1
|
Chen X, Xiang W, Li L, Xu K. Copper Chaperone Atox1 Protected the Cochlea From Cisplatin by Regulating the Copper Transport Family and Cell Cycle. Int J Toxicol 2024; 43:134-145. [PMID: 37859596 DOI: 10.1177/10915818231206665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Antioxidant 1 copper chaperone (Atox1) may contribute to preventing DDP cochlear damage by regulating copper transport family and cell cycle proteins. A rat model of cochlear damage was developed by placing gelatin sponges treated with DDP in the cochlea. HEI-OC1 cells were treated with 133 μM DDP as a cell model. DDP-induced ototoxicity in rats was confirmed by immunofluorescence (IF) imaging. The damage of DDP to HEI-OC1 cells was assessed by using CCK-8, TUNEL, and flow cytometry. The relationship between Atox1, a member of the copper transport protein family, and the damage to in vivo/vitro models was explored by qRT-PCR, western blot, CCK-8, TUNEL, and flow cytometry. DDP had toxic and other side effects causing cochlear damage and promoted HEI-OC1 cell apoptosis and cell cycle arrest. The over-expression of Atox1 (oe-Atox1) was accomplished by transfecting lentiviral vectors into in vitro/vivo models. We found that oe-Atox1 increased the levels of Atox1, copper transporter 1 (CTR1), and SOD3 in HEI-OC1 cells and decreased the expression levels of ATPase copper transporting α (ATP7A) and ATPase copper transporting β (ATP7B). In addition, the transfection of oe-Atox1 decreased cell apoptosis rate and the number of G2/M stage cells. Similarly, the expression of myosin VI and phalloidin of cochlea cells in vivo decreased. Atox1 ameliorated DDP-induced damage to HEI-OC1 cells or rats' cochlea by regulating the levels of members of the copper transport family.
Collapse
Affiliation(s)
- Xubo Chen
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weiren Xiang
- Department of Otolaryngology, Head and Neck Surgery, Jiu Jiang No.1 People's Hospital, Jiujiang, China
| | - Lihua Li
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Kai Xu
- Department of Otolaryngology, Head and Neck Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
2
|
Montardy Q, Wei M, Liu X, Yi T, Zhou Z, Lai J, Zhao B, Besnard S, Tighilet B, Chabbert C, Wang L. Selective optogenetic stimulation of glutamatergic, but not GABAergic, vestibular nuclei neurons induces immediate and reversible postural imbalance in mice. Prog Neurobiol 2021; 204:102085. [PMID: 34171443 DOI: 10.1016/j.pneurobio.2021.102085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 04/21/2021] [Accepted: 05/25/2021] [Indexed: 11/24/2022]
Abstract
Glutamatergic and GABAergic neurons represent the neural components of the medial vestibular nuclei. We assessed the functional role of glutamatergic and GABAergic neuronal pathways arising from the vestibular nuclei (VN) in the maintenance of gait and balance by optogenetically stimulating the VN in VGluT2-cre and GAD2-cre mice. We demonstrate that glutamatergic, but not GABAergic VN neuronal subpopulation is responsible for immediate and strong posturo-locomotor deficits, comparable to unilateral vestibular deafferentation models. During optogenetic stimulation, the support surface dramatically increased in VNVGluT2+ mice, and rapidly fell back to baseline after stimulation, whilst it remained unchanged during similar stimulation of VNGAD2+ mice. This effect persisted when vestibular tactilo kinesthesic plantar inputs were removed. Posturo-locomotor alterations evoked in VNVGluT2+ animals were still present immediately after stimulation, while they disappeared 1 h later. Overall, these results indicate a fundamental role for VNVGluT2+ neurons in balance and posturo-locomotor functions, but not for VNGAD2+ neurons, in this specific context. This new optogenetic approach will be useful to characterize the role of the different VN neuronal populations involved in vestibular physiology and pathophysiology.
Collapse
Affiliation(s)
- Q Montardy
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; GDR Physiopathologie Vestibulaire - unité GDR2074 CNRS, France
| | - M Wei
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - X Liu
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - T Yi
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Z Zhou
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China; McGovern Institute for Brain Research, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - J Lai
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - B Zhao
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - S Besnard
- Aix Marseille University-CNRS, Laboratory of Sensory and Cognitive Neurosciences, UMR 7260, Team Pathophysiology and Therapy of Vestibular Disorders, Marseille, France; Université de Caen Normandie, CHU de Caen, Caen, France; GDR Physiopathologie Vestibulaire - unité GDR2074 CNRS, France
| | - B Tighilet
- Aix Marseille University-CNRS, Laboratory of Sensory and Cognitive Neurosciences, UMR 7260, Team Pathophysiology and Therapy of Vestibular Disorders, Marseille, France; GDR Physiopathologie Vestibulaire - unité GDR2074 CNRS, France.
| | - C Chabbert
- Aix Marseille University-CNRS, Laboratory of Sensory and Cognitive Neurosciences, UMR 7260, Team Pathophysiology and Therapy of Vestibular Disorders, Marseille, France; GDR Physiopathologie Vestibulaire - unité GDR2074 CNRS, France.
| | - L Wang
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, CAS Center for Excellence in Brain Science and Intelligence Technology, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China.
| |
Collapse
|
3
|
Fernandez K, Wafa T, Fitzgerald TS, Cunningham LL. An optimized, clinically relevant mouse model of cisplatin-induced ototoxicity. Hear Res 2019; 375:66-74. [PMID: 30827780 PMCID: PMC6416072 DOI: 10.1016/j.heares.2019.02.006] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 02/05/2019] [Accepted: 02/20/2019] [Indexed: 02/06/2023]
Abstract
Cisplatin-induced ototoxicity results in significant, permanent hearing loss in pediatric and adult cancer survivors. Elucidating the mechanisms underlying cisplatin-induced hearing loss as well as the development of therapies to reduce and/or reverse cisplatin ototoxicity have been impeded by suboptimal animal models. Clinically, cisplatin is most commonly administered in multi-dose, multi-cycle protocols. However, many animal studies are conducted using single injections of high-dose cisplatin, which is not reflective of clinical cisplatin administration protocols. Significant limitations of both high-dose, single-injection protocols and previous multi-dose protocols in rodent models include high mortality rates and relatively small changes in hearing sensitivity. These limitations restrict assessment of both long-term changes in hearing sensitivity and effects of potential protective therapies. Here, we present a detailed method for an optimized mouse model of cisplatin ototoxicity that utilizes a multi-cycle administration protocol that better approximates the type and degree of hearing loss observed clinically. This protocol results in significant hearing loss with very low mortality. This mouse model of cisplatin ototoxicity provides a platform for examining mechanisms of cisplatin-induced hearing loss as well as developing therapies to protect the hearing of cancer patients receiving cisplatin therapy.
Collapse
Affiliation(s)
- K Fernandez
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - T Wafa
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - T S Fitzgerald
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA
| | - L L Cunningham
- National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Péricat D, Farina A, Agavnian-Couquiaud E, Chabbert C, Tighilet B. Complete and irreversible unilateral vestibular loss: A novel rat model of vestibular pathology. J Neurosci Methods 2017; 283:83-91. [DOI: 10.1016/j.jneumeth.2017.04.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/26/2017] [Accepted: 04/01/2017] [Indexed: 01/10/2023]
|
5
|
Callejo A, Durochat A, Bressieux S, Saleur A, Chabbert C, Domènech Juan I, Llorens J, Gaboyard-Niay S. Dose-dependent cochlear and vestibular toxicity of trans-tympanic cisplatin in the rat. Neurotoxicology 2017; 60:1-9. [PMID: 28223157 DOI: 10.1016/j.neuro.2017.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 02/10/2017] [Accepted: 02/10/2017] [Indexed: 11/18/2022]
Abstract
In vivo studies are needed to study cisplatin ototoxicity and to evaluate candidate protective treatments. Rats and mice are the preferred species for toxicological and pharmacological pre-clinical research, but systemic administration of cisplatin causes high morbidity in these species. We hypothesized that trans-tympanic administration of cisplatin would provide a good model for studying its auditory and vestibular toxicity in the rat. Cisplatin was administered by the trans-tympanic route in one ear (50μl, 0.5-2mg/ml) of rats of both sexes and two different strains. Cochlear toxicity was corroborated by histological means. Vestibular toxicity was demonstrated by behavioral and histological analysis. Cisplatin concentrations were assessed in inner ear after trans-tympanic and i.v. administration. In all experiments, no lethality and only scant body weight loss were recorded. Cisplatin caused dose-dependent cochlear toxicity, as demonstrated by hair cell counts in the apical and middle turns of the cochlea, and vestibular toxicity, as demonstrated by behavioral analysis and hair cell counts in utricles. High concentrations of cisplatin were found in the inner ear after trans-tympanic administration. In comparison, i.v. administration resulted in lower inner ear concentrations. We conclude that trans-tympanic administration provides an easy, reproducible and safe model to study the cochlear and vestibular toxicity of cisplatin in the rat. This route of exposure may be useful to address particular questions on cisplatin induced ototoxicity and to test candidate protective treatments.
Collapse
Affiliation(s)
- Angela Callejo
- Departament de Ciències Fisiològiques, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Catalonia, Spain; Unitat Funcional d'Otorinolaringologia i Al·lèrgia, Institut Universtiari Dexeus, 08028 Barcelona, Catalonia, Spain
| | | | | | | | | | - Ivan Domènech Juan
- Unitat Funcional d'Otorinolaringologia i Al·lèrgia, Institut Universtiari Dexeus, 08028 Barcelona, Catalonia, Spain; Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain
| | - Jordi Llorens
- Departament de Ciències Fisiològiques, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Catalonia, Spain; Institut de Neurociències, Universitat de Barcelona, Catalonia, Spain; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Catalonia, Spain.
| | | |
Collapse
|
6
|
Callejo A, Sedó-Cabezón L, Juan ID, Llorens J. Cisplatin-Induced Ototoxicity: Effects, Mechanisms and Protection Strategies. TOXICS 2015; 3:268-293. [PMID: 29051464 PMCID: PMC5606684 DOI: 10.3390/toxics3030268] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 12/11/2022]
Abstract
Cisplatin is a highly effective chemotherapeutic agent that is widely used to treat solid organ malignancies. However, serious side effects have been associated with its use, such as bilateral, progressive, irreversible, dose-dependent neurosensory hearing loss. Current evidence indicates that cisplatin triggers the production of reactive oxygen species in target tissues in the inner ear. A variety of agents that protect against cisplatin-induced ototoxicity have been successfully tested in cell culture and animal models. However, many of them interfere with the therapeutic effect of cisplatin, and therefore are not suitable for systemic administration in clinical practice. Consequently, local administration strategies, namely intratympanic administration, have been developed to achieve otoprotection, without reducing the antitumoral effect of cisplatin. While a considerable amount of pre-clinical information is available, clinical data on treatments to prevent cisplatin ototoxicity are only just beginning to appear. This review summarizes clinical and experimental studies of cisplatin ototoxicity, and focuses on understanding its toxicity mechanisms, clinical repercussions and prevention strategies.
Collapse
Affiliation(s)
- Angela Callejo
- Unitat Funcional d'Otorrinolaringologia i Al·lèrgia, Institut Universtiari Quirón Dexeus, 08028 Barcelona, Catalonia, Spain.
| | - Lara Sedó-Cabezón
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Catalonia, Spain.
| | - Ivan Domènech Juan
- Unitat Funcional d'Otorrinolaringologia i Al·lèrgia, Institut Universtiari Quirón Dexeus, 08028 Barcelona, Catalonia, Spain.
- Servei d'Otorrinolaringologia, Hospital Universitario de Bellvitge, 08907 L'Hospitalet de Llobregat, Catalonia, Spain.
| | - Jordi Llorens
- Departament de Ciències Fisiològiques II, Universitat de Barcelona, 08907 L'Hospitalet de Llobregat, Catalonia, Spain.
- Institut d'Investigació Biomèdica de Bellvitge (IDIBELL), 08907 L'Hospitalet de Llobregat, Catalonia, Spain.
| |
Collapse
|
7
|
Wang J, Wang Y, Chen X, Zhang PZ, Shi ZT, Wen LT, Qiu JH, Chen FQ. Histone deacetylase inhibitor sodium butyrate attenuates gentamicin-induced hearing loss in vivo. Am J Otolaryngol 2015; 36:242-8. [PMID: 25554003 DOI: 10.1016/j.amjoto.2014.11.003] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 11/14/2014] [Indexed: 01/13/2023]
Abstract
OBJECTIVE Although histone deacetylase (HDAC) inhibition has been shown to protect against gentamicin (GM)-induced hearing loss in vitro, its protective effect has not been proven in vivo. In the present study, the aim was to investigate the protective effect of sodium butyrate (NaB), a specific HDAC inhibitor, on GM-induced ototoxicity in vivo. METHODS Forty 8-week-old albino guinea pigs were divided into two experimental groups. Group 1 (n=10) underwent bilateral ear surgery to place sponges (0.3mm(3)) permeated with NaB (10μl, 100mg/ml) and physiological saline (10μl; control) in the right and left round window niches, respectively. The sponges were left in place for 15days to evaluate the effects of NaB at the applied concentration. Group 2 (n=30) underwent the same bilateral ear surgery described for Group 1, except three days after surgery, the animals received intramuscular GM injections (200mg/kg/day) for 5 consecutive days. Seven days after the final GM injection, the protective effects of NaB were examined. RESULTS After 15days of NaB treatment (10μl, 100mg/ml), an increase in histone acetylation was detected in Corti organ samples. Auditory brainstem response (ABR) threshold shifts and hair cell loss were also reduced in NaB-treated ears after GM administration. Furthermore, GM treatment increased HDAC1 expression in outer hair cells (OHCs) in vivo, and NaB blocked this action. CONCLUSION GM increases HDAC1 expression in OHCs, and NaB is able to block this action. Thus, it appears that the HDAC inhibitor, NaB, attenuates GM-induced hearing loss in guinea pigs.
Collapse
Affiliation(s)
- Jie Wang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an, China; Department of Otolaryngology-Head and Neck Surgery, Xi'an Children's Hospital, Shanxi, Xi'an, China
| | - Ye Wang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an, China
| | - Xin Chen
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an, China
| | - Peng-zhi Zhang
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an, China
| | - Ze-tao Shi
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an, China
| | - Li-ting Wen
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an, China
| | - Jian-hua Qiu
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an, China
| | - Fu-quan Chen
- Department of Otolaryngology-Head and Neck Surgery, Xijing Hospital, Fourth Military Medical University, 17 Changle Western Road, Xi'an, China.
| |
Collapse
|
8
|
Hellberg V, Wallin I, Ehrsson H, Laurell G. Cochlear pharmacokinetics of cisplatin: an in vivo study in the guinea pig. Laryngoscope 2013; 123:3172-7. [PMID: 23754209 DOI: 10.1002/lary.24235] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/14/2013] [Accepted: 05/14/2013] [Indexed: 12/20/2022]
Abstract
OBJECTIVES/HYPOTHESIS Cisplatin produces toxic lesions to outer hair cells (OHCs) in the cochlear base but not in the apex. The objective of this study was to compare the pharmacokinetic profile of cisplatin in scala tympani (ST) perilymph in the cochlear base and apex, respectively. STUDY DESIGN In vivo animal study. METHODS Forty-seven guinea pigs were given an intravenous bolus injection of an ototoxic dose of cisplatin. Ten to 240 minutes after cisplatin was given, blood, cerebrospinal fluid (CSF), and ST perilymph were aspirated within the same target time. ST perilymph was aspirated from the basal turn and from the apex of the cochlea by two different sampling techniques. Liquid chromatography with postcolumn derivatization was used for quantitative determination of the parent drug. RESULTS Ten minutes after administration, the concentration of cisplatin in ST perilymph was 4-fold higher in the basal turn of the cochlea than in the apex. At 30 minutes, the drug concentrations did not differ. At 60 minutes, the level of cisplatin in ST perilymph and blood UF was equivalent. The perilymph-blood ratio increased thereafter with time. CONCLUSION The pharmacokinetic findings of an early high concentration of cisplatin in the base of the cochlea and delayed elimination of cisplatin from ST perilymph compared to blood might correlate to the cisplatin-induced loss of OHCs in the base of the cochlea.
Collapse
Affiliation(s)
- Victoria Hellberg
- Department of Clinical Science, Intervention, and Technology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | |
Collapse
|
9
|
Chang L, Wang A. Calpain mediated cisplatin-induced ototoxicity in mice. Neural Regen Res 2013; 8:1995-2002. [PMID: 25206508 PMCID: PMC4145908 DOI: 10.3969/j.issn.1673-5374.2013.21.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 06/06/2013] [Indexed: 11/18/2022] Open
Abstract
Ototoxic drug-induced apoptosis of inner ear cells has been shown to be associated with calpain expression. Cisplatin has severe ototoxicity, and can induce cochlear cell apoptosis. This study assumed that cisplatin activated calpain expression in apoptotic cochlear cells. A mouse model of cisplatin-induced ototoxicity was established by intraperitoneal injection with cisplatin (2.5, 3.5, 4.5, 5.5 mg/kg). Immunofluorescence staining, image analysis and western blotting were used to detect the expression of calpain 1 and calpain 2 in the mouse cochlea. At the same time, the auditory brainstem response was measured to observe the change in hearing. Results revealed that after intraperitoneal injection with cisplatin for 5 days, the auditory brainstem response threshold shifts increased in mice. Calpain 1 and calpain 2 expression significantly increased in outer hair cells, the spiral ganglion and stria vascularis. Calpain 2 protein expression markedly increased with an increased dose of cisplatin. Results suggested that calpain 1 and calpain 2 mediated cisplatin-induced ototoxicity in BALB/c mice. During this process, calpain 2 plays a leading role.
Collapse
Affiliation(s)
- Liang Chang
- Party and Government Affairs Office, Jinzhou Central Hospital, Jinzhou 121001, Liaoning Province, China
| | - Aimei Wang
- Department of Physiology, Liaoning Medical University, Jinzhou 121001, Liaoning Province, China
| |
Collapse
|