1
|
Jiang T, Zhang B, Zhang H, Wei M, Su Y, Song T, Ye S, Zhu Y, Wu W. Purification and Properties of a Plasmin-like Marine Protease from Clamworm ( Perinereis aibuhitensis). Mar Drugs 2024; 22:68. [PMID: 38393039 PMCID: PMC10890283 DOI: 10.3390/md22020068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Marine organisms are a rich source of enzymes that exhibit excellent biological activity and a wide range of applications. However, there has been limited research on the proteases found in marine mudflat organisms. Based on this background, the marine fibrinolytic enzyme FELP, which was isolated and purified from clamworm (Perinereis aibuhitensis), has exhibited excellent fibrinolytic activity. We demonstrated the FELP with a purification of 10.61-fold by precipitation with ammonium sulfate, ion-exchange chromatography, and gel-filtration chromatography. SDS-PAGE, fibrin plate method, and LC-MS/MS indicated that the molecular weight of FELP is 28.9 kDa and identified FELP as a fibrinolytic enzyme-like protease. FELP displayed the maximum fibrinolytic activity at pH 9 (407 ± 16 mm2) and 50 °C (724 ± 27 mm2) and had excellent stability at pH 7-11 (50%) or 30-60 °C (60%), respectively. The three-dimensional structure of some amino acid residues of FELP was predicted with the SWISS-MODEL. The fibrinolytic and fibrinogenolytic assays showed that the enzyme possessed direct fibrinolytic activity and indirect fibrinolysis via the activation of plasminogen; it could preferentially degrade Aα-chains of fibrinogen, followed by Bβ- and γ-chains. Overall, the fibrinolytic enzyme was successfully purified from Perinereis aibuhitensis, a marine Annelida (phylum), with favorable stability that has strong fibrinolysis activity in vitro. Therefore, FELP appears to be a potent fibrinolytic enzyme with an application that deserves further investigation.
Collapse
Affiliation(s)
- Tingting Jiang
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
| | - Bing Zhang
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Lane 218, Haiji Sixth Road, Shanghai 201306, China
| | - Haixing Zhang
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
| | - Mingjun Wei
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
| | - Yue Su
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
| | - Tuo Song
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
| | - Shijia Ye
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
| | - Yuping Zhu
- Basic Medical Experimental Teaching Center, Basic Medical College, Naval Medical University, Shanghai 200433, China
| | - Wenhui Wu
- Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; (T.J.); (B.Z.); (H.Z.); (M.W.); (Y.S.); (T.S.); (S.Y.)
- East China Sea Marine Biological Resources Engineering Technology Center, Zhongke Road, Putuo District, Zhoushan 316104, China
| |
Collapse
|
2
|
Azelee NIW, Dahiya D, Ayothiraman S, Noor NM, Rasid ZIA, Ramli ANM, Ravindran B, Iwuchukwu FU, Selvasembian R. Sustainable valorization approaches on crustacean wastes for the extraction of chitin, bioactive compounds and their applications - A review. Int J Biol Macromol 2023; 253:126492. [PMID: 37634772 DOI: 10.1016/j.ijbiomac.2023.126492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/30/2023] [Accepted: 08/22/2023] [Indexed: 08/29/2023]
Abstract
The unscientific disposal of the most abundant crustacean wastes, especially those derived from marine sources, affects both the economy and the environment. Strategic waste collection and management is the need of the hour. Sustainable valorization approaches have played a crucial role in solving those issues as well as generating wealth from waste. The shellfishery wastes are rich in valuable bioactive compounds such as chitin, chitosan, minerals, carotenoids, lipids, and other amino acid derivatives. These value-added components possessed pleiotropic applications in different sectors viz., food, nutraceutical, cosmeceutical, agro-industrial, healthcare, and pharmaceutical sectors. The manuscript covers the recent status, scope of shellfishery management, and different bioactive compounds obtained from crustacean wastes. In addition, both sustainable and conventional routes of valorization approaches were discussed with their merits and demerits along with their combinations. The utilization of nano and microtechnology was also included in the discussion, as they have become prominent research areas in recent years. More importantly, the future perspectives of crustacean waste management and other potential valorization approaches that can be implemented on a large scale.
Collapse
Affiliation(s)
- Nur Izyan Wan Azelee
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia (UTM), 81310, Johor Bahru, Johor, Malaysia; Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, UTM, 81310 Johor Bahru, Johor, Malaysia
| | - Digvijay Dahiya
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem 534101, West Godavari Dist, Andhra Pradesh, India
| | - Seenivasan Ayothiraman
- Department of Biotechnology, National Institute of Technology Andhra Pradesh, Tadepalligudem 534101, West Godavari Dist, Andhra Pradesh, India.
| | - Norhayati Mohamed Noor
- Institute of Bioproduct Development (IBD), Universiti Teknologi Malaysia, UTM, 81310 Johor Bahru, Johor, Malaysia; UTM Innovation & Commercialisation Centre, Industry Centre, UTM Technovation Park, 81310 Johor Bahru, Johor, Malaysia
| | - Zaitul Iffa Abd Rasid
- UTM Research Ethics Committee, Department of Vice-Chancellor (Research and Innovation), Universiti Teknologi Malaysia, 81310 Johor Bahru, Johor, Malaysia
| | - Aizi Nor Mazila Ramli
- Faculty of Industrial Science and Technology, University Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia; Bio Aromatic Research Centre of Excellence, Universiti Malaysia Pahang Al-Sultan Abdullah (UMPSA), Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang Darul Makmur, Malaysia
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Yeongtong-Gu, Suwon, Gyeonggi-Do 16227, South Korea
| | - Felicitas U Iwuchukwu
- Department of Chemical Engineering, Nnamdi Azikiwe University, P.M.B 5025, Awka, Nigeria; Department of Industrial Engineering, Clemson University 29631, South Carolina USA
| | - Rangabhashiyam Selvasembian
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University-AP, Amaravati, Andhra Pradesh 522240, India.
| |
Collapse
|