1
|
Ito Y, Nakajima K, Masubuchi Y, Kikuchi S, Saito F, Akahori Y, Jin M, Yoshida T, Shibutani M. Expression Characteristics of Genes Hypermethylated and Downregulated in Rat Liver Specific to Nongenotoxic Hepatocarcinogens. Toxicol Sci 2020; 169:122-136. [PMID: 30690589 PMCID: PMC6484883 DOI: 10.1093/toxsci/kfz027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
This study examined hypermethylated and downregulated genes specific to carbon tetrachloride (CCl4) by Methyl-Seq analysis combined with expression microarray analysis in the liver of rats treated with CCl4 or N-nitrosodiethylamine (DEN) for 28 days, by excluding those with DEN. Among 52 genes, Ldlrad4, Proc, Cdh17, and Nfia were confirmed to show promoter-region hypermethylation by methylation-specific quantitative PCR analysis on day 28. The transcript levels of these 4 genes decreased by real-time reverse transcription-PCR analysis in the livers of rats treated with nongenotoxic hepatocarcinogens for up to 90 days compared with untreated controls and genotoxic hepatocarcinogens. Immunohistochemically, LDLRAD4 and PROC showed decreased immunoreactivity, forming negative foci, in glutathione S-transferase placental form (GST-P)+ foci, and incidences of LDLRAD4− and PROC− foci in GST-P+ foci induced by treatment with nongenotoxic hepatocarcinogens for 84 or 90 days were increased compared with those with genotoxic hepatocarcinogens. In contrast, CDH17 and NFIA responded to hepatocarcinogens without any relation to the genotoxic potential of carcinogens. All 4 genes did not respond to renal carcinogens after treatment for 28 days. Considering that Ldlrad4 is a negative regulator of transforming growth factor-β signaling, Proc participating in p21WAF1/CIP1 upregulation by activation, Cdh17 inducing cell cycle arrest by gene knockdown, and Nfia playing a role in a tumor-suppressor, all these genes may be potential in vivo epigenetic markers of nongenotoxic hepatocarcinogens from the early stages of treatment in terms of gene expression changes. LDLRAD4 and PROC may have a role in the development of preneoplastic lesions produced by nongenotoxic hepatocarcinogens.
Collapse
Affiliation(s)
- Yuko Ito
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Kota Nakajima
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Yasunori Masubuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, Gifu-shi, Gifu, Japan
| | - Satomi Kikuchi
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Fumiyo Saito
- Chemicals Evaluation and Research Institute, Bunkyo-ku, Tokyo, Japan
| | - Yumi Akahori
- Chemicals Evaluation and Research Institute, Bunkyo-ku, Tokyo, Japan
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Animal Science and Technology Veterinary Medicine, Southwest University, Chongqing, P.R. China
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu-shi, Tokyo, Japan
| |
Collapse
|
2
|
Doktorova TY, Oki NO, Mohorič T, Exner TE, Hardy B. A semi-automated workflow for adverse outcome pathway hypothesis generation: The use case of non-genotoxic induced hepatocellular carcinoma. Regul Toxicol Pharmacol 2020; 114:104652. [PMID: 32251711 DOI: 10.1016/j.yrtph.2020.104652] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 01/10/2020] [Accepted: 03/29/2020] [Indexed: 02/07/2023]
Abstract
The utility of the Adverse Outcome Pathway (AOP) concept has been largely recognized by scientists, however, the AOP generation is still mainly done manually by screening through evidence and extracting probable associations. To accelerate this process and increase the reliability, we have developed an semi-automated workflow for AOP hypothesis generation. In brief, association mining methods were applied to high-throughput screening, gene expression, in vivo and disease data present in ToxCast and Comparative Toxicogenomics Database. This was supplemented by pathway mapping using Reactome to fill in gaps and identify events occurring at the cellular/tissue levels. Furthermore, in vivo data from TG-Gates was integrated to finally derive a gene, pathway, biochemical, histopathological and disease network from which specific disease sub-networks can be queried. To test the workflow, non-genotoxic-induced hepatocellular carcinoma (HCC) was selected as a case study. The implementation resulted in the identification of several non-genotoxic-specific HCC-connected genes belonging to cell proliferation, endoplasmic reticulum stress and early apoptosis. Biochemical findings revealed non-genotoxic-specific alkaline phosphatase increase. The explored non-genotoxic-specific histopathology was associated with early stages of hepatic steatosis, transforming into cirrhosis. This work illustrates the utility of computationally predicted constructs in supporting development by using pre-existing knowledge in a fast and unbiased manner.
Collapse
Affiliation(s)
- Tatyana Y Doktorova
- Edelweiss Connect GmbH, Hochbergerstrasse 60C, Technology Park Basel, Basel, Switzerland.
| | - Noffisat O Oki
- American Association for the Advancement of Science, Science & Technology Policy Fellow, USA; National Institutes of Health, Rockville, MD, USA
| | - Tomaž Mohorič
- Edelweiss Connect GmbH, Hochbergerstrasse 60C, Technology Park Basel, Basel, Switzerland
| | - Thomas E Exner
- Edelweiss Connect GmbH, Hochbergerstrasse 60C, Technology Park Basel, Basel, Switzerland
| | - Barry Hardy
- Edelweiss Connect GmbH, Hochbergerstrasse 60C, Technology Park Basel, Basel, Switzerland
| |
Collapse
|
3
|
Ito Y, Nakajima K, Masubuchi Y, Kikuchi S, Saito F, Akahori Y, Jin M, Yoshida T, Shibutani M. Differential responses on energy metabolic pathway reprogramming between genotoxic and non-genotoxic hepatocarcinogens in rat liver cells. J Toxicol Pathol 2019; 32:261-274. [PMID: 31719753 PMCID: PMC6831489 DOI: 10.1293/tox.2019-0048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Accepted: 06/25/2019] [Indexed: 12/12/2022] Open
Abstract
To clarify difference in the responses on the reprogramming of metabolism toward carcinogenesis between genotoxic and non-genotoxic hepatocarcinogens in the liver, rats were repeatedly administered genotoxic hepatocarcinogens (N-nitrosodiethylamine, aflatoxin B1, N-nitrosopyrrolidine, or carbadox) or non-genotoxic hepatocarcinogens (carbon tetrachloride, thioacetamide, or methapyrilene hydrochloride) for 28, 84, or 90 days. Non-genotoxic hepatocarcinogens revealed transcript expression changes suggestive of suppressed mitochondrial oxidative phosphorylation (OXPHOS) after 28 days and increased glutathione S-transferase placental form-positive (GST-P+) foci downregulating adenosine triphosphate (ATP) synthase subunit beta, mitochondrial precursor (ATPB), compared with genotoxic hepatocarcinogens after 84 or 90 days, suggesting that non-genotoxic hepatocarcinogens are prone to suppress OXPHOS from the early stage of treatment, which is in contrast to genotoxic hepatocarcinogens. Both genotoxic and non-genotoxic hepatocarcinogens upregulated glycolytic enzyme genes and increased cellular membrane solute carrier family 2, facilitated glucose transporter member 1 (GLUT1) expression in GST-P+ foci for up to 90 days, suggesting induction of a metabolic shift from OXPHOS to glycolysis at early hepatocarcinogenesis by hepatocarcinogens unrelated to genotoxic potential. Non-genotoxic hepatocarcinogens increased c-MYC+ cells after 28 days and downregulated Tp53 after 84 or 90 days, suggesting a commitment to enhanced metabolic shift and cell proliferation. Genotoxic hepatocarcinogens also enhanced c-MYC activation-related metabolic shift until 84 or 90 days. In addition, both genotoxic and non-genotoxic hepatocarcinogens upregulated glutaminolysis-related Slc1a5 or Gls, or both, after 28 days and induced liver cell foci immunoreactive for neutral amino acid transporter B(0) (SLC1A5) in the subpopulation of GST-P+ foci after 84 or 90 days, suggesting glutaminolysis-mediated facilitation of cell proliferation toward hepatocarcinogenesis. These results suggest differential responses between genotoxic and non-genotoxic hepatocarcinogens on reprogramming of energy metabolic pathways toward carcinogenesis in liver cells from the early stage of hepatocarcinogen treatment.
Collapse
Affiliation(s)
- Yuko Ito
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Kota Nakajima
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Yasunori Masubuchi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Satomi Kikuchi
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Fumiyo Saito
- Chemicals Evaluation and Research Institute, Japan, 1-4-25 Kouraku, Bunkyo-ku, Tokyo 112-0004, Japan
| | - Yumi Akahori
- Chemicals Evaluation and Research Institute, Japan, 1-4-25 Kouraku, Bunkyo-ku, Tokyo 112-0004, Japan
| | - Meilan Jin
- Laboratory of Veterinary Pathology, College of Animal Science and Technology Veterinary Medicine, Southwest University, No.2 Tiansheng Road, BeiBei District, Chongqing 400715, P.R. China
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Division of Animal Life Science, Institute of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Cooperative Division of Veterinary Sciences, Graduate School of Agriculture, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.,Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| |
Collapse
|
4
|
Zargar S, Wani TA, Alamro AA, Ganaie MA. Amelioration of thioacetamide-induced liver toxicity in Wistar rats by rutin. Int J Immunopathol Pharmacol 2017; 30:207-214. [PMID: 28590141 PMCID: PMC5815265 DOI: 10.1177/0394632017714175] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
This study was designed to evaluate the effect of rutin on hepatotoxicity induced by thioacetamide (TAA) in rats. Four groups of male Wistar rats consisting of six rats each were used: Group I: control group; Group II: rats receiving single injection of 300 mg kg−1 body weight of TAA intraperitoneally; Group III: rats administered rutin (10 mg kg−1 body weight) dissolved in saline orally for 2 weeks; and Group IV: rats administered rutin (10 mg kg−1 body weight) dissolved in saline orally for 2 weeks followed by TAA injection last day of second week. All groups were sacrificed after 24 h of treatment and hepatic toxicity was analyzed with respect to liver toxicity markers, liver DNA fragmentation, and histology of liver tissue. Administration of TAA in Wistar rats resulted in significant increase of hepatic markers, DNA fragmentation in the hepatocytes, and changes in histology. Pretreatment of rats with rutin before 2 weeks of TAA assault resulted in the complete reversal of TAA-mediated hepatic toxicity (P < 0.0001 to P < 0.01) with concomitant restoration of DNA fragmentation. This study suggests rutin as a protective agent for restoration of toxicity caused by TAA.
Collapse
Affiliation(s)
- Seema Zargar
- Biochemistry Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
- Seema Zargar, Biochemistry Department, College of Sciences, King Saud University, Riyadh 11495, Saudi Arabia.
| | - Tanveer A Wani
- Pharmaceutical Chemistry Department, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abir Abdullah Alamro
- Biochemistry Department, College of Sciences, King Saud University, Riyadh, Saudi Arabia
| | - Majid Ahmad Ganaie
- Department of Pharmacology, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| |
Collapse
|
5
|
Kimura M, Mizukami S, Watanabe Y, Onda N, Yoshida T, Shibutani M. Aberrant cell cycle regulation in rat liver cells induced by post-initiation treatment with hepatocarcinogens/hepatocarcinogenic tumor promoters. ACTA ACUST UNITED AC 2016; 68:399-408. [PMID: 27402199 DOI: 10.1016/j.etp.2016.06.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 05/22/2016] [Accepted: 06/07/2016] [Indexed: 01/23/2023]
Abstract
The present study aimed to determine the onset time of hepatocarcinogen/hepatocarcinogenic tumor promoter-specific cell proliferation, apoptosis and aberrant cell cycle regulation after post-initiation treatment. Six-week-old rats were treated with the genotoxic hepatocarcinogen, carbadox (CRB), the marginally hepatocarcinogenic leucomalachite green (LMG), the tumor promoter, β-naphthoflavone (BNF) or the non-carcinogenic hepatotoxicant, acetaminophen, for 2, 4 or 6 weeks during the post-initiation phase using a medium-term liver bioassay. Cell proliferation activity, expression of G2 to M phase- and spindle checkpoint-related molecules, and apoptosis were immunohistochemically analyzed at week 2 and 4, and tumor promotion activity was assessed at week 6. At week 2, hepatocarcinogen/tumor promoter-specific aberrant cell cycle regulation was not observed. At week 4, BNF and LMG increased cell proliferation together with hepatotoxicity, while CRB did not. Additionally, BNF and CRB reduced the number of cells expressing phosphorylated-histone H3 in both ubiquitin D (UBD)(+) cells and Ki-67(+) proliferating cells, suggesting development of spindle checkpoint dysfunction, regardless of cell proliferation activity. At week 6, examined hepatocarcinogens/tumor promoters increased preneoplastic hepatic foci expressing glutathione S-transferase placental form. These results suggest that some hepatocarcinogens/tumor promoters increase their toxicity after post-initiation treatment, causing regenerative cell proliferation. In contrast, some genotoxic hepatocarcinogens may disrupt the spindle checkpoint without facilitating cell proliferation at the early stage of tumor promotion. This suggests that facilitation of cell proliferation and disruption of spindle checkpoint function are induced by different mechanisms during hepatocarcinogenesis. Four weeks of post-initiation treatment may be sufficient to induce hepatocarcinogen/tumor promoter-specific cellular responses.
Collapse
Affiliation(s)
- Masayuki Kimura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Sayaka Mizukami
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Yousuke Watanabe
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan; Pathogenetic Veterinary Science, United Graduate School of Veterinary Sciences, Gifu University, 1-1 Yanagido, Gifu-shi, Gifu 501-1193, Japan
| | - Nobuhiko Onda
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo 183-8509, Japan.
| |
Collapse
|
6
|
Kimura M, Mizukami S, Watanabe Y, Hasegawa-Baba Y, Onda N, Yoshida T, Shibutani M. Disruption of spindle checkpoint function in rats following 28 days of repeated administration of renal carcinogens. J Toxicol Sci 2016; 41:91-104. [PMID: 26763396 DOI: 10.2131/jts.41.91] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
We previously reported that 28-day exposure to hepatocarcinogens that facilitate cell proliferation specifically alters the expression of G1/S checkpoint-related genes and proteins, induces aberrant early expression of ubiquitin D (UBD) at the G2 phase, and increases apoptosis in the rat liver, indicating G1/S and spindle checkpoint dysfunction. The present study aimed to determine the time of onset of carcinogen-specific cell-cycle disruption after repeated administration of renal carcinogens for up to 28 days. Rats were orally administered the renal carcinogens nitrofurantoin (NFT), 1-amino-2,4-dibromoantraquinone (ADAQ), and 1,2,3-trichloropropane (TCP) or the non-carcinogenic renal toxicants 1-chloro-2-propanol, triamterene, and carboxin for 3, 7 or 28 days. Both immunohistochemical single-molecule analysis and real-time RT-PCR analysis revealed that carcinogen-specific expression changes were not observed after 28 days of administration. However, the renal carcinogens ADAQ and TCP specifically reduced the number of cells expressing phosphorylated-histone H3 at Ser10 in both UBD(+) cells and proliferating cells, suggestive of insufficient UBD expression at the M phase and early transition of proliferating cells from the M phase, without increasing apoptosis, after 28 days of administration. In contrast, NFT, which has marginal carcinogenic potential, did not induce such cellular responses. These results suggest that it may take 28 days to induce spindle checkpoint dysfunction by renal carcinogens; however, induction of apoptosis may not be essential. Thus, induction of spindle checkpoint dysfunction may be dependent on carcinogenic potential of carcinogen examined, and marginal carcinogens may not exert sufficient responses even after 28 days of administration.
Collapse
Affiliation(s)
- Masayuki Kimura
- Laboratory of Veterinary Pathology, Tokyo University of Agriculture and Technology
| | | | | | | | | | | | | |
Collapse
|