1
|
Wibel R, Jörgensen AM, Laffleur F, Spleis H, Claus V, Bernkop-Schnürch A. Oral delivery of calcitonin-ion pairs: In vivo proof of concept for a highly lipophilic counterion. Int J Pharm 2023; 631:122476. [PMID: 36528188 DOI: 10.1016/j.ijpharm.2022.122476] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/15/2022]
Abstract
Hydrophobic ion pairing and subsequent incorporation into self-emulsifying drug delivery systems (SEDDS) is a promising strategy to orally deliver hydrophilic macromolecular drugs. Within this study, hydrophobic ion pairs (HIP) between salmon calcitonin (sCT) and highly lipophilic sulfosuccinate counterions were formed and compared to frequently applied commercially available counterions. Bis(isotridecyl) sulfosuccinate resulted in HIPs of the highest lipophilicity and in significantly higher solubility in lipophilic co-solvents. Thus, bis(isotridecyl) sulfosuccinate allowed efficient solubilization of sCT in a SEDDS preconcentrate based on a lipophilic co-solvent and an indigestible lipid, but omitting hydrophilic co-solvents. In addition to the increased solubility in the lipidic matrix, markedly reduced dissociation in biorelevant media resulted in high distribution coefficients between oil droplet and FaSSGF or FaSSIF (logD) of 2.98 ± 0.12 or 2.77 ± 0.14, respectively. The composition of the lipidic matrix preserved integrity of the oil droplets after emulsification and subsequent lipolysis, allowing to fully exploit the potential of the HIP attributed to the high logD. Oral administration of the HIP-loaded SEDDS resulted in an excellent relative pharmacological activity of 13.8 ± 5.6 % measured as hypocalcaemic effect in rats.
Collapse
Affiliation(s)
- Richard Wibel
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Arne Matteo Jörgensen
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Flavia Laffleur
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria
| | - Helen Spleis
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse, 65, 6020 Innsbruck, Austria
| | - Victor Claus
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria; Thiomatrix Forschungs-und Beratungs GmbH, Trientlgasse, 65, 6020 Innsbruck, Austria
| | - Andreas Bernkop-Schnürch
- Department of Pharmaceutical Technology, University of Innsbruck, Institute of Pharmacy, Center for Chemistry and Biomedicine, 6020 Innsbruck, Austria.
| |
Collapse
|
2
|
Yamazoe E, Fang JY, Tahara K. Oral mucus-penetrating PEGylated liposomes to improve drug absorption: Differences in the interaction mechanisms of a mucoadhesive liposome. Int J Pharm 2020; 593:120148. [PMID: 33290871 DOI: 10.1016/j.ijpharm.2020.120148] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/13/2020] [Accepted: 12/01/2020] [Indexed: 12/18/2022]
Abstract
We investigated the feasibility of densely polyethylene glycol (PEG2000)-modified liposomes as mucus-penetrating particles (MPPs) for oral delivery of systemically absorbed peptides. The oral absorption of MPPs and mucoadhesive liposomes modified with glycol chitosan (GCS) was compared. In an in vitro artificial mucus model, the densely PEGylated liposomes showed mucus permeability. Intracellular uptake of liposomes was evaluated in a Caco-2 and mucus-secreting Caco-2/HT29 co-culture. Intracellular uptake of MPPs was unaffected by mucus in the co-culture system, whereas the cellular uptake of GCS-liposomes was lower with a mucus layer than in Caco-2 alone. Rat in vivo oral absorption of liposomes was evaluated by using fluorescein isothiocyanate dextran (FD) as a model peptide drug. Oral absorption was higher for densely PEGylated than for unmodified liposomes and was PEG-concentration dependent, but excessive PEGylation decreased FD blood concentration. PEGylated liposomes incorporating spermine (SPM) as an absorption enhancer were then designed and showed the highest in vivo absorption of FD of all tested formulations. The pharmacological effects of the oral liposomes were evaluated by using elcatonin and did not correlate with FD oral absorption. The non-PEGylated SPM liposomes showed the highest pharmacological effect, suggesting the need for drug-specific optimization of liposomal components and surface modifiers.
Collapse
Affiliation(s)
- Eriko Yamazoe
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu, Japan
| | - Jia-You Fang
- Graduate Institute of Natural Products, Chang Gung University, Kweishan, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Kweishan, Taoyuan, Taiwan; Research Center for Food and Cosmetic Safety and Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Kweishan, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Kweishan, Taoyuan, Taiwan
| | - Kohei Tahara
- Laboratory of Pharmaceutical Engineering, Gifu Pharmaceutical University, Gifu, Japan.
| |
Collapse
|
3
|
Aguirre TA, Rosa M, Coulter IS, Brayden DJ. In vitro and in vivo preclinical evaluation of a minisphere emulsion-based formulation (SmPill®) of salmon calcitonin. Eur J Pharm Sci 2015; 79:102-11. [DOI: 10.1016/j.ejps.2015.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 09/01/2015] [Indexed: 12/18/2022]
|
4
|
Maher MA, Naha PC, Mukherjee SP, Byrne HJ. Numerical simulations of in vitro nanoparticle toxicity – The case of poly(amido amine) dendrimers. Toxicol In Vitro 2014; 28:1449-60. [DOI: 10.1016/j.tiv.2014.07.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/18/2014] [Accepted: 07/28/2014] [Indexed: 01/29/2023]
|
5
|
Fan T, Chen C, Guo H, Xu J, Zhang J, Zhu X, Yang Y, Zhou Z, Li L, Huang Y. Design and evaluation of solid lipid nanoparticles modified with peptide ligand for oral delivery of protein drugs. Eur J Pharm Biopharm 2014; 88:518-28. [DOI: 10.1016/j.ejpb.2014.06.011] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 06/12/2014] [Accepted: 06/17/2014] [Indexed: 01/02/2023]
|
6
|
Tewes F, Gobbo OL, Amaro MI, Tajber L, Corrigan OI, Ehrhardt C, Healy AM. Evaluation of HPβCD-PEG microparticles for salmon calcitonin administration via pulmonary delivery. Mol Pharm 2011; 8:1887-98. [PMID: 21882837 DOI: 10.1021/mp200231c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For therapeutic peptides, the lung represents an attractive, noninvasive route into the bloodstream. To achieve optimal bioavailability and control their fast rate of absorption, peptides can be protected by coprocessing with polymers such as polyethylene glycol (PEG). Here, we formulated and characterized salmon calcitonin (sCT)-loaded microparticles using linear or branched PEG (L-PEG or B-PEG) and hydroxypropyl-beta-cyclodextrin (HPβCD) for pulmonary administration. Mixtures of sCT, L-PEG or B-PEG and HPβCD were co-spray dried. Based on the particle properties, the best PEG:HPβCD ratio was 1:1 w:w for both PEGs. In the sCT-loaded particles, the L-PEG was more crystalline than B-PEG. Thus, L-PEG-based particles had lower surface free energy and better aerodynamic behavior than B-PEG-based particles. However, B-PEG-based particles provided better protection against chemical degradation of sCT. A decrease in sCT permeability, measured across Calu-3 bronchial epithelial monolayers, occurred when the PEG and HPβCD concentrations were both 1.6 wt %. This was attributed to an increase in buffer viscosity, caused by the two excipients. sCT pharmacokinetic profiles in Wistar rats were evaluated using a 2-compartment model after iv injection or lung insufflation. The maximal sCT plasma concentration was reached within 3 min following nebulization of sCT solution. L-PEG and B-PEG-based microparticles were able to increase T(max) to 20 ± 1 min and 18 ± 8 min, respectively. Furthermore, sCT absolute bioavailability after L-PEG-based microparticle aerosolization at 100 μg/kg was 2.3 times greater than for the nebulized sCT solution.
Collapse
Affiliation(s)
- Frederic Tewes
- School of Pharmacy and Pharmaceutical Sciences, University of Dublin, Trinity College Dublin, Dublin 2, Ireland
| | | | | | | | | | | | | |
Collapse
|
7
|
PK/PD modelling of comb-shaped PEGylated salmon calcitonin conjugates of differing molecular weights. J Control Release 2010; 149:126-32. [PMID: 20946924 DOI: 10.1016/j.jconrel.2010.10.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2010] [Revised: 09/29/2010] [Accepted: 10/03/2010] [Indexed: 11/23/2022]
Abstract
Salmon calcitonin (sCT) was conjugated via cysteine-1 to novel comb-shaped end-functionalised (poly(PEG) methyl ether methacrylate) (sCT-P) polymers, to yield conjugates of total molecular weights (MW) inclusive of sCT: 6.5, 9.5, 23 and 40kDa. The conjugates were characterised by HPLC and their in vitro and in vivo bioactivity was measured by cAMP assay on human T47D cells and following intravenous (i.v.) injection to rats, respectively. Stability against endopeptidases, rat serum and liver homogenates was assessed. There were linear and exponential relationships between conjugate MW with potency and efficacy respectively, however the largest MW conjugate still retained 70% of E(max) and an EC(50) of 3.7nM. In vivo, while free sCT and the conjugates reduced serum [calcium] to a maximum of 15-30% over 240 min, the half-life (T(1/2)) was increased and the area under the curve (AUC) was extended in proportion to conjugate MW. Likewise, the polymer conferred protection on sCT against attack by trypsin, chymotrypsin, elastase, rat serum and liver homogenates, with the best protection afforded by sCT-P (40kDa). Mathematical modelling accurately predicted the MW relationships to in vitro efficacy, potency, in vivo PK and enzymatic stability. With a significant increase in T(1/2) for sCT, the 40kDa MW comb-shaped PEG conjugate of sCT may have potential as a long-acting injectable formulation.
Collapse
|
8
|
Miyazaki M, Nakade S, Iwanaga K, Morimoto K, Kakemi M. Estimation of bioavailability of salmon calcitonin from the hypocalcemic effect in rats (II): effect of protease inhibitor on the pharmacokinetic-pharmacodynamic relationship after intranasal administration. Drug Metab Pharmacokinet 2004; 18:358-64. [PMID: 15618756 DOI: 10.2133/dmpk.18.358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Assessment of the extent of bioavailability (EBA) of salmon calcitonin (sCT) from hypocalcemic effects after intranasal administration was presented in rats. An integrated pharmacokinetic-pharmacodynamic (PK-PD) model with the endogenous Ca regulation system was applied. The influence of camostat mesilate, a protease inhibitor, on absorption of sCT was also estimated. Camostat, coadministered intravascularly, delayed the elimination of sCT. Although the hypocalcemic effect of sCT after i.v. administration was accelerated when camostat was coadministered intravenously, the enhanced effect could not be expressed only by pharmacokinetic change of sCT, and then the pharmacological data in the presence of camostat were analyzed to obtain optimal PD parameters. For the absorption of sCT after i.n. administration, a saturable absorptive process and a zero-order kinetic clearance from the nasal cavity were introduced to the model. The regression curves fitted the observed data, and camostat caused both an increase in maximum absorption rate and a decrease in the clearance parameter compared with the control. According to this modified PK-PD relationship, plasma sCT concentrations following i.n. administration of sCT with camostat were predicted well using its pharmacological effects. The EBA of sCT calculated from the simulated concentrations increased more than 4-folds compared with the control study. These results indicate the potential for prediction of plasma sCT concentration from the hypocalcemic effect.
Collapse
Affiliation(s)
- Makoto Miyazaki
- Department of Pharmaceutics, Osaka University of Pharmaceutical Sciences, Japan
| | | | | | | | | |
Collapse
|