1
|
Paudel KR, Clarence DD, Panth N, Manandhar B, De Rubis G, Devkota HP, Gupta G, Zacconi FC, Williams KA, Pont LG, Singh SK, Warkiani ME, Adams J, MacLoughlin R, Oliver BG, Chellappan DK, Hansbro PM, Dua K. Zerumbone liquid crystalline nanoparticles protect against oxidative stress, inflammation and senescence induced by cigarette smoke extract in vitro. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2465-2483. [PMID: 37851060 PMCID: PMC10933165 DOI: 10.1007/s00210-023-02760-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 09/28/2023] [Indexed: 10/19/2023]
Abstract
The purpose of this study was to evaluate the potential of zerumbone-loaded liquid crystalline nanoparticles (ZER-LCNs) in the protection of broncho-epithelial cells and alveolar macrophages against oxidative stress, inflammation and senescence induced by cigarette smoke extract in vitro. The effect of the treatment of ZER-LCNs on in vitro cell models of cigarette smoke extract (CSE)-treated mouse RAW264.7 and human BCi-NS1.1 basal epithelial cell lines was evaluated for their anti-inflammatory, antioxidant and anti-senescence activities using colorimetric and fluorescence-based assays, fluorescence imaging, RT-qPCR and proteome profiler kit. The ZER-LCNs successfully reduced the expression of pro-inflammatory markers including Il-6, Il-1β and Tnf-α, as well as the production of nitric oxide in RAW 264.7 cells. Additionally, ZER-LCNs successfully inhibited oxidative stress through reduction of reactive oxygen species (ROS) levels and regulation of genes, namely GPX2 and GCLC in BCi-NS1.1 cells. Anti-senescence activity of ZER-LCNs was also observed in BCi-NS1.1 cells, with significant reductions in the expression of SIRT1, CDKN1A and CDKN2A. This study demonstrates strong in vitro anti-inflammatory, antioxidative and anti-senescence activities of ZER-LCNs paving the path for this formulation to be translated into a promising therapeutic agent for chronic respiratory inflammatory conditions including COPD and asthma.
Collapse
Affiliation(s)
- Keshav Raj Paudel
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Dvya Delilaa Clarence
- School of Postgraduate Studies, International Medical University (IMU), 57000, Kuala Lumpur, Malaysia
| | - Nisha Panth
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia
| | - Bikash Manandhar
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Gabriele De Rubis
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Hari Prasad Devkota
- Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto City, Kumamoto, 862-0973, Japan
- Program for Leading Graduate Schools, Health Life Science: Interdisciplinary and Glocal Oriented (HIGO) Program, 5-1 Oe-honmachi, Chuo-ku, Kumamoto, 862-0973, Japan
| | - Gaurav Gupta
- Center for Global Health Research, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 602105, India
- School of Pharmacy, Graphic Era Hill University, Dehradun, Uttarakhand, 248007, India
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura, Mahal Road, Jaipur, 302017, India
| | - Flavia C Zacconi
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, 7820436, Santiago, Macul, Chile
- Centro de Investigación en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, 7820436, Santiago, Chile
- Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Kylie A Williams
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Lisa G Pont
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sachin Kumar Singh
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi GT Road, Phagwara, Punjab, 144411, India
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials and Devices, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Ronan MacLoughlin
- Aerogen, IDA Business Park, Dangan, Galway, H91 HE94, Ireland
- School of Pharmacy & Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, D02 YN77, Ireland
- School of Pharmacy & Pharmaceutical Sciences, Trinity College, Dublin, D02 PN40, Ireland
| | - Brian G Oliver
- Woolcock Institute of Medical Research, University of Sydney, Sydney, New South Wales, Australia
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia.
| | - Philip Michael Hansbro
- Centre of Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, 2007, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, 2007, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
2
|
Chan JSW, Lim XY, Japri N, Ahmad IF, Tan TYC. Zingiber zerumbet: A Scoping Review of its Medicinal Properties. PLANTA MEDICA 2024; 90:204-218. [PMID: 38035621 PMCID: PMC10869203 DOI: 10.1055/a-2219-9801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
Zingiber zerumbet, a plant native to tropical and subtropical Asia, has a vast range of traditional uses and has been continuously studied for its medicinal properties. However, a systematic methodological approach in evidence synthesis on the plant's efficacy is lacking, and there is a need to elicit the current research status of this plant. This scoping review was conducted to systematically explore and collate the available scientific evidence on the efficacy of Z. zerumbet and its main phytoconstituents in various formulations, their biological mechanisms, and their safety. Results included 54 articles consisting of animal studies, while there were no published human studies. Only half of the included studies provided adequate reporting on the quality-related details of Z. zerumbet formulations. Identified pharmacological activities were analgesic, anti-inflammatory, anti-diabetic, anti-hyperlipidemic, anti-neoplastic, immunomodulatory, antioxidant, antipyretic, hepatoprotective, nephroprotective, gastroprotective, and locomotor-reducing activities. Notably, the ethanolic extract of Z. zerumbet was found to be well tolerated for up to 28 days. In conclusion, Z. zerumbet and zerumbone have various pharmacological effects, especially in analgesic and anti-inflammatory models. However, there is still a pressing need for comprehensive safety data to conduct clinical trials.
Collapse
Affiliation(s)
- Janice Sue Wen Chan
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Shah Alam, Selangor,
Malaysia
| | - Xin Yi Lim
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Shah Alam, Selangor,
Malaysia
| | - Norfarahana Japri
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Shah Alam, Selangor,
Malaysia
| | - Ida Farah Ahmad
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Shah Alam, Selangor,
Malaysia
| | - Terence Yew Chin Tan
- Herbal Medicine Research Centre, Institute for Medical Research, National Institutes of Health, Ministry of Health Malaysia, Setia Alam, Shah Alam, Selangor,
Malaysia
| |
Collapse
|
5
|
Abd Rashid N, Hussan F, Hamid A, Adib Ridzuan NR, Halim SASA, Abdul Jalil NA, Najib NHM, Teoh SL, Budin SB. Polygonum minus essential oil modulates cisplatin-induced hepatotoxicity through inflammatory and apoptotic pathways. EXCLI JOURNAL 2020; 19:1246-1265. [PMID: 33122975 PMCID: PMC7590832 DOI: 10.17179/excli2020-2355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 09/01/2020] [Indexed: 12/15/2022]
Abstract
Oxidative stress, inflammation and apoptosis are thought as primary mediators of cisplatin-induced hepatotoxicity. The objective of this study was to determine the protective effect of Polygonum minus essential oil in cisplatin-induced hepatotoxicity. A total of forty-two male rats were randomly divided into seven groups: control, cisplatin, β-caryophyllene 150 mg/kg (BCP), PmEO 100 mg/kg + cisplatin (PmEO100CP), PmEO 200 mg/kg + cisplatin (PmEO200CP), PmEO 400 mg/kg + cisplatin (PmEO400CP) and PmEO 400 mg/kg (PmEO400). Rats in the BCP, PmEO100CP, PmEO200CP, PmEO400CP and PmEO400 group received respective treatment orally for 14 consecutive days prior to cisplatin injection. All animals except for those in the control group and PmEO400 were administered with a single dose of cisplatin (10 mg/kg) intraperitoneally on day 15 and all animals were sacrificed on day 18. PmEO100CP pretreatment protected against cisplatin-induced hepatotoxicity by decreasing CYP2E1 and indicators of oxidative stress including malondialdehyde, 8-OHdG and protein carbonyl which was accompanied by increased antioxidant status (glutathione, glutathione peroxidase, superoxide dismutase and catalase) as compared to cisplatin group. PmEO100CP pretreatment also modulated changes in liver inflammatory markers (TNF-α, IL-1α, IL-1β, IL-6 and IL-10). PmEO100CP administration also notably reduced cisplatin-induced apoptosis significantly as compared to cisplatin group. In conclusion, our results suggested that P. minus essential oil at a dose of 100 mg/kg may protect against cisplatin-induced hepatotoxicity possibly via inhibition of oxidative stress, inflammation and apoptosis.
Collapse
Affiliation(s)
- Norhashima Abd Rashid
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Farida Hussan
- Human Biology Department, School of Medicine, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Asmah Hamid
- Centre for Toxicology and Health Risk Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | | | | | - Nahdia Afiifah Abdul Jalil
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nor Haliza Mohamad Najib
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Siti Balkis Budin
- Center for Diagnostic, Therapeutic and Investigative Studies, Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Wang M, Niu J, Ou L, Deng B, Wang Y, Li S. Zerumbone Protects against Carbon Tetrachloride (CCl 4)-Induced Acute Liver Injury in Mice via Inhibiting Oxidative Stress and the Inflammatory Response: Involving the TLR4/NF-κB/COX-2 Pathway. Molecules 2019; 24:molecules24101964. [PMID: 31121820 PMCID: PMC6571963 DOI: 10.3390/molecules24101964] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/10/2019] [Accepted: 05/15/2019] [Indexed: 12/11/2022] Open
Abstract
The natural compound Zerumbone (hereinafter referred to as ZER), a monocyclic sesquiterpenoid, has been reported to possess many pharmacological properties, including antioxidant and anti-inflammatory properties. This study aimed to investigate the underlying mechanism of ZER against acute liver injury (ALI) in CCl4-induced mice models. ICR mice were pretreated intraperitoneally with ZER for five days, then received a CCl4 injection two hours after the last ZER administration and were sacrificed 24 h later. Examination of serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities and the histopathological analysis confirmed the hepatoprotective effect of ZER. Biochemical assays revealed that ZER pretreatment recovered the activities of antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), restored the glutathione (GSH) reservoir, and reduced the production of malondialdehyde (MDA), all in a dose-dependent manner. Furthermore, administration of ZER in vivo reduced the release amounts of pro-inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) and inhibited the increased protein levels of Toll-like receptor 4 (TLR4), nuclear factor-kappaB (NF-κB) p-p65, and cyclooxygenase (COX-2). Further studies in lipopolysaccharide (LPS)-induced Raw264.7 inflammatory cellular models verified that ZER could inhibit inflammation via inactivating the TLR4/NF-κB/COX-2 pathway. Thus, our study indicated that ZER exhibited a hepatoprotective effect against ALI through its antioxidant and anti-inflammatory activities and the possible mechanism might be mediated by the TLR4/NF-κB/COX-2 pathway. Collectively, our studies indicate ZER could be a potential candidate for chemical liver injury treatment.
Collapse
Affiliation(s)
- Meilin Wang
- Medical College, Henan University of Science and Technology, Luoyang 471023, China.
| | - Jingling Niu
- Medical College, Henan University of Science and Technology, Luoyang 471023, China.
| | - Lina Ou
- Medical College, Henan University of Science and Technology, Luoyang 471023, China.
| | - Bo Deng
- Medical College, Henan University of Science and Technology, Luoyang 471023, China.
| | - Yingyi Wang
- Medical College, Henan University of Science and Technology, Luoyang 471023, China.
| | - Sanqiang Li
- Medical College, Henan University of Science and Technology, Luoyang 471023, China.
| |
Collapse
|