japan
| | - Megu Itahashi
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
- Pathogenetic Veterinary Science; United Graduate School of Veterinary Sciences, Gifu University; Gifu-shi Gifu Japan
| | - Nobuhiko Onda
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology; Tokyo University of Agriculture and Technology; Fuchu-shi Tokyo Japan
| |
Collapse
|
15
|
Bondy GS, Caldwell DS, Aziz SA, Coady LC, Armstrong CL, Curran IHA, Koffman RL, Kapal K, Lefebvre DE, Mehta R. Effects of Chronic Ochratoxin A Exposure on p53 Heterozygous and p53 Homozygous Mice. Toxicol Pathol 2015; 43:715-29. [DOI: 10.1177/0192623314568391] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Exposure to the mycotoxin ochratoxin A (OTA) causes nephropathy in domestic animals and rodents and renal tumors in rodents and poultry. Humans are exposed to OTA by consuming foods made with contaminated cereal grains and other commodities. Management of human health risks due to OTA exposure depends, in part, on establishing a mode of action (MOA) for OTA carcinogenesis. To further investigate OTA’s MOA, p53 heterozygous (p53+/−) and p53 homozygous (p53+/+) mice were exposed to OTA in diet for 26 weeks. The former are susceptible to tumorigenesis upon chronic exposure to genotoxic carcinogens. OTA-induced renal damage but no tumors were observed in either strain, indicating that p53 heterozygosity conferred little additional sensitivity to OTA. Renal changes included dose-dependent increases in cellular proliferation, apoptosis, karyomegaly, and tubular degeneration in proximal tubules, which were consistent with ochratoxicosis. The lowest observed effect level for renal changes in p53+/− and p53+/+ mice was 200 μg OTA/kg bw/day. Based on the lack of tumors and the severity of renal and body weight changes at a maximum tolerated dose, the results were interpreted as suggestive of a primarily nongenotoxic (epigenetic) MOA for OTA carcinogenesis in this mouse model.
Collapse
Affiliation(s)
- Genevieve S. Bondy
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Donald S. Caldwell
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Syed A. Aziz
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Laurie C. Coady
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Cheryl L. Armstrong
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Ivan H. A. Curran
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | | | - Kamla Kapal
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - David E. Lefebvre
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Rekha Mehta
- Food Directorate, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
16
|
Kimura M, Mizukami S, Watanabe Y, Hasegawa-Baba Y, Onda N, Yoshida T, Shibutani M. Disruption of spindle checkpoint function ahead of facilitation of cell proliferation by repeated administration of hepatocarcinogens in rats. J Toxicol Sci 2015; 40:855-71. [DOI: 10.2131/jts.40.855] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Masayuki Kimura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Sayaka Mizukami
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Yousuke Watanabe
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Yasuko Hasegawa-Baba
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Nobuhiko Onda
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| |
Collapse
|
17
|
Abe H, Ogawa T, Wang L, Kimura M, Tanaka T, Morita R, Yoshida T, Shibutani M. Promoter-region hypermethylation and expression downregulation of Yy1 (Yin yang 1) in preneoplastic liver lesions in a thioacetamide rat hepatocarcinogenesis model. Toxicol Appl Pharmacol 2014; 280:467-74. [DOI: 10.1016/j.taap.2014.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 07/16/2014] [Accepted: 08/12/2014] [Indexed: 01/01/2023]
|
18
|
Taniai E, Yafune A, Nakajima M, Hayashi SM, Nakane F, Itahashi M, Shibutani M. Ochratoxin A induces karyomegaly and cell cycle aberrations in renal tubular cells without relation to induction of oxidative stress responses in rats. Toxicol Lett 2014; 224:64-72. [DOI: 10.1016/j.toxlet.2013.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2013] [Revised: 09/29/2013] [Accepted: 10/01/2013] [Indexed: 12/28/2022]
|
19
|
Yafune A, Taniai E, Morita R, Akane H, Kimura M, Mitsumori K, Shibutani M. Immunohistochemical cellular distribution of proteins related to M phase regulation in early proliferative lesions induced by tumor promotion in rat two-stage carcinogenesis models. ACTA ACUST UNITED AC 2013; 66:1-11. [PMID: 23890812 DOI: 10.1016/j.etp.2013.07.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 06/02/2013] [Accepted: 07/01/2013] [Indexed: 10/26/2022]
Abstract
We have previously reported that 28-day treatment with hepatocarcinogens increases liver cells expressing p21(Cip1), a G1/S checkpoint protein, and M phase proteins, i.e., nuclear Cdc2, Aurora B, phosphorylated-Histone H3 (p-Histone H3) and heterochromatin protein 1α (HP1α), in rats. To examine the roles of these markers in the early stages of carcinogenesis, we investigated their cellular distribution in several carcinogenic target organs using rat two-stage carcinogenesis models. Promoting agents targeting the liver (piperonyl butoxide and methapyrilene hydrochloride), thyroid (sulfadimethoxine), urinary bladder (phenylethyl isothiocyanate), and forestomach and glandular stomach (catechol) were administered to rats after initiation treatment for the liver with N-diethylnitrosamine, thyroid with N-bis(2-hydroxypropyl)nitrosamine, urinary bladder with N-butyl-N-(4-hydroxybutyl)nitrosamine, and forestomach and glandular stomach with N-methyl-N'-nitro-N-nitrosoguanidine. Numbers of cells positive for nuclear Cdc2, Aurora B, p-Histone H3 and HP1α increased within preneoplastic lesions as determined by glutathione S-transferase placental form in the liver or phosphorylated p44/42 mitogen-activated protein kinase in the thyroid, and hyperplastic lesions having no known preneoplastic markers in the urinary bladder, forestomach and glandular stomach. Immunoreactive cells for p21(Cip1) were decreased within thyroid preneoplastic lesions; however, they were increased within liver preneoplastic lesions and hyperplastic lesions in other organs. These results suggest that M phase disruption commonly occur during the formation of preneoplastic lesions and hyperplastic lesions. Differences in the expression patterns of p21(Cip1) between thyroid preneoplastic and proliferative lesions in other organs may reflect differences in cell cycle regulation involving G1/S checkpoint function between proliferative lesions in each organ.
Collapse
Affiliation(s)
- Atsunori Yafune
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | | | | | | | | | | | | |
Collapse
|
20
|
A review on ochratoxin A transcriptomic studies. Food Chem Toxicol 2013; 59:766-83. [PMID: 23747715 DOI: 10.1016/j.fct.2013.05.043] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 05/25/2013] [Accepted: 05/28/2013] [Indexed: 10/26/2022]
Abstract
The mycotoxin Ochratoxin A (OTA) is a potent renal carcinogen in male rats. Transcriptomic studies on OTA (4 in vitro, 6 in vivo, 2 in vitro/in vivo) have been reviewed. The aim of 6 of them was mainly mechanistic whereas the rest had mostly predictive (1) or evaluation (5) purposes. An overall tendency towards gene expression downregulation was observed, probably as a result of protein synthesis inhibition. DNA damage response genes were not deregulated in most of the studies. Genes involved in acute renal injury, cell survival and cell proliferation were upregulated in several in vivo studies. Apoptosis genes were deregulated in vitro but less affected in vivo; activation of several MAPKs has been observed. Many genes related to oxidative stress or involved in cell-to-cell interaction pathways (Wnt) or cytoskeleton structure appeared to be deregulated either in vitro or in vivo. Regucalcin was highly downregulated in vivo and other calcium homeostasis genes were significantly deregulated in vitro. Genes related to OTA transport (OATs) and metabolism (CYPs) appeared downregulated in vivo. Overall, the mechanism of action of OTA remains unclear, however transcriptomic data have contributed to new mechanistic hypothesis generation and to in vitro-in vivo comparison.
Collapse
|
21
|
Yafune A, Taniai E, Morita R, Hayashi H, Suzuki K, Mitsumori K, Shibutani M. Aberrant activation of M phase proteins by cell proliferation-evoking carcinogens after 28-day administration in rats. Toxicol Lett 2013; 219:203-10. [DOI: 10.1016/j.toxlet.2013.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Revised: 03/12/2013] [Accepted: 03/15/2013] [Indexed: 12/30/2022]
|
22
|
Expression patterns of cell cycle proteins in the livers of rats treated with hepatocarcinogens for 28 days. Arch Toxicol 2013; 87:1141-53. [DOI: 10.1007/s00204-013-1011-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2012] [Accepted: 01/17/2013] [Indexed: 10/27/2022]
|
23
|
Taniai E, Yafune A, Kimura M, Morita R, Nakane F, Suzuki K, Mitsumori K, Shibutani M. Fluctuations in cell proliferation, apoptosis, and cell cycle regulation at the early stage of tumor promotion in rat two-stage carcinogenesis models. J Toxicol Sci 2012. [DOI: 10.2131/jts.37.1113] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Eriko Taniai
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Atsunori Yafune
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Masayuki Kimura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Reiko Morita
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
- Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University
| | - Fumiyuki Nakane
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Kazuhiko Suzuki
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Kunitoshi Mitsumori
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| |
Collapse
|