1
|
Yoshita S, Osuka S, Shimizu T, Fujitsuka N, Matsumoto C, Bayasula, Miyake N, Muraoka A, Nakanishi N, Nakamura T, Goto M, Kajiyama H. Unkeito promotes follicle development by restoring reduced follicle-stimulating hormone responsiveness in rats with polycystic ovary syndrome. Front Endocrinol (Lausanne) 2023; 14:1228088. [PMID: 37790609 PMCID: PMC10545092 DOI: 10.3389/fendo.2023.1228088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/31/2023] [Indexed: 10/05/2023] Open
Abstract
Background Polycystic ovary syndrome (PCOS) is a common disorder resulting in irregular menstruation and infertility due to improper follicular development and ovulation. PCOS pathogenesis is mediated by downregulated follicle-stimulating hormone receptor (FSHR) expression in granulosa cells (GCs); however, the underlying mechanism remains elusive. Unkeito (UKT) is a traditional Japanese medicine used to treat irregular menstruation in patients with PCOS. In this study, we aimed to confirm the effectiveness of UKT in PCOS by focusing on follicle-stimulating hormone (FSH) responsiveness. Methods A rat model of PCOS was generated by prenatal treatment with 5α-dihydrotestosterone. Female offspring (3-week-old) rats were fed a UKT mixed diet or a normal diet daily. To compare the PCOS phenotype in rats, the estrous cycle, hormone profiles, and ovarian morphology were evaluated. To further examine the role of FSH, molecular, genetic, and immunohistological analyses were performed using ovarian tissues and primary cultured GCs from normal and PCOS model rats. Results UKT increased the number of antral and preovulatory follicles and restored the irregular estrous cycle in PCOS rats. The gene expression levels of FSHR and bone morphogenetic protein (BMP)-2 and BMP-6 were significantly decreased in the ovarian GCs of PCOS rats compared to those in normal rats. UKT treatment increased FSHR staining in the small antral follicles and upregulated Fshr and Bmps expression in the ovary and GCs of PCOS rats. There was no change in serum gonadotropin levels. In primary cultured GCs stimulated by FSH, UKT enhanced estradiol production, accompanied by increased intracellular cyclic adenosine monophosphate levels, and upregulated the expression of genes encoding the enzymes involved in local estradiol synthesis, namely Cyp19a1 and Hsd17b. Furthermore, UKT elevated the expression of Star and Cyp11a1, involved in progesterone production in cultured GCs in the presence of FSH. Conclusions UKT stimulates ovarian follicle development by potentiating FSH responsiveness by upregulating BMP-2 and BMP-6 expression, resulting in the recovery of estrous cycle abnormalities in PCOS rats. Restoring the FSHR dysfunction in the small antral follicles may alleviate the PCOS phenotype.
Collapse
Affiliation(s)
- Sayako Yoshita
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Satoko Osuka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Tomofumi Shimizu
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Naoki Fujitsuka
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Chinami Matsumoto
- Tsumura Kampo Research Laboratories, Kampo Research & Development Division, Tsumura & Co., Yoshiwara, Ami-machi, Inashiki-gun, Ibaraki, Japan
| | - Bayasula
- Bell Research Center for Reproductive Health and Cancer, Nagoya University Graduate School of Medicine, Tsurumai-cho, Showa-ku, Japan
| | - Natsuki Miyake
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Ayako Muraoka
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Natsuki Nakanishi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Tomoko Nakamura
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Maki Goto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, Showa-ku, Nagoya, Aichi, Japan
| |
Collapse
|
2
|
Neuroprotective Effect of Vitamin D on Behavioral and Oxidative Parameters of Male and Female Adult Wistar Rats Exposed to Mancozeb (manganese/zinc ethylene bis-dithiocarbamate). Mol Neurobiol 2023; 60:3724-3740. [PMID: 36940076 DOI: 10.1007/s12035-023-03298-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/02/2023] [Indexed: 03/21/2023]
Abstract
The constant exposure of rural workers to pesticides is a serious public health problem. Mancozeb (MZ) is a pesticide linked to hormonal, behavioral, genetic, and neurodegenerative effects, mainly related to oxidative stress. Vitamin D is a promising molecule that acts as a protector against brain aging. This study aimed to evaluate the neuroprotective role of vitamin D in adult male and female Wistar rats exposed to MZ. Animals received 40 mg/kg of MZ i.p. and 12.5 μg/kg or 25 μg/kg vitamin D by gavage, twice a week, for 6 weeks. The concentration of manganese had a significant increase in the hippocampus of both sexes and in the striatum of females, unlike zinc, which did not show a significant increase. MZ poisoning led to mitochondrial changes in brain tissues and promoted anxiogenic effects, especially in females. Alterations in antioxidant enzymes, mainly in the catalase activity were observed in intoxicated rats. Taken together, our results showed that exposure to MZ leads to the accumulation of manganese in brain tissues, and the behavior and metabolic/oxidative impairment were different between the sexes. Furthermore, the administration of Vitamin D was effective in preventing the damage caused by the pesticide.
Collapse
|
3
|
Amevor FK, Cui Z, Du X, Ning Z, Shu G, Jin N, Deng X, Tian Y, Zhang Z, Kang X, Xu D, You G, Zhang Y, Li D, Wang Y, Zhu Q, Zhao X. Combination of Quercetin and Vitamin E Supplementation Promotes Yolk Precursor Synthesis and Follicle Development in Aging Breeder Hens via Liver-Blood-Ovary Signal Axis. Animals (Basel) 2021; 11:ani11071915. [PMID: 34203138 PMCID: PMC8300405 DOI: 10.3390/ani11071915] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/20/2021] [Accepted: 06/21/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary This study evaluated the capacity of dietary quercetin, vitamin E and their combination to promote follicle development and attenuate organ inflammation by improving the antioxidant capacity of the liver–blood–ovary signal axis of aging broiler breeder hens. The results from this study showed that the combination of quercetin and vitamin E synergistically improved the chicken’s reproductive organ characteristics, and also showed protective effects on liver morphology and histology. Moreover, the antioxidant parameters, reproductive hormones and receptors, liver lipid synthesis, and the levels of mRNAs related to yolk precursor synthesis (very low density apolipoprotein-II and vitellogenin-II), lipid transport (microsomal triglyceride transport protein), lipogenesis (fatty acid synthase), and follicle developments were increased remarkably by the combination of quercetin and vitamin E. The results obtained in this study provide an important reference for the combination of quercetin and vitamin E as a functional feed additive for promoting the functions of the liver–blood–ovary axis, and also as a potential chemopreventive and chemotherapeutic agent for improving liver and ovary functions in chickens by acting as a hepatoprotective and oviprotective agent. This could facilitate the transport and exchange of synthetic substances (including hormones, yolk precursors, and other biochemical substances) among the liver–blood–ovary alliances to ensure the synchronous development and functional coordination between the liver and ovary in aging breeder hens. Abstract The fertility of female animals is negatively correlated with increasing chronological age. In aging broiler breeder hens, there is a decline in the functionality of the ovary and liver accompanied by hormonal or endocrine changes, a reduction in antioxidant capacity, and a decrease in folliculogenesis. Therefore, improving the reproductive function in aging breeder hens using dietary strategies is of great concern to the poultry breeder. This study evaluated the capacity of dietary quercetin (Q), vitamin E (VE), and their combination (Q + VE) to promote follicle development and attenuate organ inflammation by improving the antioxidant capacity of aging breeder hens. In this study, 400 broiler breeder hens (Tianfu broilers breeder hens, 435 days old) were allotted into four groups (100 birds each) with four replicates each (25 birds each). They were fed diets containing Q (0.4 g/kg), VE (0.2 g/kg), Q + VE (0.4 g/kg + 0.2 g/kg), and a basal diet for 10 weeks. The results showed that Q + VE improved the organ characteristics (p < 0.05), and also that Q + VE showed protective effects on the liver against injury, as well as increasing the antioxidant capacity of the liver, serum, and ovary (p < 0.05). Furthermore, liver lipid synthesis was increased remarkably, as indicated by the changes in triglyceride levels in hens fed Q + VE (p < 0.05). Levels of E2, FSH, and LH, their receptors, and mRNAs related to yolk precursor synthesis were increased by the Q + VE (p < 0.05). Therefore, the combination of quercetin and vitamin E synergistically promotes and regulates the transportation and exchange of synthetic substances among the liver–blood–ovary alliances to ensure the synchronous development and functional coordination between the liver and ovary in aging breeder hens.
Collapse
Affiliation(s)
- Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Zhifu Cui
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Xiaxia Du
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Zifan Ning
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Gang Shu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (D.X.)
| | - Ningning Jin
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Xun Deng
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Yaofu Tian
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Zhichao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Xincheng Kang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Dan Xu
- Department of Basic Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China; (G.S.); (D.X.)
| | - Guishuang You
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Yao Zhang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Diyan Li
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Yan Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Qing Zhu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
| | - Xiaoling Zhao
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; (F.K.A.); (Z.C.); (X.D.); (Z.N.); (N.J.); (X.D.); (Y.T.); (Z.Z.); (X.K.); (G.Y.); (Y.Z.); (D.L.); (Y.W.); (Q.Z.)
- Correspondence:
| |
Collapse
|
4
|
Kurat S, Heinrich P, Molnar-Kasza A, Loeffler T, Flunkert S, Hutter-Paier B. Homozygosity of BACHD rats not only causes strong behavioral deficits in young female rats but also a reduced breeding success. Brain Res 2021; 1761:147396. [PMID: 33662341 DOI: 10.1016/j.brainres.2021.147396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/29/2021] [Accepted: 02/20/2021] [Indexed: 10/22/2022]
Abstract
Huntington's disease is known to be a purely genetic disease based on an expansion of a CAG base triplet repeat in the coding region of the Huntingtin gene. Some years ago, researchers were able to introduce the extensive full-length gene sequence of the mutant huntingtin gene into a rodent model. The resulting BACHD rat is already well characterized for behavioral deficits. So far, all analyses in this preclinical rat model were performed in male hemizygous animals. As homozygosity of transgenic models often causes an amplification of the phenotype and female HD patients present a stronger phenotype compared to men, we established a homozygous breeding colony and tested 2 and 5 months old homozygous male and female BACHD rats in a behavioral test battery. The tests included the grip strength test, Rota Rod, elevated plus maze, passive avoidance, and Barnes maze test. Our results show strong deficits in young female homozygous BACHD rats including increased body weight, motor deficits, muscle weakness, reduced anxiety and hypoactivity, as well as learning and memory deficits. Analysis of male homozygous BACHD rats showed only weak disease symptoms, similar compared to male hemizygous BACHD rats of already published studies. Evaluation of the breeding success showed that homozygous BACHD have a reduced number of pups at the time of birth that even decreases until weaning. Our results suggest that the phenotype of homozygous male BACHD rats barely differs from already published results of hemizygous BACHD rats while female homozygous BACHD rats display strong and early alterations.
Collapse
Affiliation(s)
- Stephan Kurat
- QPS Austria GmbH, Neuropharmacology, Parkring 12, 8074 Grambach, Austria.
| | - Petra Heinrich
- QPS Austria GmbH, Neuropharmacology, Parkring 12, 8074 Grambach, Austria.
| | - Agnes Molnar-Kasza
- QPS Austria GmbH, Neuropharmacology, Parkring 12, 8074 Grambach, Austria.
| | - Tina Loeffler
- QPS Austria GmbH, Neuropharmacology, Parkring 12, 8074 Grambach, Austria.
| | - Stefanie Flunkert
- QPS Austria GmbH, Neuropharmacology, Parkring 12, 8074 Grambach, Austria.
| | | |
Collapse
|
5
|
Biagioni EM, May LE, Broskey NT. The impact of advanced maternal age on pregnancy and offspring health: A mechanistic role for placental angiogenic growth mediators. Placenta 2021; 106:15-21. [PMID: 33601220 DOI: 10.1016/j.placenta.2021.01.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/19/2021] [Accepted: 01/28/2021] [Indexed: 01/01/2023]
Abstract
The birth rates among women of advanced maternal age (AMA) have risen over the last two decades; yet, pregnancies with AMA are considered high-risk and are associated with a significant increase in pregnancy complications. Although the mechanisms leading to pregnancy complications in women with AMA are not fully understood, it has been well established in the literature that offspring exposed to unfavorable environmental conditions in utero, such as gestational diabetes, preeclampsia, and/or intrauterine growth restriction during the early stages of development are subject to long-term health consequences. Additionally, angiogenic growth mediators, which drive vascular development of the placenta, are imbalanced in pregnancies with AMA. These same imbalances also occur in pregnancies complicated by preeclampsia, gestational diabetes, and obesity. This review discusses the impact of AMA on pregnancy and offspring health, and the potential mechanistic role of placental angiogenic growth mediators in the development of pregnancy complications at AMA.
Collapse
Affiliation(s)
- Ericka M Biagioni
- College of Health and Human Performance, Department of Kinesiology, East Carolina University, Greenville, NC, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA
| | - Linda E May
- College of Health and Human Performance, Department of Kinesiology, East Carolina University, Greenville, NC, USA; School of Dental Medicine, Department of Foundational Sciences and Research, East Carolina University, Greenville, NC, USA
| | - Nicholas T Broskey
- College of Health and Human Performance, Department of Kinesiology, East Carolina University, Greenville, NC, USA; East Carolina Diabetes and Obesity Institute, East Carolina University, Greenville, NC, USA.
| |
Collapse
|
6
|
Hiramoto K, Oikawa H, Yamate Y, Sato EF. Tranexamic Acid Protects Ovary and Testis Functions and Ameliorates Osteoporosis in Mice. Pharmacology 2020; 105:652-661. [PMID: 32348988 DOI: 10.1159/000506233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/26/2020] [Indexed: 11/19/2022]
Abstract
INTRODUCTION In a rapidly aging society, the number of people suffering from osteoporosis keeps increasing. However, effective prevention strategies for osteoporosis are not yet currently available. OBJECTIVE In this study, we examined the ameliorative effects of tranexamic acid on osteoporosis in 24-month-old mice. METHODS During the study period, mice were orally administered tranexamic acid 3 times per week. RESULTS Bone mineral density, which is a parameter of osteoporosis, was improved following tranexamic acid administration. In addition, female mice evidenced a stronger phenotypic improvement than male mice. In female mice treated with tranexamic acid, ovary abnormalities were reduced. Furthermore, the levels of transforming growth factor-β, hyaluronic acid, CD44, reactive oxygen species, and apoptosis, as well as the number of infiltrated neutrophils and macrophages in the ovary were lower than those in the control or solvent-administered mice. In addition, 17β-estradiol levels in blood increased when compared with the control or solvent-treated mice. In addition, administration of tranexamic acid to 24-month-old male mice decreased the level of apoptosis in the testis. However, the levels of 17β-estradiol and testosterone in blood increased compared with the control or solvent-administered mice. CONCLUSIONS The use of tranexamic acid had an ameliorative effect on osteoporosis, possibly by protecting ovaries and testes.
Collapse
Affiliation(s)
- Keiichi Hiramoto
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan,
| | - Hirotaka Oikawa
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Yurika Yamate
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| | - Eisuke F Sato
- Department of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka, Japan
| |
Collapse
|
7
|
Bianchi S, Nottola SA, Torge D, Palmerini MG, Necozione S, Macchiarelli G. Association between Female Reproductive Health and Mancozeb: Systematic Review of Experimental Models. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17072580. [PMID: 32283742 PMCID: PMC7177957 DOI: 10.3390/ijerph17072580] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/05/2020] [Accepted: 04/07/2020] [Indexed: 11/29/2022]
Abstract
Mancozeb is a widely used fungicide approved for use in agriculture in many countries with long persistence in the environment and consequent bioaccumulation in tissues and biological fluids. Despite the large amount of studies published in recent years, the relationship between mancozeb exposure and female reproductive health is not fully elucidated. In order to summarize current evidence on mancozeb exposure and female reproductive disease, we performed a systematic review of literature. Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to make this review. An adapted version of the National Toxicology Program’s Office of Health and Assessment and Translation (OHAT) framework was used to evaluate the risk of bias. Electronic search on two databases (PubMed and Scopus) was used to find experimental studies (in vitro and in vivo) on mancozeb exposure. The database search identified 250 scientific articles, 20 of which met our inclusion criteria. Selected data were then reviewed and summarized in tables. Overall, mancozeb represents a hazard for female reproductive health, with different mechanisms of action. Undoubtedly more experimental and epidemiological studies are required to definitively validate mancozeb as reproductive toxicant.
Collapse
Affiliation(s)
- Serena Bianchi
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.B.); (D.T.); (M.G.P.); (S.N.); (G.M.)
| | - Stefania Annarita Nottola
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics, La Sapienza University of Rome, 00161 Rome, Italy
- Correspondence: ; Tel.: +39-06-4991-8072
| | - Diana Torge
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.B.); (D.T.); (M.G.P.); (S.N.); (G.M.)
| | - Maria Grazia Palmerini
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.B.); (D.T.); (M.G.P.); (S.N.); (G.M.)
| | - Stefano Necozione
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.B.); (D.T.); (M.G.P.); (S.N.); (G.M.)
| | - Guido Macchiarelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy; (S.B.); (D.T.); (M.G.P.); (S.N.); (G.M.)
| |
Collapse
|
8
|
Cuomo D, Porreca I, Ceccarelli M, Threadgill DW, Barrington WT, Petriella A, D'Angelo F, Cobellis G, De Stefano F, D'Agostino MN, De Felice M, Mallardo M, Ambrosino C. Transcriptional landscape of mouse-aged ovaries reveals a unique set of non-coding RNAs associated with physiological and environmental ovarian dysfunctions. Cell Death Discov 2018; 4:112. [PMID: 30534420 PMCID: PMC6281605 DOI: 10.1038/s41420-018-0121-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/30/2018] [Accepted: 08/28/2018] [Indexed: 01/09/2023] Open
Abstract
The progressive and physiological decline in ovarian function depends on the rate of follicular loss by atresia, contributing to the reduction in ovarian reserve. Genetics and environmental factors play important roles in ovarian senescence and in the onset of ovarian dysfunctions such as diminished ovarian reserve. A better understanding of the mechanisms underlying ovarian aging and their regulation by genetic and environmental factors is needed to evaluate ovarian reserve and to predict fertility potential by identification of more accurate and less invasive markers. We report transcriptomic data (i) implicating novel (e.g. EIF2 signalling) and well-known pathways (e.g. TGFβ signalling), and (ii) defining a unique set of non-coding RNA (ncRNA), both associated with ovarian function. The latter includes miRNAs (e.g. Mir143 and Mir145), snoRNAs (e.g. Snord16a and Snora34), and one lncRNA (Gas5), which are differentially expressed in middle-aged ovaries (12 months) vs young-aged (3 months) from CD1 mice. Experimental analysis confirms that ovary lifespan varies across genetic backgrounds in mice and, genetics influences the response to environmental perturbations such as diet. Moreover, the identified ncRNAs were verified in a model of reproductive dysfunction promoted by the environmental toxicant ethylenthiourea. We also report the increase of miRNA143 and miRNA145 in follicular fluid of women with diminished ovarian reserve. Their levels inversely correlate with the hormonal profile and with the number of the oocytes recruited upon hormonal stimulation. Overall, we report a transcriptomic signature for ovarian dysfunction in vivo that provides a valuable resource for translational research in human reproductive aging.
Collapse
Affiliation(s)
- Danila Cuomo
- 1Department of Science and Technology, University of Sannio, Via Port'Arsa 11, 82100 Benevento, Italy.,2Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843 USA
| | | | - Michele Ceccarelli
- 1Department of Science and Technology, University of Sannio, Via Port'Arsa 11, 82100 Benevento, Italy.,3IRGS, Biogem, Camporeale, 83031 Ariano Irpino, Avellino Italy
| | - David W Threadgill
- 2Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843 USA.,4Department of Veterinary Pathobiology, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX 77843 USA
| | - William T Barrington
- 2Department of Molecular and Cellular Medicine, College of Medicine, Texas A&M University, College Station, TX 77843 USA
| | - Annacristina Petriella
- 1Department of Science and Technology, University of Sannio, Via Port'Arsa 11, 82100 Benevento, Italy
| | - Fulvio D'Angelo
- 3IRGS, Biogem, Camporeale, 83031 Ariano Irpino, Avellino Italy
| | - Gilda Cobellis
- 5Department of Experimental Medicine, Second University of Naples, Via Costantinopoli 16, 80138 Naples, Italy
| | - Francesca De Stefano
- Department of Children and Women Health, Physiopathology of Human Reproduction Unit, A.O.R.N. S.G. Moscati, 83100 Avellino, Italy
| | - Maria N D'Agostino
- Department of Children and Women Health, Physiopathology of Human Reproduction Unit, A.O.R.N. S.G. Moscati, 83100 Avellino, Italy
| | - Mario De Felice
- 7Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy.,IEOS-CNR, Via Pansini 6, 80131 Naples, Italy
| | - Massimo Mallardo
- 7Molecular Medicine and Medical Biotechnologies, University of Naples "Federico II", 80131 Naples, Italy
| | - Concetta Ambrosino
- 1Department of Science and Technology, University of Sannio, Via Port'Arsa 11, 82100 Benevento, Italy.,3IRGS, Biogem, Camporeale, 83031 Ariano Irpino, Avellino Italy.,IEOS-CNR, Via Pansini 6, 80131 Naples, Italy
| |
Collapse
|
9
|
Liu XT, Lin X, Mi YL, Zeng WD, Zhang CQ. Age-related changes of yolk precursor formation in the liver of laying hens. J Zhejiang Univ Sci B 2018; 19:390-399. [PMID: 29732750 DOI: 10.1631/jzus.b1700054] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A rapid decline in egg production of laying hens begins after 480 d of age. Such a rapid decrease results predominantly from the ovarian aging, accompanied by endocrine changes, decreased yolk synthesis and accumulation, and the reduction in follicles selected into the preovulatory hierarchy. In this study, hens at 90, 150, 280, and 580 d old (D90, D150, D280, and D580, respectively) were compared for yolk precursor formation in the liver to elucidate effects of aging on laying performance. The results showed that liver lipid synthesis increased remarkably in hens from D90 to D150, but decreased sharply at D580 as indicated by the changes in triglyceride (TG) levels. This result was consistent with the age-related changes of the laying performance. The levels of liver antioxidants and total antioxidant capacity decreased significantly in D580 hens and the methane dicarboxylic aldehyde in D580 hens was much higher than that at other stages. The serum 17β-estradiol level increased from D90 to D280, but decreased at D580 (P<0.05). The expression of estrogen receptor α and β mRNAs in the liver displayed similar changes to the serum 17β-estradiol in D580 hens. Expressions of the genes related to yolk precursor formation and enzymes responsible for fat acid synthesis were all decreased in D580 hens. These results indicated that decreased yolk precursor formation in the liver of the aged hens resulted from concomitant decreases of serum 17β-estradiol level, transcription levels of estrogen receptors and critical genes involved in yolk precursor synthesis, and liver antioxidant status.
Collapse
Affiliation(s)
- Xing-Ting Liu
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xin Lin
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu-Ling Mi
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei-Dong Zeng
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cai-Qiao Zhang
- Department of Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
10
|
The decline of pregnancy rate and abnormal uterine responsiveness of steroid hormones in aging mice. Reprod Biol 2017; 17:305-311. [DOI: 10.1016/j.repbio.2017.09.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 08/14/2017] [Accepted: 09/01/2017] [Indexed: 02/03/2023]
|
11
|
Tryptophan circuit in fatigue: From blood to brain and cognition. Brain Res 2017; 1675:116-126. [PMID: 28893581 DOI: 10.1016/j.brainres.2017.09.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 08/29/2017] [Accepted: 09/02/2017] [Indexed: 12/17/2022]
Abstract
Brain tryptophan and its neuroactive metabolites play key roles in central fatigue. However, previous brain function analysis targets may have included both glia and neurons together. Here, we clarified the fatigue-cognitive circuit of the central-peripheral linkage, including the role of glial-neuronal interaction in cognition. Using a rat model of central fatigue induced by chronic sleep disorder (CFSD), we isolated presynaptic terminals and oligodendrocytes. Results showed that compared to control group, presynaptic levels of tryptophan, kynurenine, and kynurenic acid, but not serotonin, in the CFSD group were higher in the hypothalamus and hippocampus. Moreover, CFSD group had higher oligodendrocytic levels of tryptophan, and impaired spatial cognitive memory accuracy and increased hyperactivity and impulsivity. These findings suggest that dynamic change in glial-neuronal interactions within the hypothalamus-hippocampal circuit causes central fatigue, and increased tryptophan-kynurenic acid pathway activity in this circuit causes reduced cognitive function. Additionally, CFSD group had 1.5 times higher plasma levels of tryptophan and kynurenine. Furthermore, in rats undergoing intraperitoneal administration of kynurenine (100mg/kg) versus vehicle, kynurenine-treated rats showed enhanced production of kynurenic acid in the hippocampus, with suppressed recall of retained spatial cognitive memory. The study revealed that uptake of periphery-derived kynurenine and tryptophan into the brain enhances kynurenic acid production in the brain, and the three factors produce amplification effect involved in the role of central-peripheral linkage in central fatigue, triggering cognitive dysfunction.
Collapse
|
12
|
Ohmukai H, Negura T, Tachibana S, Ohta R. Genetic variation in low-dose effects of neonatal DES exposure in female rats. Reprod Toxicol 2017; 73:322-327. [PMID: 28734970 DOI: 10.1016/j.reprotox.2017.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2017] [Revised: 03/26/2017] [Accepted: 07/12/2017] [Indexed: 11/25/2022]
Abstract
To confirm genetic variation in low-dose effects of diethylstilbestrol (DES), two inbred strains of rats, which have been selectively bred for high- and low-avoidance learning (HAA and LAA, respectively), were used in this study. LAA rats characteristically show later sexual maturation, earlier reproductive senescence, and lower body weight as compared to HAA rats. Female neonates of each strain were daily administered DES by oral gavage at doses of 0 (vehicle only), 0.05 and 0.5μg/kg for the first 5days after birth. As a result, early onset of abnormal estrous cycles was observed during the same period in HAA and LAA rats treated with 0.5μg/kg. However, accelerated puberty and excessive body weight gains were observed only in LAA rats treated with 0.05 and 0.5μg/kg. These results suggest that the effects of neonatal DES exposure vary with the genetic background of the female rats used.
Collapse
Affiliation(s)
- Hideo Ohmukai
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano Kanagawa, 257-8523, Japan
| | - Tsukasa Negura
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano Kanagawa, 257-8523, Japan
| | - Shigehiro Tachibana
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano Kanagawa, 257-8523, Japan
| | - Ryo Ohta
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano Kanagawa, 257-8523, Japan.
| |
Collapse
|
13
|
Li J, Mao Q, He J, She H, Zhang Z, Yin C. Human umbilical cord mesenchymal stem cells improve the reserve function of perimenopausal ovary via a paracrine mechanism. Stem Cell Res Ther 2017; 8:55. [PMID: 28279229 PMCID: PMC5345137 DOI: 10.1186/s13287-017-0514-5] [Citation(s) in RCA: 82] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 01/05/2017] [Accepted: 02/18/2017] [Indexed: 01/20/2023] Open
Abstract
Background Human umbilical cord mesenchymal stem cells (hUCMSCs) are a type of pluripotent stem cell which are isolated from the umbilical cord of newborns. hUCMSCs have great therapeutic potential. We designed this experimental study in order to investigate whether the transplantation of hUCMSCs can improve the ovarian reserve function of perimenopausal rats and delay ovarian senescence. Method We selected naturally aging rats confirmed by vaginal smears as models of perimenopausal rats, divided into the control group and the treatment group, and selected young fertile female rats as normal controls. hUCMSCs were transplanted into rats of the treatment group through tail veins. Enzyme-linked immunosorbent assay (ELISA) detected serum levels of sex hormones, H&E staining showed ovarian tissue structure and allowed follicle counting, immunohistochemistry and western blot analysis revealed ovarian expression of hepatocyte growth factor (HGF), vascular endothelial cell growth factor (VEGF), and insulin-like growth factor-1 (IGF-1), polymerase chain reaction (PCR) and western blot analysis revealed hUCMSCs expression of HGF, VEGF, and IGF-1. Results At time points of 14, 21, and 28 days after hUCMSCs transplantation, estradiol (E2) and anti-Müllerian hormone (AMH) increased while follicle-stimulating hormone (FSH) decreased; ovarian structure improved and follicle number increased; ovarian expression of HGF, VEGF, and IGF-1 protein elevated significantly. Meanwhile, PCR and western blot analysis indicated hUCMSCs have the capacity of secreting HGF, VEGF, and IGF-1 cytokines. Conclusions Our results suggest that hUCMSCs can promote ovarian expression of HGF, VEGF, and IGF-1 through secreting those cytokines, resulting in improving ovarian reserve function and withstanding ovarian senescence.
Collapse
Affiliation(s)
- Jia Li
- Department of Obstetrics and Gynecology, Graduate College, Guangdong Medical University, Zhanjiang, Guangdong, 524023, China.,Department of Obstetrics and Gynecology, Guangdong No.2 Provincial People's Hospital, NO.466 Xingangdong Road, Guangzhou, 510317, China
| | - QiuXian Mao
- Department of Obstetrics and Gynecology, Guangdong No.2 Provincial People's Hospital, NO.466 Xingangdong Road, Guangzhou, 510317, China
| | - JingJun He
- Department of Physical Examination, Guangdong No.2 Provincial People's Hospital, NO.466 Xingangdong Road, Guangzhou, 510317, China
| | - HaoQing She
- Department of Obstetrics and Gynecology, Medical College, NanHua University, Hengyang, Hunan, 421001, China
| | - Zhi Zhang
- Department of Laboratory Medicine, Guangdong No.2 Provincial People's Hospital, NO.466 Xingangdong Road, Guangzhou, 510317, China.
| | - ChunYan Yin
- Department of Obstetrics and Gynecology, Guangdong No.2 Provincial People's Hospital, NO.466 Xingangdong Road, Guangzhou, 510317, China.
| |
Collapse
|
14
|
Kunimura Y, Iwata K, Ishigami A, Ozawa H. Age-related alterations in hypothalamic kisspeptin, neurokinin B, and dynorphin neurons and in pulsatile LH release in female and male rats. Neurobiol Aging 2017; 50:30-38. [DOI: 10.1016/j.neurobiolaging.2016.10.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/06/2016] [Accepted: 10/12/2016] [Indexed: 12/18/2022]
|
15
|
Halpern WG, Ameri M, Bowman CJ, Elwell MR, Mirsky ML, Oliver J, Regan KS, Remick AK, Sutherland VL, Thompson KE, Tremblay C, Yoshida M, Tomlinson L. Scientific and Regulatory Policy Committee Points to Consider Review: Inclusion of Reproductive and Pathology End Points for Assessment of Reproductive and Developmental Toxicity in Pharmaceutical Drug Development. Toxicol Pathol 2016; 44:789-809. [PMID: 27235322 PMCID: PMC4979743 DOI: 10.1177/0192623316650052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Standard components of nonclinical toxicity testing for novel pharmaceuticals include clinical and anatomic pathology, as well as separate evaluation of effects on reproduction and development to inform clinical development and labeling. General study designs in regulatory guidances do not specifically mandate use of pathology or reproductive end points across all study types; thus, inclusion and use of these end points are variable. The Scientific and Regulatory Policy Committee of the Society of Toxicologic Pathology (STP) formed a Working Group to assess the current guidelines and practices on the use of reproductive, anatomic pathology, and clinical pathology end points in general, reproductive, and developmental toxicology studies. The Working Group constructed a survey sent to pathologists and reproductive toxicologists, and responses from participating organizations were collected through the STP for evaluation by the Working Group. The regulatory context, relevant survey results, and collective experience of the Working Group are discussed and provide the basis of each assessment by study type. Overall, the current practice of including specific end points on a case-by-case basis is considered appropriate. Points to consider are summarized for inclusion of reproductive end points in general toxicity studies and for the informed use of pathology end points in reproductive and developmental toxicity studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Amera K Remick
- WIL Research, a Charles River Company, Hillsborough, North Carolina, USA
| | | | | | | | - Midori Yoshida
- Food Safety Commission of Japan, Minato-ku, Tokyo, Japan
| | | |
Collapse
|
16
|
Ohta R, Kumagai F, Marumo H, Usumi K, Saito Y, Kuwagata M. Stress-reactive rats (high-avoidance female rats) have a shorter lifespan than stress-nonreactive rats (low-avoidance female rats). J Toxicol Pathol 2015; 29:77-84. [PMID: 27182111 PMCID: PMC4866005 DOI: 10.1293/tox.2015-0045] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 11/02/2015] [Indexed: 11/19/2022] Open
Abstract
Although Hatano high-avoidance and low-avoidance rats (HAA and LAA, respectively) have been selectively bred for good versus poor avoidance learning, HAA rats are known to be more reactive to stress than LAA rats. In this study, HAA and LAA female rats were compared during reproductive aging by observing estrous cycles from 8 to 11 months of age. Furthermore, these rats were allowed to live out their natural lifespans, that is, until 24 months of age, in order to compare their survival and to clarify the relationship between reproductive aging and tumor development. At eight months of age, 2 of 35 HAA rats and 20 of 35 LAA rats had abnormal estrous cycles. The median lifespan of the HAA rats (673 days) was shorter than that of the LAA rats (733 days). The incidence of pituitary neoplasia was higher in the HAA rats than in the LAA rats. These results suggest that HAA female rats (i.e., stress-reactive rats) have a shorter lifespan than LAA female rats (i.e., stress-nonreactive rats) and develop pituitary neoplasia, which was one of the causal factors in their accelerated mortality. However, the onset of an age-matched abnormal cycle did not correspond with their lifespan.
Collapse
Affiliation(s)
- Ryo Ohta
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Fumiaki Kumagai
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Hideki Marumo
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Kenji Usumi
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Yoshiaki Saito
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Makiko Kuwagata
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| |
Collapse
|
17
|
Ohta R, Ohmukai H, Toyoizumi T, Shindo T, Marumo H, Ono H. Ovarian dysfunction, obesity and pituitary tumors in female mice following neonatal exposure to low-dose diethylstilbestrol. Reprod Toxicol 2014; 50:145-51. [PMID: 25450423 DOI: 10.1016/j.reprotox.2014.10.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 11/28/2022]
Abstract
In a previous study, we found that early life exposure to low-dose diethylstilbestrol (DES) induced early onset of spontaneous abnormalities in estrus cycle and shortened survival in female Sprague-Dawley rats. In order to confirm the repeatability of the previous study, neonates of C57BL/6J mice were orally administered DES at doses of 0.005, 0.05, 0.5 and 5 μg/kg/day, and the aging of their reproductive function was observed. As a result, delayed toxicity on ovarian function was found in females treated with 0.5 μg/kg/day of DES. Concomitantly, the females in the 0.05 μg/kg/day of DES, or greater, groups, had increased body weights and, in the 0.5 μg/kg/day of DES, or greater, groups, had developed pituitary tumors, which were causal factors in their accelerated mortality. Thus, we found that early life exposure to low-dose DES induced early onset of spontaneous abnormalities in estrus cycle not only in female rats but also in female mice.
Collapse
Affiliation(s)
- Ryo Ohta
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan.
| | - Hideo Ohmukai
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Tomoyasu Toyoizumi
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Tomoko Shindo
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Hideki Marumo
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| | - Hiroshi Ono
- Hatano Research Institute, Food and Drug Safety Center, 729-5 Ochiai, Hadano, Kanagawa 257-8523, Japan
| |
Collapse
|
18
|
Khalil A, Syngelaki A, Maiz N, Zinevich Y, Nicolaides KH. Maternal age and adverse pregnancy outcome: a cohort study. ULTRASOUND IN OBSTETRICS & GYNECOLOGY : THE OFFICIAL JOURNAL OF THE INTERNATIONAL SOCIETY OF ULTRASOUND IN OBSTETRICS AND GYNECOLOGY 2013; 42:634-643. [PMID: 23630102 DOI: 10.1002/uog.12494] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/18/2013] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
OBJECTIVE To examine the association between maternal age and a wide range of adverse pregnancy outcomes after adjustment for confounding factors in obstetric history and maternal characteristics. METHODS This was a retrospective study in women with singleton pregnancies attending the first routine hospital visit at 11 + 0 to 13 + 6 weeks' gestation. Data on maternal characteristics, and medical and obstetric history were collected and pregnancy outcomes ascertained. Maternal age was studied, both as a continuous and as a categorical variable. Regression analysis was performed to examine the association between maternal age and adverse pregnancy outcome including pre-eclampsia, gestational hypertension, gestational diabetes mellitus (GDM), preterm delivery, small-for-gestational age (SGA) neonate, large-for-gestational age (LGA) neonate, miscarriage, stillbirth and elective and emergency Cesarean section. RESULTS The study population included 76 158 singleton pregnancies with a live fetus at 11 + 0 to 13 + 6 weeks. After adjusting for potential maternal and pregnancy confounding variables, advanced maternal age (defined as ≥ 40 years) was associated with increased risk of miscarriage (odds ratio (OR), 2.32 (95% CI, 1.83-2.93); P < 0.001), pre-eclampsia (OR, 1.49 (95% CI, 1.22-1.82); P < 0.001), GDM (OR, 1.88 (95% CI, 1.55-2.29); P < 0.001), SGA (OR, 1.46 (95% CI, 1.27-1.69); P < 0.001) and Cesarean section (OR, 1.95 (95% CI, 1.77-2.14); P < 0.001), but not with stillbirth, gestational hypertension, spontaneous preterm delivery or LGA. CONCLUSIONS Maternal age should be combined with other maternal characteristics and obstetric history when calculating an individualized adjusted risk for adverse pregnancy complications. Advanced maternal age is a risk factor for miscarriage, pre-eclampsia, SGA, GDM and Cesarean section, but not for stillbirth, gestational hypertension, spontaneous preterm delivery or LGA.
Collapse
Affiliation(s)
- A Khalil
- Department of Fetal Medicine, Institute for Women's Health, University College London Hospitals, London, UK
| | | | | | | | | |
Collapse
|
19
|
Maranghi F, De Angelis S, Tassinari R, Chiarotti F, Lorenzetti S, Moracci G, Marcoccia D, Gilardi E, Di Virgilio A, Eusepi A, Mantovani A, Olivieri A. Reproductive toxicity and thyroid effects in Sprague Dawley rats exposed to low doses of ethylenethiourea. Food Chem Toxicol 2013; 59:261-71. [DOI: 10.1016/j.fct.2013.05.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 05/15/2013] [Accepted: 05/31/2013] [Indexed: 02/02/2023]
|