2
|
Lumbreras S, Ricobaraza A, Baila-Rueda L, Gonzalez-Aparicio M, Mora-Jimenez L, Uriarte I, Bunuales M, Avila MA, Monte MJ, Marin JJG, Cenarro A, Gonzalez-Aseguinolaza G, Hernandez-Alcoceba R. Gene supplementation of CYP27A1 in the liver restores bile acid metabolism in a mouse model of cerebrotendinous xanthomatosis. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:210-221. [PMID: 34485606 PMCID: PMC8399082 DOI: 10.1016/j.omtm.2021.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/16/2021] [Indexed: 01/30/2023]
Abstract
Cerebrotendinous xanthomatosis (CTX) is an autosomal recessive disease caused by mutations in the CYP27A1 gene, encoding the sterol 27-hydroxylase. Disruption of the bile acid biosynthesis pathway and accumulation of toxic precursors such as cholestanol cause chronic diarrhea, bilateral juvenile cataracts, tissue deposition of cholestanol and cholesterol (xanthomas), and progressive motor/neuropsychiatric alterations. We have evaluated the therapeutic potential of adeno-associated virus (AAV) vectors expressing CYP27A1 in a CTX mouse model. We found that a vector equipped with a strong liver-specific promoter (albumin enhancer fused with the α1 anti-trypsin promoter) is well tolerated and shows therapeutic effect at relatively low doses (1.5 × 1012 viral genomes [vg]/kg), when less than 20% of hepatocytes overexpress the transgene. This vector restored bile acid metabolism and normalized the concentration of most bile acids in plasma. By contrast, standard treatment (oral chenodeoxycholic acid [CDCA]), while reducing cholestanol, did not normalize bile acid composition in plasma and resulted in supra-physiological levels of CDCA and its derivatives. At the transcriptional level, only the vector was able to avoid the induction of xenobiotic-induced pathways in mouse liver. In conclusion, the overexpression of CYP27A1 in a fraction of hepatocytes using AAV vectors is well tolerated and provides full metabolic restoration in Cyp27a1−/− mice. These features make gene therapy a feasible option for the etiological treatment of CTX patients.
Collapse
Affiliation(s)
- Sara Lumbreras
- University of Navarra, CIMA, Gene Therapy and Regulation of Gene Expression Program, FIMA, 31008 Pamplona, Spain.,IdiSNa, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Ana Ricobaraza
- University of Navarra, CIMA, Gene Therapy and Regulation of Gene Expression Program, FIMA, 31008 Pamplona, Spain.,IdiSNa, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Lucia Baila-Rueda
- Unidad Clinica y de Investigacion en Lipidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigacion Sanitaria Aragon (IIS Aragón), CIBERCV, 50009 Zaragoza, Spain
| | - Manuela Gonzalez-Aparicio
- University of Navarra, CIMA, Gene Therapy and Regulation of Gene Expression Program, FIMA, 31008 Pamplona, Spain.,IdiSNa, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Lucia Mora-Jimenez
- University of Navarra, CIMA, Gene Therapy and Regulation of Gene Expression Program, FIMA, 31008 Pamplona, Spain.,IdiSNa, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Iker Uriarte
- IdiSNa, Navarra Institute for Health Research, 31008 Pamplona, Spain.,University of Navarra, CIMA, Hepatology Program, FIMA, 31008 Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria Bunuales
- University of Navarra, CIMA, Gene Therapy and Regulation of Gene Expression Program, FIMA, 31008 Pamplona, Spain.,IdiSNa, Navarra Institute for Health Research, 31008 Pamplona, Spain
| | - Matias A Avila
- IdiSNa, Navarra Institute for Health Research, 31008 Pamplona, Spain.,University of Navarra, CIMA, Hepatology Program, FIMA, 31008 Pamplona, Spain.,CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Maria J Monte
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain.,Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
| | - Jose J G Marin
- CIBERehd, Instituto de Salud Carlos III, 28029 Madrid, Spain.,Experimental Hepatology and Drug Targeting (HEVEPHARM), Institute of Biomedical Research of Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain
| | - Ana Cenarro
- Unidad Clinica y de Investigacion en Lipidos y Arteriosclerosis, Hospital Universitario Miguel Servet, Instituto de Investigacion Sanitaria Aragon (IIS Aragón), CIBERCV, 50009 Zaragoza, Spain
| | - Gloria Gonzalez-Aseguinolaza
- University of Navarra, CIMA, Gene Therapy and Regulation of Gene Expression Program, FIMA, 31008 Pamplona, Spain.,IdiSNa, Navarra Institute for Health Research, 31008 Pamplona, Spain.,Vivet Therapeutics SAS, 75008 Paris, France
| | - Ruben Hernandez-Alcoceba
- University of Navarra, CIMA, Gene Therapy and Regulation of Gene Expression Program, FIMA, 31008 Pamplona, Spain.,IdiSNa, Navarra Institute for Health Research, 31008 Pamplona, Spain
| |
Collapse
|
3
|
Yamada T, Cohen SM, Lake BG. Critical evaluation of the human relevance of the mode of action for rodent liver tumor formation by activators of the constitutive androstane receptor (CAR). Crit Rev Toxicol 2021; 51:373-394. [PMID: 34264181 DOI: 10.1080/10408444.2021.1939654] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Many nongenotoxic chemicals have been shown to produce liver tumors in mice and/or rats by a mode of action (MOA) involving activation of the constitutive androstane receptor (CAR). Studies with phenobarbital (PB) and other compounds have identified the key events for this MOA: CAR activation; increased hepatocellular proliferation; altered foci formation; and ultimately the development of adenomas/carcinomas. In terms of human relevance, the pivotal species difference is that CAR activators are mitogenic agents in mouse and rat hepatocytes, but they do not stimulate increased hepatocellular proliferation in humans. This conclusion is supported by substantial in vitro studies with cultured rodent and human hepatocytes and also by in vivo studies with chimeric mice with human hepatocytes. Examination of the literature reveals many similarities in the hepatic effects and species differences between activators of rodent CAR and the peroxisome proliferator-activated receptor alpha (PPARα), with PPARα activators also not being mitogenic agents in human hepatocytes. Overall, a critical analysis of the available data demonstrates that the established MOA for rodent liver tumor formation by PB and other CAR activators is qualitatively not plausible for humans. This conclusion is supported by data from several human epidemiology studies.
Collapse
Affiliation(s)
- Tomoya Yamada
- Environmental Health Science Laboratory, Sumitomo Chemical Company, Ltd., Osaka, Japan
| | - Samuel M Cohen
- Department of Pathology and Microbiology, Havlik-Wall Professor of Oncology, University of Nebraska Medical Center, Nebraska Medical Center, Omaha, NE, USA
| | - Brian G Lake
- Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| |
Collapse
|
4
|
Piperonyl butoxide: Mode of action analysis for mouse liver tumour formation and human relevance. Toxicology 2020; 439:152465. [PMID: 32320717 DOI: 10.1016/j.tox.2020.152465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/31/2020] [Accepted: 04/14/2020] [Indexed: 12/20/2022]
Abstract
In a 79 week bioassay the pesticide synergist piperonyl butoxide (PBO) was shown to significantly increase the incidence of hepatocellular adenoma (but not hepatocellular carcinoma) in male CD-1 mice at dietary levels of 100 and 300 mg/kg/day PBO and in female mice at a dietary level of 300 mg/kg/day. As PBO is not a genotoxic agent, a series of investigative studies were undertaken to elucidate the mode of action (MOA) for PBO-induced mouse liver tumour formation. Male CD-1 mice were fed diets to provide intakes of 0 (control), 30, 100 and 300 mg/kg/day PBO and for purposes of comparison 500 ppm sodium phenobarbital (NaPB), a known constitutive androstane receptor (CAR) activator, for 7 and 14 days. Treatment with 100 and 300 mg/kg/day PBO and 500 ppm NaPB increased relative liver weight which was associated with hepatocyte hypertrophy, with hepatocyte replicative DNA synthesis (RDS) being increased after 7 days treatment. The treatment of CD-1 mice with 30-300 mg/kg/day PBO for 14 days resulted in significant dose-dependent increases in hepatic microsomal cytochrome P450 (CYP) content and 7-pentoxyresorufin O-depentylase (PROD) activity and in hepatic Cyp2b10 mRNA levels. In contrast, PBO produced a biphasic effect on markers of activation of the peroxisome proliferator-activated receptor alpha (PPARα), with small increases in microsomal lauric acid 12-hydroxylase activity and hepatic Cyp4a10 mRNA levels being observed in mice given 100 mg/kg/day with PBO, with either no increase or a significant inhibition being observed in mice given 300 mg/kg/day PBO. The hepatic effects of PBO in male CD-1 mice were generally similar to those produced by NaPB and were reversible after the cessation of treatment for 28 days. Studies were also performed in male C57BL/6J (wild type) mice and in hepatic CAR and pregnane X receptor (PXR) knockout mice (CAR KO/PXR KO mice), where in the CAR KO/PXR KO mice PBO had little effect on markers of CAR activation, but produced some increases in markers of PPARα activation. The treatment of male CD-1 mouse hepatocytes for 4 days with 5-50 μM PBO, 10-1000 μM NaPB and 25 ng/mL epidermal growth factor (EGF) resulted in significant increases in hepatocyte RDS. While treatment of hepatocytes from one male and one female human donor with 5-500 μM PBO and 10-1000 μM NaPB for 4 days had no effect on hepatocyte RDS, treatment with EGF resulted in significant increases in RDS in both human hepatocyte preparations. In summary, PBO is predominantly a hepatic CAR activator at carcinogenic dose levels in CD-1 mice, with activation of hepatic CAR resulting in a suppression of the effect of PBO on hepatic PPARα. A robust MOA for PBO-induced mouse liver tumour formation has been established, this MOA being similar to that previously identified for NaPB and some other rodent liver CAR activators. Based on the lack of effect of PBO on RDS in human hepatocytes, it is considered that the MOA for PBO-induced mouse liver tumour formation is qualitatively not plausible for humans.
Collapse
|
5
|
Gu Y, Lu J, Sun W, Jin R, Ohira T, Zhang Z, Tian X. Oxymatrine and its metabolite matrine contribute to the hepatotoxicity induced by radix Sophorae tonkinensis in mice. Exp Ther Med 2019; 17:2519-2528. [PMID: 30906440 PMCID: PMC6425122 DOI: 10.3892/etm.2019.7237] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/28/2018] [Indexed: 12/13/2022] Open
Abstract
Previous studies by our group demonstrated that radix Sophorae tonkinensis could induce hepatotoxicity. However, it remains unclear which components of this herb may be responsible for its hepatotoxicity. The present study aimed to investigate the hepatic toxicity of treatment with matrine (MT) and oxymatrine (OMT) alone or simultaneously. Furthermore, the current study aimed to identify whether the hepatotoxicity induced by OMT is actually the toxic characterization of its metabolite MT. Hepatotoxicity was evaluated by biochemical and histopathological approaches in subchronic toxicity in mice, as well as via evaluation of cytotoxicity and enzyme leakage in AML12 liver cells. The results indicated that treatment of mice with OMT and MT individually or simultaneously resulted in centrilobular hypertrophy in the liver at doses equivalent to that contained in radix S. tonkinensis at a hepatotoxic dose, suggesting that MT and OMT are likely hepatotoxic components of this herb. OMT-induced hepatotoxicity may be primarily exerted via its metabolite MT in mice. Furthermore, OMT combined with MT was observed to be more toxic compared with OMT or MT alone. These results extend our understanding of the hepatotoxicity of radix S. tonkinensis and its active ingredients.
Collapse
Affiliation(s)
- Yingmin Gu
- Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Center for Laboratory Animals, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Jinyao Lu
- Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Center for Laboratory Animals, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Wei Sun
- Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Center for Laboratory Animals, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Ruomin Jin
- Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Center for Laboratory Animals, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Toko Ohira
- Shanghai Innostar Biotech Co., Ltd., China National Shanghai Center for New Drug Safety Evaluation and Research, Shanghai 201203, P.R. China
| | - Zean Zhang
- Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Center for Laboratory Animals, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Xuesong Tian
- Center for Drug Safety Evaluation and Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China.,Center for Laboratory Animals, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| |
Collapse
|
6
|
Tamura K, Inoue K, Takahashi M, Matsuo S, Kodama Y, Yoshida M. A crucial role of constitutive androstane receptor (CAR) in liver tumor development by imazalil in mice. J Toxicol Sci 2016; 41:801-811. [DOI: 10.2131/jts.41.801] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Affiliation(s)
- Kei Tamura
- Division of Pathology, National Institute of Health Sciences
- Toxicology Research Department, Pharmaceutical Development Research Laboratories, Teijin Pharma Limited
- Laboratory of Veterinary Pharmacology, School of Veterinary Medicine Azabu University
| | - Kaoru Inoue
- Division of Pathology, National Institute of Health Sciences
- Present address: Food Safety Commission Secretariat, Cabinet Office
| | - Miwa Takahashi
- Division of Pathology, National Institute of Health Sciences
| | - Saori Matsuo
- Division of Pathology, National Institute of Health Sciences
| | - Yukio Kodama
- Division of Toxicology, National Institute of Health Sciences
| | | |
Collapse
|