1
|
Seok JK, Jee JI, Jeon M, Kim D, Chung KH, Kim HR, Baek YW, Kang H, Lim J, Bae ON, Lee JY. cGAS/STING pathway modulation in polyhexamethyleneguanidine phosphate-induced immune dysregulation and pulmonary fibrosis using human monocytic cells (THP-1) and male C57BL/6 mice. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:162-174. [PMID: 39604835 DOI: 10.1080/15287394.2024.2432020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Polyhexamethyleneguanidine phosphate (PHMG), a widely used antimicrobial agent, has been implicated in humidifier disinfectant-associated lung injuries (HDLI). PHMG exposure suppressed interferon regulatory factor 3 (IRF3) activation and interferon-β (IFN-β) expression induced by a cGAS agonist or a STING agonist in human monocytic cells (THP-1), which are known to transition to alveolar macrophages during pulmonary fibrosis development. However, the mechanisms underlying PHMG-induced pulmonary toxicity in lung remain unclear. Thus, it was of interest to investigate the effects of PHMG on the innate immune system in male C57BL/6 mouse, focusing on the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway and potential role in pulmonary fibrosis. Intratracheal administration of PHMG (1 or 2 mg/kg) in mice resulted in lung fibrosis, as evidenced by H&E staining with Szapiel scoring, Masson's trichrome staining with Ashcroft scoring, and increased mRNA levels of TGF-β and collagen type I. Interestingly, lower dose of PHMG enhanced IFN-β production in the lungs, whereas higher dose decreased IFN-β levels, indicating a biphasic effect that initially promotes inflammation but ultimately impairs host defense mechanisms, leading to pulmonary fibrosis. Our findings demonstrate the critical role of the cGAS/STING pathway in PHMG-induced mouse lung injury and suggest that targeting this pathway might serve as a potential therapeutic strategy for treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Jin Kyung Seok
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Jung In Jee
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Minwoo Jeon
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| | - Donghyun Kim
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, Republic of Korea
| | - Kyu Hyuck Chung
- College of Pharmacy, Kyungsung University, Busan, Republic of Korea
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Ha Ryong Kim
- College of Pharmacy, Korea University, Sejong, Republic of Korea
| | - Yong-Wook Baek
- Humidifier Disinfectant Health Center, Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| | - HanGoo Kang
- Humidifier Disinfectant Health Center, Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Jungyun Lim
- Humidifier Disinfectant Health Center, Environmental Health Research Department, National Institute of Environmental Research, Incheon, Republic of Korea
| | - Ok-Nam Bae
- College of Pharmacy, Institute of Pharmaceutical Science and Technology, Hanyang University ERICA Campus, Ansan, Republic of Korea
| | - Joo Young Lee
- College of Pharmacy, The Catholic University of Korea, Bucheon, Republic of Korea
| |
Collapse
|
2
|
Yue L, Geng F, Jin J, Li W, Liu B, Du M, Gao X, Lü J, Pan X. Lactobacillus reuteri Assists Engineered Bacteria That Target Tumors to Release PD-L1nb to Mitigate the Adverse Effects of Breast Cancer Immunotherapy. Biotechnol J 2024; 19:e202400428. [PMID: 39711089 DOI: 10.1002/biot.202400428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/22/2024] [Accepted: 11/11/2024] [Indexed: 12/24/2024]
Abstract
Programmed death protein-ligand 1 (PD-L1) inhibitors demonstrate significant antitumor efficacy by modulating T-cell activity and inhibiting the PD-1/PD-L1 pathway, thus enhancing immune responses. Despite their robust effects, systemic administration of these inhibitors is linked to severe immune toxicity. To address this issue, we engineered a strain, REP, which releases PD-L1 nanoantibodies (PD-L1nb) to treat breast cancer and attenuate immunotherapy-related side effects. REP selectively targets tumors and periodically releases PD-L1nb within tumors via a quorum-sensing lysis system. Administration of 108 colony-forming units (CFU) of REP led to a substantial 52% reduction in tumor growth, achieved through the sustained release of PD-L1nb. Importantly, there were no detectable lesions in other organs, with the exception of mild intestinal damage. Further, we explored the potential of a combined treatment using Lactobacillus reuteri (LR) and REP to alleviate intestinal inflammation. LR modulates the expression of inflammatory markers IL-1β, IL-6, and IL-10 through the JNK pathway, reducing intestinal inflammation without compromising REP's antitumor efficacy. Consequently, we formulated a dual strategy employing an engineered strain and probiotics to reduce the adverse effects of immunotherapy in cancer treatment.
Collapse
Affiliation(s)
- Lijun Yue
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Feng Geng
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Jiayi Jin
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Wenzhen Li
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Ben Liu
- Yantai Affiliated Hospital of Binzhou Medical University, Yantai, China
| | - Maoru Du
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xue Gao
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Junhong Lü
- School of Pharmacy, Binzhou Medical University, Yantai, China
| | - Xiaohong Pan
- School of Pharmacy, Binzhou Medical University, Yantai, China
| |
Collapse
|
3
|
Park YH, Jeong SH, Lee H, Nam YJ, Lee H, Lee YS, Choi JY, Park SA, Choi MJ, Park H, Kim J, Kim EY, Baek YW, Lim J, Kim S, Kim JH, Lee JH. Polyhexamethylene Guanidine Phosphate Induces Restrictive Ventilation Defect and Alters Lung Resistance and Compliance in Mice. TOXICS 2024; 12:776. [PMID: 39590956 PMCID: PMC11598736 DOI: 10.3390/toxics12110776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/18/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024]
Abstract
Polyhexamethylene guanidine phosphate (PHMG-p), a major ingredient of humidifier disinfectants, is known to induce inflammation, interstitial pneumonitis, and fibrosis in the lungs. While its histopathologic toxicities have been studied in rodents, research on pulmonary function test (PFT) changes following PHMG-p exposure is limited. This study aimed to investigate the acute and chronic effects, as well as the dose and time response, of PHMG-p on the lungs in mice using PFT and histopathologic examinations. In the single instillation model, mice received PHMG-p and were sacrificed at 2, 4, and 8 weeks. In the five-time instillation model, PHMG-p was administered five times at one-week intervals, and mice were sacrificed 10 weeks after the first instillation. Results showed that PHMG-p exposure reduced lung volume, increased resistance, and decreased compliance, indicating a restrictive ventilation defect. Histopathologic examination showed increases in lung inflammation and fibrosis scores. Changes in several lung volume and compliance parameters, as well as histopathology, were dose-dependent. Lung resistance and compliance parameters had significant correlations with lung inflammation and fibrosis scores. PHMG-p exposure in mice resulted in a restrictive ventilation defect with altered lung resistance and compliance, along with histopathologic lung inflammation and fibrosis.
Collapse
Affiliation(s)
- Yoon Hee Park
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Gyeonggi-do, Republic of Korea
| | - Sang-Hoon Jeong
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Gyeonggi-do, Republic of Korea
| | - Hong Lee
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Gyeonggi-do, Republic of Korea
| | - Yoon-Jeong Nam
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Gyeonggi-do, Republic of Korea
| | - Hyejin Lee
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Gyeonggi-do, Republic of Korea
| | - Yu-Seon Lee
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Gyeonggi-do, Republic of Korea
| | - Jin-Young Choi
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Gyeonggi-do, Republic of Korea
| | - Su-A Park
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Gyeonggi-do, Republic of Korea
| | - Mi-Jin Choi
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Gyeonggi-do, Republic of Korea
| | - Hayan Park
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Gyeonggi-do, Republic of Korea
| | - Jaeyoung Kim
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Gyeonggi-do, Republic of Korea
| | - Eun-Yeob Kim
- Medical Science Research Center, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Gyeonggi-do, Republic of Korea
| | - Yong-Wook Baek
- Environmental Health Research Division, National Institute of Environmental Research, Incheon 22689, Gyeonggi-do, Republic of Korea
| | - Jungyun Lim
- Environmental Health Research Division, National Institute of Environmental Research, Incheon 22689, Gyeonggi-do, Republic of Korea
| | - Sua Kim
- Department of Critical Care Medicine, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Gyeonggi-do, Republic of Korea
| | - Je-Hyeong Kim
- Department of Critical Care Medicine, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Gyeonggi-do, Republic of Korea
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Gyeonggi-do, Republic of Korea
| | - Ju-Han Lee
- Department of Pathology, Korea University Ansan Hospital, Korea University College of Medicine, 123 Jeokgeum-ro, Danwon-gu, Ansan-si 15355, Gyeonggi-do, Republic of Korea
| |
Collapse
|
4
|
Kim JW, Kim HS, Kim HR, Chung KH. Next generation risk assessment of biocides (PHMG-p and CMIT/MIT)-induced pulmonary fibrosis using adverse outcome pathway-based transcriptome analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134986. [PMID: 38944992 DOI: 10.1016/j.jhazmat.2024.134986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/19/2024] [Accepted: 06/19/2024] [Indexed: 07/02/2024]
Abstract
Next-generation risk assessment (NGRA) has emerged as a promising alternative to non-animal studies owing to the increasing demand for the risk assessment of inhaled toxicants. In this study, NGRA was used to assess the inhalation risks of two biocides commonly used as humidifier disinfectants: polyhexamethylene guanidine phosphate (PHMG-p) and chloromethylisothiazolinone/methylisothiazolinone (CMIT/MIT). Human bronchial epithelial cell transcriptomic data were processed based on adverse outcome pathways and used to establish transcriptome-based points of departure (tPODs) for each biocide. tPOD values were 0.00500-0.0510 μg/cm2 and 0.0342-0.0544 μg/cm2 for PHMG-p and CMIT/MIT, respectively. tPODs may provide predictive power comparable to that of traditional animal-based PODs (aPODs). The tPOD-based NGRA determined that both PHMG-p and CMIT/MIT present a high inhalation risk. Moreover, the identified PHMG-p posed a higher risk than CMIT/MIT, and children were identified as more susceptible population compared to adults. This finding is consistent with observations from actual exposure events. Our findings suggest that NGRA with transcriptomics offers a reliable approach for risk assessment of specific humidifier disinfectant biocides, while acknowledging the limitations of current models and in vitro systems, particularly regarding uncertainties in pharmacokinetics (PK) and pharmacodynamics (PD).
Collapse
Affiliation(s)
- Jun Woo Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Hyung Sik Kim
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea
| | - Ha Ryong Kim
- College of Pharmacy, Korea University, Sejong 30019, South Korea.
| | - Kyu Hyuck Chung
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
5
|
Silva AR, de Souza e Souza KFC, Souza TBD, Younes-Ibrahim M, Burth P, de Castro Faria Neto HC, Gonçalves-de-Albuquerque CF. The Na/K-ATPase role as a signal transducer in lung inflammation. Front Immunol 2024; 14:1287512. [PMID: 38299144 PMCID: PMC10827986 DOI: 10.3389/fimmu.2023.1287512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 12/26/2023] [Indexed: 02/02/2024] Open
Abstract
Acute respiratory distress syndrome (ARDS) is marked by damage to the capillary endothelium and alveolar epithelium following edema formation and cell infiltration. Currently, there are no effective treatments for severe ARDS. Pathologies such as sepsis, pneumonia, fat embolism, and severe trauma may cause ARDS with respiratory failure. The primary mechanism of edema clearance is the epithelial cells' Na/K-ATPase (NKA) activity. NKA is an enzyme that maintains the electrochemical gradient and cell homeostasis by transporting Na+ and K+ ions across the cell membrane. Direct injury on alveolar cells or changes in ion transport caused by infections decreases the NKA activity, loosening tight junctions in epithelial cells and causing edema formation. In addition, NKA acts as a receptor triggering signal transduction in response to the binding of cardiac glycosides. The ouabain (a cardiac glycoside) and oleic acid induce lung injury by targeting NKA. Besides enzymatic inhibition, the NKA triggers intracellular signal transduction, fostering proinflammatory cytokines production and contributing to lung injury. Herein, we reviewed and discussed the crucial role of NKA in edema clearance, lung injury, and intracellular signaling pathway activation leading to lung inflammation, thus putting the NKA as a protagonist in lung injury pathology.
Collapse
Affiliation(s)
- Adriana Ribeiro Silva
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
| | | | - Thamires Bandeira De Souza
- Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | - Mauricio Younes-Ibrahim
- Departamento de Medicina Interna, Faculdade de Ciências Médicas, Universidade do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Patrícia Burth
- Departamento de Biologia Celular e Molecular, Instituto de Biologia, Universidade Federal Fluminense, Niterói, Brazil
| | | | - Cassiano Felippe Gonçalves-de-Albuquerque
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (FIOCRUZ), Rio de Janeiro, Brazil
- Laboratório de Imunofarmacologia, Departamento de Ciências Fisiológicas, Universidade Federal do Estado do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
6
|
Park JE, Han JS. HM-chromanone isolated from Portulaca oleracea L. alleviates insulin resistance and inhibits gluconeogenesis by regulating palmitate-induced activation of ROS/JNK in HepG2 cells. Toxicol Res (Camb) 2023; 12:648-657. [PMID: 37663815 PMCID: PMC10470364 DOI: 10.1093/toxres/tfad055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/28/2023] [Accepted: 06/26/2023] [Indexed: 09/05/2023] Open
Abstract
Oxidative stress is a major cause of hepatic insulin resistance. This study investigated whether (E)-5-hydroxy-7-methoxy-3-(2-hydroxybenzyl)-4-chromanone (HM-chromanone), a homoisoflavonoid compound isolated from Portulaca oleracea L., alleviates insulin resistance and inhibits gluconeogenesis by reducing palmitate (PA)-induced reactive oxygen species (ROS)/c-Jun NH2-terminal kinase (JNK) activation in HepG2 cells. PA treatment (0.5 mM) for 16 h resulted in the highest production of ROS and induced insulin resistance in HepG2 cells. HM-chromanone, like N-acetyl-1-cysteine, significantly decreased PA-induced ROS production in the cells. HM-chromanone also significantly inhibited PA-induced JNK activation, showing a significant reduction in tumor necrosis factor and interleukin expression levels. Thus, HM-chromanone decreased the phosphorylation of Ser307 in insulin receptor substrate 1, while increasing phosphorylation of serine-threonine kinase (AKT), thereby restoring the insulin signaling pathway impaired by PA. HM-chromanone also significantly increased the phosphorylation of forkhead box protein O, thereby inhibiting the expression of gluconeogenic enzymes and reducing glucose production in PA-treated HepG2 cells. HM-chromanone also increased glycogen synthesis by phosphorylating glycogen synthase kinase-3β. Therefore, HM-chromanone may alleviate insulin resistance and inhibit gluconeogenesis by regulating PA-induced ROS/JNK activation in HepG2 cells.
Collapse
Affiliation(s)
- Jae Eun Park
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| | - Ji Sook Han
- Department of Food Science and Nutrition, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
7
|
Network Pharmacology Approach to Investigate the Mechanism of Danggui-Shaoyao-San against Diabetic Kidney Disease. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2023; 2023:9208017. [PMID: 36636607 PMCID: PMC9831705 DOI: 10.1155/2023/9208017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 01/05/2023]
Abstract
Background Danggui-Shaoyao-San (DSS) is a traditional Chinese medicine formula that has been widely used to treat a variety of disorders, including renal diseases. Despite being well-established in clinical practice, the mechanisms behind the therapeutic effects of DSS on diabetic nephropathy (DN) remain elusive. Methods To explore the therapeutic mechanism, we explored the action mechanism of DSS on DN using network pharmacology strategies. All ingredients were selected from the relevant databases, and active ingredients were chosen on the basis of their oral bioavailability prediction and drug-likeness evaluation. The putative proteins of DSS were obtained from the Traditional Chinese Medicine Systems Pharmacology (TCMSP) database, whereas the potential genes of DN were obtained from the GeneCards and OMIM databases. Enrichment analysis using gene ontology (GO) and the Kyoto encyclopedia of genes and genomes (KEGG) was performed to discover possible hub targets and gene-related pathways. Afterwards, the underlying molecular mechanisms of DSS against DN were validated experimentally in vivo against db/db mice. Results We identified 91 phytochemicals using the comprehensive network pharmacology technique, 51 of which were chosen as bioactive components. There were 40 proteins and 20 pathways in the target-pathway network. The experimental validation results demonstrated that DSS may reduce the expression of TNF-α, IL-6, and ICAM-1, as well as extracellular matrix deposition, by blocking the JNK pathway activation, which protects against kidney injury. Conclusion This study discovered the putative molecular mechanisms of action of DSS against diabetic kidney damage through a network pharmacology approach and experimental validation.
Collapse
|
8
|
New-Onset and Exacerbation of Lung Diseases after Short-Term Exposures to Humidifier Disinfectant during Hospitalization. TOXICS 2022; 10:toxics10070371. [PMID: 35878276 PMCID: PMC9318961 DOI: 10.3390/toxics10070371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 11/17/2022]
Abstract
(1) Background: Humidifier disinfectant (HD) is a biocidal chemical to keep the water tank inside a humidifier clean. Thousands of Koreans have experienced HD-related lung injuries. Of them, 6.9% were exposed to HD in hospitals. (2) Methods: This study investigated changes of diseases in patients (or caregivers) who experienced HD exposures during hospitalization and also investigated characteristics of hospital exposure using data from all HD-related lung injury enrollment in Korea. (3) Results: Of a total of 162 subjects, 139 subjects were hospitalized for non-lung diseases, and 23 people were hospitalized for lung diseases at the time of hospitalization. During hospital exposure, 99 (71.2%) of those hospitalized with non-lung disease experienced a new-onset of lung disease, and 15 (65.2%) of those hospitalized with lung diseases experienced exacerbation of their existing lung diseases. When we compared their exposure characteristics, those exposed in hospitals (vs. non-hospital, mostly home) were exposed for shorter periods, at closer distances, at higher HD indoor concentrations, constantly all day, and directly in the facial direction. (4) Conclusion: In conclusion, HD exposures in hospital with a high intensity even for a short term were associated with new-onset or exacerbation of lung diseases. Our findings suggest that acute exposures to HD can cause lung diseases.
Collapse
|
9
|
Sun B, Xing K, Qi C, Yan K, Xu Y. Down-regulation of miR-215 attenuates lipopolysaccharide-induced inflammatory injury in CCD-18co cells by targeting GDF11 through the TLR4/NF-kB and JNK/p38 signaling pathways. Histol Histopathol 2020; 35:1473-1481. [PMID: 33146403 DOI: 10.14670/hh-18-278] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Ulcerative colitis (UC) is a risk factor for carcinogenesis of colorectal cancer, which is associated with disruption of the epithelial barrier and disorder of the inflammatory response. It has been reported that the expression of microRNA (miR)-215 is upregulated in patients with long-term UC. The present study aimed to investigate the effects of miR-215 on lipopolysaccharide (LPS)-induced inflammatory injury in CCD-18Co cells, as well as to identify the underlying possible molecular mechanisms. CCD-18Co cells were treated with 1 µg/ml LPS to induce inflammatory injury. Reverse transcription-quantitative PCR was performed to determine the expression of miR-215 in LPS-treated CCD-18Co cells. Moreover, a dual luciferase reporter system assay was used to evaluate the interaction of miR-215 and growth differentiation factor 11 (GDF11) in CCD-18Co cells. The expression of miR-215 was significantly upregulated in LPS-treated CCD-18Co cells. Knockdown of miR-215 significantly alleviated the inflammatory response and oxidative stress in LPS-treated CCD-18Co cells. In addition, GDF11 was identified as a direct binding target of miR-215 in CCD-18Co cells. Knockdown of miR-215 significantly increased the expression of GDF11, but decreased the expression levels of Toll-like receptor (TLR)4, phosphorylated (p)-p65, iNOS, p-p38 and p-JNK in LPS-treated CCD-18Co cells. Collectively, the present findings indicated that knockdown of miR-215 alleviated oxidative stress and inflammatory response in LPS-treated CCD-18Co cells by upregulating GDF11 expression and inactivating the TLR4/NF-κB and JNK/p38 signaling pathways.
Collapse
Affiliation(s)
- Boyang Sun
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kai Xing
- Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Chen Qi
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing University School of Medicine, Nanjing, Jiangsu, China
| | - Ke Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.,Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yan Xu
- Department of Periodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
10
|
|