1
|
Liu J, Wen Z, Huang S, Zhang X, Ai X, Qian J. XDH genotypes through gene-gene interactions with NUDT15 affect azathioprine-induced leukopenia in Chinese patients. Pharmacogenomics 2022; 23:671-682. [PMID: 35916133 DOI: 10.2217/pgs-2022-0063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate whether genotypes of XDH, GMPS and MOCOS were associated with azathioprine-induced adverse drug reaction (ADR) and had the gene-gene interactions with NUDT15 rs116855232 to induce leukopenia. Methods: Patients who had taken azathioprine were recruited. Genotyping of those gene was performed. Risk factor to ADR was analyzed by logistic regression. The generalized multifactor dimensionality reduction (GMDR) was assessed based on gene-gene interactions with ADR. Results: A total of 111 patients were included in this study, all of whom were Han Chinese. XDH rs2295475 was a risk factor of myelotoxicity (p = 0.022). NUDT15 rs116855232 was a risk factor of myelotoxicity, grade ≥2 leukopenia and drug treatment termination (p-values were <0.05). Rs2295475 and rs116855232 had a gene-gene interaction. The model was associated with grade ≥2 leukopenia (OR: 17.99; 95% CI: 4.11-78.81). Conclusion: Combined testing genotype for rs2295475 and rs116855232 could improve the prediction of azathioprine-induced leukopenia.
Collapse
Affiliation(s)
- Jiquan Liu
- Department of Gastroenterology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, 519000, PR China
| | - Zhiyong Wen
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, 519000, PR China
| | - Sichao Huang
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, 519000, PR China
| | - Xiaomin Zhang
- Department of Pharmacy, The Fifth Affiliated Hospital of Zunyi Medical University, Zhuhai (Zhuhai Sixth People's Hospital), Zhuhai, 519000, PR China
| | - Xinbo Ai
- Department of Gastroenterology, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, 519000, PR China
| | - Jiajian Qian
- Department of Pharmacy, Zhuhai People's Hospital (Zhuhai hospital affiliated with Jinan University), Zhuhai, 519000, PR China
| |
Collapse
|
2
|
Chen ZY, Zhu YH, Zhou LY, Shi WQ, Qin Z, Wu B, Yan Y, Pei YW, Chao NN, Zhang R, Wang MY, Su ZH, Lu XJ, He ZY, Xu T. Association Between Genetic Polymorphisms of Metabolic Enzymes and Azathioprine-Induced Myelosuppression in 1,419 Chinese Patients: A Retrospective Study. Front Pharmacol 2021; 12:672769. [PMID: 34084143 PMCID: PMC8167793 DOI: 10.3389/fphar.2021.672769] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/27/2021] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to investigate the correlation between genetic polymorphisms of azathioprine-metabolizing enzymes and adverse reactions of myelosuppression. To this end, a retrospective analysis was performed on 1,419 Chinese patients involving 40 different diseases and 3 genes: ITPA (94C>A), TPMT*3 (T>C), and NUDT15 (415C>T). Strict inclusion and exclusion criteria were established to collect the relative cases, and the correlation between azathioprine and myelosuppression was evaluated by adverse drug reaction criteria. The mutation rates of the three genes were 29.32, 3.73, and 21.92% and grades I to IV myelosuppression occurred in 54 (9.28%) of the 582 patients who took azathioprine. The highest proportion of myelosuppression was observed in 5 of the 6 (83.33%) patients carrying the NUDT15 (415C>T) TT genotype and 12 of the 102 (11.76%) patients carrying the NUDT15 (415C>T) CT genotype. Only the NUDT15 (415C>T) polymorphism was found to be associated with the adverse effects of azathioprine-induced myelosuppression (odds ratio [OR], 51.818; 95% CI, 5.280–508.556; p = 0.001), which suggested that the NUDT15 (415C>T) polymorphism could be an influencing factor of azathioprine-induced myelosuppression in the Chinese population. Epistatic interactions between ITPA (94C>A) and NUDT15 (415C>T) affect the occurrence of myelosuppression. Thus, it is recommended that the genotype of NUDT15 (415C>T) and ITPA (94C>A) be checked before administration, and azathioprine should be avoided in patients carrying a homozygous NUDT15 (415C>T) mutation. This study is the first to investigate the association between genetic polymorphisms of these three azathioprine-metabolizing enzymes and myelosuppression in a large number of cases with a diverse range of diseases.
Collapse
Affiliation(s)
- Zhao-Yang Chen
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Med-X Center for Informatics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yang-Hui Zhu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Med-X Center for Informatics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ling-Yan Zhou
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Med-X Center for Informatics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Wei-Qiao Shi
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Med-X Center for Informatics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhou Qin
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Med-X Center for Informatics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Bin Wu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Med-X Center for Informatics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Yan
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Med-X Center for Informatics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yu-Wen Pei
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Med-X Center for Informatics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Ning-Ning Chao
- Institute of Respiratory Health, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rui Zhang
- Department of Information Center, Engineering Research Center of Medical Information Technology of the Education Ministry, West China Hospital, Sichuan University, Chengdu, China
| | - Mi-Ye Wang
- Department of Information Center, Engineering Research Center of Medical Information Technology of the Education Ministry, West China Hospital, Sichuan University, Chengdu, China
| | - Ze-Hao Su
- Med-X Center for Informatics, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Jun Lu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Zhi-Yao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Med-X Center for Informatics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Ting Xu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, Med-X Center for Informatics, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| |
Collapse
|
3
|
Zhai XY, Zhou Y, Dong L, Nie AQ, Zhi LJ, Jacqz-Aigrain E, Wang TY, Wang L, Zhao W. Extremely low dose of 6-mercaptopurine in a Chinese child with acute lymphoblastic leukaemia and multiple pharmacogenetic mutations. J Clin Pharm Ther 2020; 46:74-77. [PMID: 32893890 DOI: 10.1111/jcpt.13255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 06/23/2020] [Accepted: 08/06/2020] [Indexed: 11/30/2022]
Abstract
WHAT IS KNOWN AND OBJECTIVES Thiopurines are cornerstone drugs in the treatment of acute lymphoblastic leukaemia (ALL), but their use can be complicated by the incidence of life-threatening leucopenia. CASE DESCRIPTION We describe a case of a 6-year-old Chinese boy with B-ALL receiving extremely low dose of 6-mercaptopurine (only 4% of recommended dose) during the ALL maintenance therapy phase. WHAT IS NEW AND CONCLUSION Complex pharmacogenetic tests and TDM should be recommended in children with complicated ALL to highlight the large individual variability in the responses to 6-MP exposure and the associated adverse effects.
Collapse
Affiliation(s)
- Xiao-Ying Zhai
- Department of Pediatric Hematology Oncology, Children's Hospital of Hebei Province affiliated to Hebei Medical University, Shijiazhuang, China
| | - Yue Zhou
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Lei Dong
- Department of Pharmacy, Children's Hospital of Hebei Province affiliated to Hebei Medical University, Shijiazhuang, China
| | - Ai-Qing Nie
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Li-Juan Zhi
- Department of Pediatric Hematology Oncology, Children's Hospital of Hebei Province affiliated to Hebei Medical University, Shijiazhuang, China
| | - Evelyne Jacqz-Aigrain
- Department of Paediatric Pharmacology and Pharmacogenetics, Hôpital Robert Debré, APHP, Paris, France.,Sorbonne Paris Citéz, University Paris Diderot, Paris, France
| | - Tian-You Wang
- Beijing Key Laboratory of Pediatric Hematology Oncology, National Key Discipline of Pediatrics (Capital Medical University), Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing, China.,Hematology Oncology Center, Beijing Children's Hospital, National Center for Children's Health, Capital Medical University, Beijing, China
| | - Li Wang
- Department of Pediatric Hematology Oncology, Children's Hospital of Hebei Province affiliated to Hebei Medical University, Shijiazhuang, China
| | - Wei Zhao
- Department of Clinical Pharmacy, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.,Pediatric Research Institute, Children's Hospital of Hebei Province affiliated to Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
4
|
Hulaniuk ML, Mojsiejczuk L, Jauk F, Remondegui C, Mammana L, Bouzas MB, Zapiola I, Ferro MV, Ajalla C, Blejer J, Alter A, Acevedo ME, Rodríguez E, Fernández R, Bartoli S, Volonteri V, Kohan D, Elsner B, Bürgesser MV, Reynaud AL, Sánchez M, González C, García Rivello H, Corach D, Caputo M, Trinks J. Genetic diversity and phylogeographic analysis of human herpesvirus type 8 (HHV-8) in two distant regions of Argentina: Association with the genetic ancestry of the population. INFECTION GENETICS AND EVOLUTION 2020; 85:104523. [PMID: 32890766 DOI: 10.1016/j.meegid.2020.104523] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND The genetic diversity of persistent infectious agents, such as HHV-8, correlates closely with the migration of modern humans out of East Africa which makes them useful to trace human migrations. However, there is scarce data about the evolutionary history of HHV-8 particularly in multiethnic Latin American populations. OBJECTIVES The aims of this study were to characterize the genetic diversity and the phylogeography of HHV-8 in two distant geographic regions of Argentina, and to establish potential associations with pathogenic conditions and the genetic ancestry of the population. STUDY DESIGN A total of 101 HIV-1 infected subjects, 93 Kaposi's Sarcoma (KS) patients and 411 blood donors were recruited in the metropolitan (MET) and north-western regions of Argentina (NWA). HHV-8 DNA was detected by ORF-26 PCR in whole blood, saliva and FFPE tissues. Then, ORF-26 and ORF-K1 were analyzed for subtype assignment. Mitochondrial DNA and Y chromosome haplogroups, as well as autosomal ancestry markers were evaluated in samples in which subtypes could be assigned. Phylogeographic analysis was performed in the ORF-K1 sequences from this study combined with 388 GenBank sequences. RESULTS HHV-8 was detected in 50.7%, 59.2% and 8% of samples from HIV-1 infected subjects, KS patients and blood donors, respectively. ORF-K1 phylogenetic analyses showed that subtypes A (A1-A5), B1, C (C1-C3) and F were present in 46.9%, 6.25%, 43.75% and 3.1% of cases, respectively. Analyses of ORF-26 fragment revealed that 81.95% of strains were subtypes A/C followed by J, B2, R, and K. The prevalence of subtype J was more commonly observed among KS patients when compared to the other groups. Among KS patients, subtype A/C was more commonly detected in MET whereas subtype J was the most frequent in NWA. Subtypes A/C was significantly associated with Native American maternal haplogroups (p = 0.004), whereas subtype J was related to non-Native American haplogroups (p < 0.0001). Sub-Saharan Africa, Europe and Latin America were the most probable locations from where HHV-8 was introduced to Argentina. CONCLUSIONS These results give evidence of the geographic circulation of HHV-8 in Argentina, suggest the association of ORF-26 subtype J with KS development and provide new insights about its relationship with ancient and modern human migrations and identify the possible origins of this virus in Argentina.
Collapse
Affiliation(s)
- María Laura Hulaniuk
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), CONICET, Instituto Universitario del Hospital Italiano (IUHI), Hospital Italiano (HIBA), Argentina
| | - Laura Mojsiejczuk
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Federico Jauk
- Servicio de Anatomía Patológica, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Carlos Remondegui
- Servicio de Infectología y Medicina Tropical, Hospital San Roque, San Salvador de Jujuy, Argentina
| | - Lilia Mammana
- Unidad de Virología - División Análisis Clínicos, Hospital de Infecciosas "F. J. Muñiz", Buenos Aires, Argentina
| | - María Belén Bouzas
- Unidad de Virología - División Análisis Clínicos, Hospital de Infecciosas "F. J. Muñiz", Buenos Aires, Argentina
| | - Inés Zapiola
- Unidad de Virología - División Análisis Clínicos, Hospital de Infecciosas "F. J. Muñiz", Buenos Aires, Argentina
| | - María Verónica Ferro
- Servicio de Infectología y Medicina Tropical, Hospital San Roque, San Salvador de Jujuy, Argentina
| | - Claudia Ajalla
- Servicio de Infectología y Medicina Tropical, Hospital San Roque, San Salvador de Jujuy, Argentina
| | | | - Adriana Alter
- Fundación Hemocentro Buenos Aires, Buenos Aires, Argentina
| | | | | | | | - Sonia Bartoli
- Servicio de Hemoterapia, Hospital "Pablo Soria", San Salvador de Jujuy, Argentina
| | - Victoria Volonteri
- Servicio de Anatomía Patológica, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Dana Kohan
- Centro Privado de Patología, Buenos Aires, Argentina
| | - Boris Elsner
- Centro Privado de Patología, Buenos Aires, Argentina
| | | | - Ana Laura Reynaud
- Laboratorio de Patología y Citopatología, San Salvador de Jujuy, Argentina
| | - Marisa Sánchez
- Servicio de Infectología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Carlos González
- Servicio de Hemoterapia, Hospital de Infecciosas "F. J. Muñiz", Buenos Aires, Argentina
| | - Hernán García Rivello
- Servicio de Anatomía Patológica, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - Daniel Corach
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Genética Forense y Servicio de Huellas Digitales Genéticas, Buenos Aires, Argentina
| | - Mariela Caputo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Microbiología, Inmunología, Biotecnología y Genética, Cátedra de Genética Forense y Servicio de Huellas Digitales Genéticas, Buenos Aires, Argentina
| | - Julieta Trinks
- Instituto de Medicina Traslacional e Ingeniería Biomédica (IMTIB), CONICET, Instituto Universitario del Hospital Italiano (IUHI), Hospital Italiano (HIBA), Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
5
|
Li W, Zhang XY, Du J, Li YF, Chen YJ, Cao Y. RNA-seq-based quanitative transcriptome analysis of meat color and taste from chickens administered by eucalyptus leaf polyphenols extract. J Food Sci 2020; 85:1319-1327. [PMID: 32175699 DOI: 10.1111/1750-3841.15082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 01/13/2023]
Abstract
To evaluate how eucalyptus leaf polyphenol extract (EPE) affects chicken meat color and taste, we added different levels of EPE (0%, 0.06%, 0.09%, and 0.12%) to chicken feed. The redness (a* value) and the myoglobin content of breast muscle in EPE group were remarkably higher. Furthermore, the guanosine monophosphate, histidine, and glycine muscle contents were also enhanced. Transcriptome analysis showed that 10 candidate genes related to meat quality were affected by EPE treatment. The identified genes, with functions critical to chicken meat color and taste, will help to determine the molecular mechanisms of EPE.
Collapse
Affiliation(s)
- Wei Li
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| | - Xiao-Ying Zhang
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| | - Jie Du
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| | - Yi-Feng Li
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| | - Yun-Jiao Chen
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| | - Yong Cao
- College of Food Science, South China Agricultural University, Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, Guangdong Research Center for Engineering Technology in Bioactive Natural Products, Guangzhou, 510642, China
| |
Collapse
|
6
|
Peltenburg NC, Bierau J, Bakker JA, Schippers JA, Lowe SH, Paulussen ADC, van den Bosch BJC, Leers MPG, Hansen BE, Verbon A. Erythrocyte Inosine triphosphatase activity: A potential biomarker for adverse events during combination antiretroviral therapy for HIV. PLoS One 2018; 13:e0191069. [PMID: 29329318 PMCID: PMC5766130 DOI: 10.1371/journal.pone.0191069] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 12/26/2017] [Indexed: 12/30/2022] Open
Abstract
The purine analogues tenofovir and abacavir are precursors of potential substrates for the enzyme Inosine 5'-triphosphate pyrophosphohydrolase (ITPase). Here, we investigated the association of ITPase activity and ITPA genotype with the occurrence of adverse events (AEs) during combination antiretroviral therapy (cART) for human immunodeficiency virus (HIV) infection. In 393 adult HIV-seropositive patients, AEs were defined as events that led to stop of cART regimen. ITPase activity ≥4 mmol IMP/mmol Hb/hour was considered as normal. ITPA genotype was determined by testing two ITPA polymorphisms: c.94C>A (p.Pro32Thr, rs1127354) and c.124+21A>C (rs7270101). Logistic regression analysis determined odds ratios for developing AEs. In tenofovir-containing regimens decreased ITPase activity was associated with less AEs (p = 0.01) and longer regimen duration (p = 0.001). In contrast, in abacavir-containing regimens decreased ITPase activity was associated with more AEs (crude p = 0.02) and increased switching of medication due to AEs (p = 0.03). ITPA genotype wt/wt was significantly associated with an increase in the occurrence of AEs in tenofovir-containing regimens. Decreased ITPase activity seems to be protective against occurrence of AEs in tenofovir-containing cART, while it is associated with an increase in AEs in abacavir-containing regimens.
Collapse
Affiliation(s)
- N. Chantal Peltenburg
- Department of Internal medicine, Division Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Jörgen Bierau
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Jaap A. Bakker
- Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Jolanda A. Schippers
- Department of Integrated Care, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Selwyn H. Lowe
- Department of internal medicine, Division Infectious Diseases, Maastricht University Medical Center, Maastricht, The Netherlands
- Department of Medical Microbiology, School of CAPHRI, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Aimée D. C. Paulussen
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | - Mathie P. G. Leers
- Department of Clinical Chemistry & Hematology, Zuyderland Medical Center, Heerlen, The Netherlands
| | - Bettina E. Hansen
- Department of Gastroenterology & Hepatology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Annelies Verbon
- Department of Internal medicine, Division Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
7
|
Kakuta Y, Kinouchi Y, Shimosegawa T. Pharmacogenetics of thiopurines for inflammatory bowel disease in East Asia: prospects for clinical application of NUDT15 genotyping. J Gastroenterol 2018; 53:172-180. [PMID: 29192347 PMCID: PMC5846876 DOI: 10.1007/s00535-017-1416-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Accepted: 11/19/2017] [Indexed: 02/06/2023]
Abstract
The thiopurine drugs 6-mercaptopurine (6-MP) and azathiopurine (AZA) are widely used to treat inflammatory bowel disease. However, the incidence of adverse reactions is high, particularly in Asia, and the mechanisms of toxicity in Asian populations remain unclear. Thiopurine S-methyltransferase (TPMT) is a well-known enzyme that inactivates AZA or 6-MP through methylation and is one of the few pharmacogenetic predictors used in clinical settings in Western countries. Individuals carrying TPMT-deficient genetic variants require reduced drug doses, but this treatment modification is are not applicable to East Asian populations. Several genes code thiopurine-metabolizing enzymes, including TPMT, multidrug-resistance protein 4, and inosine triphosphatase. These genes have been studied as candidate pharmacogenetic markers; however, it remains unclear why Asian populations seem to be more intolerant than other ethnic groups to a full dose of thiopurines. A genome-wide association approach to identify Asian-specific pharmacogenetic markers in Korean patients with Crohn's disease revealed that a non-synonymous single nucelotide polymorphism in nucleoside diphosphate-linked moiety X-type motif 15 (NUDT15) which causes p.Arg139Cys was strongly associated with thiopurine-induced early leukopenia. Six common haplotypes of NUDT15 were reported, and five variants showed medium-to-low enzyme activities, compared with the wild haplotype. NUDT15 hydrolyzes the thiopurine active metabolites 6-thio-GTP and 6-thio-dGTP; variants of NUDT15 had lower enzyme activities, causing higher levels of thiopurine active metabolites, resulting in thiopurine-induced leukopenia. In clinical application, NUDT15 genotyping is a good candidate for predicting thiopurine toxicity in East Asian populations. However, the association of NUDT15 diplotypes with thiopurine toxicity remains unclear. Further analyses with large cohorts to confirm the clinical effects of each haplotype are planned.
Collapse
Affiliation(s)
- Yoichi Kakuta
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aoba, Sendai, 980-8574 Japan
| | - Yoshitaka Kinouchi
- Institute for Excellent in Higher Education, Tohoku University, Sendai, Japan
| | - Tooru Shimosegawa
- Division of Gastroenterology, Tohoku University Graduate School of Medicine, 1-1 Seiryo, Aoba, Sendai, 980-8574 Japan
| |
Collapse
|
8
|
Peltenburg NC, Leers MPG, Bakker JA, Lowe SH, Vroemen WHM, Paulussen ADC, van den Bosch BJC, Bierau J, Verbon A. Inosine Triphosphate Pyrophosphohydrolase Expression: Decreased in Leukocytes of HIV-Infected Patients Using Combination Antiretroviral Therapy. J Acquir Immune Defic Syndr 2016; 73:390-395. [PMID: 27792682 DOI: 10.1097/qai.0000000000001130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
OBJECTIVE In HIV-infected patients, the enzyme Inosine triphosphate pyrophosphohydrolase (ITPase), involved in purine nucleotide homeostasis, was found to be decreased in erythrocytes. Since purine analogues are pivotal in the HIV treatment, a better understanding of ITPase expression in CD4 lymphocytes may lead to better understanding of nucleotide metabolism and (adverse) effects. DESIGN Cross-sectional, cohort, observational study. METHODS HIV-infected and control patients above 18 years were included. All DNA samples were genotyped for the 2 functional ITPA SNPs; c.94C>A (rs1127354) and g.IVS+21A>C (rs7270101). ITPase expression was determined by flow cytometry in all leukocyte subsets. RESULTS Fifty-nine HIV-infected patients and 50 controls were included. Leukocyte subtype distribution showed no difference in monocytes and granulocytes, but lymphocytes were higher in HIV-infected patients (P < 0.001). ITPase expression was highest in activated monocytes and lowest in lymphocytes. In HIV-infected patients, the percentage of ITPase positive cells was less in all leukocyte and lymphocyte subsets compared with controls (P < 0.01). In HIV-infected patients, 97.4% of CD4 lymphocytes were ITPase positive versus 99.9% in controls (P = 0.002) and 85.9% versus 99.6% of CD8 lymphocytes (P < 0.0001), respectively. Stratification according to genotype revealed no significant differences in ITPase expression in leukocytes in HIV-infected and control patients. CONCLUSIONS HIV-infection seems to be interfering with the nucleotide metabolism in leukocytes, including CD4 lymphocytes, by decreasing ITPase expression, independently of ITPA genotype. Given that active metabolites of purine-analogue reverse transcriptase inhibitors are potential substrates for ITPase, these results warrant further research towards effectiveness and adverse events of purine analogues and ITPase activity.
Collapse
Affiliation(s)
- N Chantal Peltenburg
- *Department of Internal Medicine, Division of Infectious Diseases, Erasmus MC, Rotterdam, the Netherlands;†Department of Clinical Chemistry and Hematology, Zuyderland Medical Center, Heerlen, the Netherlands;‡Department of Clinical Chemistry and Laboratory Medicine, Leiden University Medical Center, Leiden, the Netherlands;Departments of §Medical Microbiology;‖Internal Medicine, Division of Infectious Diseases, Research School CAPHRI, Maastricht University Medical Center, Maastricht, the Netherlands;¶Department of Clinical Genetics, Maastricht University Medical Centre, Maastricht, the Netherlands; and#Department of Medical Microbiology and Infectious Diseases, Erasmus MC, Rotterdam, the Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Shelton J, Lu X, Hollenbaugh JA, Cho JH, Amblard F, Schinazi RF. Metabolism, Biochemical Actions, and Chemical Synthesis of Anticancer Nucleosides, Nucleotides, and Base Analogs. Chem Rev 2016; 116:14379-14455. [PMID: 27960273 DOI: 10.1021/acs.chemrev.6b00209] [Citation(s) in RCA: 242] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Nucleoside, nucleotide, and base analogs have been in the clinic for decades to treat both viral pathogens and neoplasms. More than 20% of patients on anticancer chemotherapy have been treated with one or more of these analogs. This review focuses on the chemical synthesis and biology of anticancer nucleoside, nucleotide, and base analogs that are FDA-approved and in clinical development since 2000. We highlight the cellular biology and clinical biology of analogs, drug resistance mechanisms, and compound specificity towards different cancer types. Furthermore, we explore analog syntheses as well as improved and scale-up syntheses. We conclude with a discussion on what might lie ahead for medicinal chemists, biologists, and physicians as they try to improve analog efficacy through prodrug strategies and drug combinations.
Collapse
Affiliation(s)
- Jadd Shelton
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Xiao Lu
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Joseph A Hollenbaugh
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Jong Hyun Cho
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Franck Amblard
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| | - Raymond F Schinazi
- Center for AIDS Research, Laboratory of Biochemical Pharmacology, Department of Pediatrics, Emory University School of Medicine , 1760 Haygood Drive, NE, Atlanta, Georgia 30322, United States
| |
Collapse
|
10
|
Genes implicated in thiopurine-induced toxicity: Comparing TPMT enzyme activity with clinical phenotype and exome data in a paediatric IBD cohort. Sci Rep 2016; 6:34658. [PMID: 27703193 PMCID: PMC5050412 DOI: 10.1038/srep34658] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Accepted: 09/13/2016] [Indexed: 12/24/2022] Open
Abstract
The aim of our study was to assess the utility of next generation sequencing (NGS) for predicting toxicity and clinical response to thiopurine drugs in paediatric patients with inflammatory bowel disease. Exome data for 100 patients were assessed against biochemically measured TPMT enzyme activity, clinical response and adverse effects. The TPMT gene and a panel of 15 other genes implicated in thiopurine toxicity were analysed using a gene based statistical test (SKAT-O test). Nine patients out of 100 (Crohn’s disease- 67, ulcerative colitis- 23 and IBDU-10) had known TPMT mutations associated with deficient enzyme activity. A novel and a highly pathogenic TPMT variant not detectable through standard genotyping, was identified through NGS in an individual intolerant to thiopurines. Of the 14 patients intolerant to thiopurines, NGS identified deleterious TPMT variants in 5 individuals whereas the biochemical test identified 8 individuals as intolerant (sensitivity 35.7% and 57.14%; specificity 93.75% and 50% respectively). SKAT-O test identified a significant association between MOCOS gene and TPMT activity (p = 0.0015), not previously reported. Although NGS has the ability to detect rare or novel variants not otherwise identified through standard genotyping, it demonstrates no clear advantage over the biochemical test in predicting toxicity in our modest cohort.
Collapse
|
11
|
Hulaniuk ML, Torres O, Bartoli S, Fortuny L, Burgos Pratx L, Nuñez F, Salamone H, Corach D, Trinks J, Caputo M. Increased prevalence of human herpesvirus type 8 (HHV-8) genome among blood donors from North-Western Argentina. J Med Virol 2016; 89:518-527. [DOI: 10.1002/jmv.24656] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/04/2016] [Indexed: 01/24/2023]
Affiliation(s)
- María Laura Hulaniuk
- Basic Science and Experimental Medicine Institute (ICBME); University Institute of the Italian Hospital; Buenos Aires Argentina
| | - Oscar Torres
- Transfusion Medicine Unit; “Ramón Sardá” Maternity Hospital; Buenos Aires Argentina
| | - Sonia Bartoli
- Transfusion Medicine Unit; “Pablo Soria” Hospital; San Salvador de Jujuy Jujuy Argentina
| | - Lisandro Fortuny
- Transfusion Medicine Unit; Italian Hospital of Buenos Aires; Buenos Aires Argentina
| | - Leandro Burgos Pratx
- Transfusion Medicine Unit; Italian Hospital of Buenos Aires; Buenos Aires Argentina
| | - Félix Nuñez
- Transfusion Medicine Unit; Italian Hospital of Buenos Aires; Buenos Aires Argentina
| | - Horacio Salamone
- Transfusion Medicine Unit; Italian Hospital of Buenos Aires; Buenos Aires Argentina
| | - Daniel Corach
- Universidad de Buenos Aires; Facultad de Farmacia y Bioquímica; Departamento de Microbiología; Inmunología y Biotecnología; Cátedra de Genética Forense y Servicio de Huellas Digitales Genéticas; Buenos Aires Argentina
- National Scientific and Technical Research Council (CONICET); Buenos Aires Argentina
| | - Julieta Trinks
- Basic Science and Experimental Medicine Institute (ICBME); University Institute of the Italian Hospital; Buenos Aires Argentina
- National Scientific and Technical Research Council (CONICET); Buenos Aires Argentina
| | - Mariela Caputo
- Universidad de Buenos Aires; Facultad de Farmacia y Bioquímica; Departamento de Microbiología; Inmunología y Biotecnología; Cátedra de Genética Forense y Servicio de Huellas Digitales Genéticas; Buenos Aires Argentina
- National Scientific and Technical Research Council (CONICET); Buenos Aires Argentina
| |
Collapse
|
12
|
Moon W, Loftus EV. Review article: recent advances in pharmacogenetics and pharmacokinetics for safe and effective thiopurine therapy in inflammatory bowel disease. Aliment Pharmacol Ther 2016; 43:863-883. [PMID: 26876431 DOI: 10.1111/apt.13559] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/26/2015] [Accepted: 01/26/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND Azathioprine and mercaptopurine have a pivotal role in the treatment of inflammatory bowel disease (IBD). However, because of their complex metabolism and potential toxicities, optimal use of biomarkers to predict adverse effects and therapeutic response is paramount. AIM To provide a comprehensive review focused on pharmacogenetics and pharmacokinetics for safe and effective thiopurine therapy in IBD. METHODS A literature search up to July 2015 was performed in PubMed using a combination of relevant MeSH terms. RESULTS Pre-treatment thiopurine S-methyltransferase typing plus measurement of 6-tioguanine nucleotides and 6-methylmercaptopurine ribonucleotides levels during treatment have emerged with key roles in facilitating safe and effective thiopurine therapy. Optimal use of these tools has been shown to reduce the risk of adverse effects by 3-7%, and to improve efficacy by 15-30%. For the introduction of aldehyde oxidase (AOX) into clinical practice, the association between AOX activity and AZA dose requirements should be positively confirmed. Inosine triphosphatase assessment associated with adverse effects also shows promise. Nucleoside diphosphate-linked moiety X-type motif 15 variants have been shown to predict myelotoxicity on thiopurines in East Asian patients. However, the impact of assessments of xanthine oxidase, glutathione S-transferase, hypoxanthine guanine phosphoribosyltransferase and inosine monophosphate dehydrogenase appears too low to favour incorporation into clinical practice. CONCLUSIONS Measurement of thiopurine-related enzymes and metabolites reduces the risk of adverse effects and improves efficacy, and should be considered part of standard management. However, this approach will not predict or avoid all adverse effects, and careful clinical and laboratory monitoring of patients receiving thiopurines remains essential.
Collapse
Affiliation(s)
- W Moon
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA.,Department of Internal Medicine, Kosin University College of Medicine, Busan, Korea
| | - E V Loftus
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Impact of Genetic Polymorphisms on 6-Thioguanine Nucleotide Levels and Toxicity in Pediatric Patients with IBD Treated with Azathioprine. Inflamm Bowel Dis 2015; 21:2897-908. [PMID: 26332308 DOI: 10.1097/mib.0000000000000570] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Thiopurine-related toxicity results in discontinuation of therapy in up to 30% of patients with inflammatory bowel disease. Although thiopurine S-methyltransferase (TPMT) is implicated in toxicity, not all toxicity can be attributed to TPMT polymorphisms. We investigated the effects of polymorphisms of genes involved in thiopurine and folate metabolism pathways on 6-thioguanine nucleotide levels and toxicity. METHODS Retrospective clinical data and blood samples were collected from 132 pediatric patients with inflammatory bowel disease treated with azathioprine. Eighty-seven genetic polymorphisms of 30 genes were screened using the MassARRAY system, and 70 polymorphisms of 28 genes were selected for further analysis. RESULTS TPMT genotype (P < 0.001), concurrent use of mesalazine (P = 0.006), ABCC5 (rs2293001) (P < 0.001), ITPA (rs2236206 and rs8362) (P = 0.010 and P = 0.003), and ABCB1 (rs2032582) (P = 0.028) were all associated with the ratio of 6-thioguanine nucleotides to azathioprine dose. ADK (rs10824095) (P = 0.004, odds ratio [OR] = 6.220), SLC29A1 (rs747199) (P = 0.016, OR = 5.681), and TYMS (rs34743033) (P = 0.045, OR = 3.846) were associated with neutropenia. ABCC1 (rs2074087) (P = 0.022, OR = 3.406), IMPDH1 (rs2278294) (P = 0.027, OR = 0.276), and IMPDH2 (rs11706052) (P = 0.034, OR = 3.639) had a significant impact on lymphopenia. CONCLUSIONS This study describes genetic polymorphisms in genes whose products may affect pharmacokinetics and which may predict the relative likelihood of benefit or risk from thiopurine treatment. These findings may serve as a basis for personalized thiopurine therapy in pediatric patients with inflammatory bowel disease, although our data need to be validated in further studies.
Collapse
|
14
|
Trinks J, Hulaniuk ML, Caputo M, Pratx LB, Ré V, Fortuny L, Pontoriero A, Frías A, Torres O, Nuñez F, Gadano A, Corach D, Flichman D. Distribution of genetic polymorphisms associated with hepatitis C virus (HCV) antiviral response in a multiethnic and admixed population. THE PHARMACOGENOMICS JOURNAL 2014; 14:549-54. [PMID: 24841973 DOI: 10.1038/tpj.2014.20] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 03/08/2014] [Accepted: 03/26/2014] [Indexed: 12/19/2022]
Abstract
The prevalence of genetic polymorphisms identified as predictors of therapeutic-induced hepatitis C virus (HCV) clearance differs among ethnic groups. However, there is a paucity of information about their prevalence in South American populations, whose genetic background is highly admixed. Hence, single-nucleotide polymorphisms rs12979860, rs1127354 and rs7270101 were characterized in 1350 healthy individuals, and ethnicity was assessed in 259 randomly selected samples. The frequency of rs12979860CC, associated to HCV treatment response, and rs1127354nonCC, related to protection against hemolytic anemia, were significantly higher among individuals with maternal and paternal Non-native American haplogroups (64.5% and 24.2%), intermediate among admixed samples (44.1% and 20.4%) and the lowest for individuals with Native American ancestry (30.4% and 6.5%). This is the first systematic study focused on analyzing HCV predictors of antiviral response and ethnicity in South American populations. The characterization of these variants is critical to evaluate the risk-benefit of antiviral treatment according to the patient ancestry in admixed populations.
Collapse
Affiliation(s)
- J Trinks
- 1] Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires, Buenos Aires, Argentina [2] National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - M L Hulaniuk
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - M Caputo
- 1] Servicio de Huellas Digitales Genéticas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina [2] National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - L Burgos Pratx
- Servicio de Medicina Transfusional, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - V Ré
- 1] Instituto de Virología Dr José María Vanella, Facultad de Ciencias Médicas de la Universidad Nacional de Córdoba, Córdoba, Argentina [2] National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - L Fortuny
- Servicio de Medicina Transfusional, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - A Pontoriero
- Instituto de Ciencias Básicas y Medicina Experimental (ICBME), Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - A Frías
- Servicio de Medicina Transfusional, Hospital Materno Infantil 'Ramón Sardá', Buenos Aires, Argentina
| | - O Torres
- Servicio de Medicina Transfusional, Hospital Materno Infantil 'Ramón Sardá', Buenos Aires, Argentina
| | - F Nuñez
- Servicio de Medicina Transfusional, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - A Gadano
- Servicio de Hepatología, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - D Corach
- 1] Servicio de Huellas Digitales Genéticas, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina [2] National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - D Flichman
- 1] Cátedra de Virología, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Buenos Aires, Argentina [2] National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| |
Collapse
|
15
|
Oliver JC, Gudihal R, Burgner JW, Pedley AM, Zwierko AT, Davisson VJ, Linger RS. Conformational changes involving ammonia tunnel formation and allosteric control in GMP synthetase. Arch Biochem Biophys 2014; 545:22-32. [PMID: 24434004 DOI: 10.1016/j.abb.2014.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 12/27/2013] [Accepted: 01/06/2014] [Indexed: 11/17/2022]
Abstract
GMP synthetase is the glutamine amidotransferase that catalyzes the final step in the guanylate branch of de novo purine biosynthesis. Conformational changes are required to efficiently couple distal active sites in the protein; however, the nature of these changes has remained elusive. Structural information derived from both limited proteolysis and sedimentation velocity experiments support the hypothesis of nucleotide-induced loop- and domain-closure in the protein. These results were combined with information from sequence conservation and precedents from other glutamine amidotransferases to develop the first structural model of GMPS in a closed, active state. In analyzing this Catalytic model, an interdomain salt bridge was identified residing in the same location as seen in other triad glutamine amidotransferases. Using mutagenesis and kinetic analysis, the salt bridge between H186 and E383 was shown to function as a connection between the two active sites. Mutations at these residues uncoupled the two half-reactions of the enzyme. The chemical events of nucleotide binding initiate a series of conformational changes that culminate in the establishment of a tunnel for ammonia as well as an activated glutaminase catalytic site. The results of this study provide a clearer understanding of the allostery of GMPS, where, for the first time, key substrate binding and interdomain contacts are modeled and analyzed.
Collapse
Affiliation(s)
- Justin C Oliver
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Ravidra Gudihal
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - John W Burgner
- Bindley Bioscience Center, Purdue University, West Lafayette, IN 47907, United States
| | - Anthony M Pedley
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Alexander T Zwierko
- Department of Pharmaceutical and Administrative Sciences, University of Charleston, Charleston, WV 25304, United States
| | - V Jo Davisson
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, United States
| | - Rebecca S Linger
- Department of Pharmaceutical and Administrative Sciences, University of Charleston, Charleston, WV 25304, United States.
| |
Collapse
|
16
|
Oliver JC, Linger RS, Chittur SV, Davisson VJ. Substrate activation and conformational dynamics of guanosine 5'-monophosphate synthetase. Biochemistry 2013; 52:5225-35. [PMID: 23841499 DOI: 10.1021/bi3017075] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glutamine amidotransferases catalyze the amination of a wide range of molecules using the amide nitrogen of glutamine. The family provides numerous examples for study of multi-active-site regulation and interdomain communication in proteins. Guanosine 5'-monophosphate synthetase (GMPS) is one of three glutamine amidotransferases in de novo purine biosynthesis and is responsible for the last step in the guanosine branch of the pathway, the amination of xanthosine 5'-monophosphate (XMP). In several amidotransferases, the intramolecular path of ammonia from glutamine to substrate is understood; however, the crystal structure of GMPS only hinted at the details of such transfer. Rapid kinetics studies provide insight into the mechanism of the substrate-induced changes in this complex enzyme. Rapid mixing of GMPS with substrates also manifests absorbance changes that report on the kinetics of formation of a reactive intermediate as well as steps in the process of rapid transfer of ammonia to this intermediate. Isolation and use of the adenylylated nucleotide intermediate allowed the study of the amido transfer reaction distinct from the ATP-dependent reaction. Changes in intrinsic tryptophan fluorescence upon mixing of enzyme with XMP suggest a conformational change upon substrate binding, likely the ordering of a highly conserved loop in addition to global domain motions. In the GMPS reaction, all forward rates before product release appear to be faster than steady-state turnover, implying that release is likely rate-limiting. These studies establish the functional role of a substrate-induced conformational change in the GMPS catalytic cycle and provide a kinetic context for the formation of an ammonia channel linking the distinct active sites.
Collapse
Affiliation(s)
- Justin C Oliver
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University , West Lafayette, Indiana 47907, United States
| | | | | | | |
Collapse
|
17
|
Nagamine A, Takenaka M, Aomori T, Okada Y, Hiromura K, Nojima Y, Araki T, Nakamura T, Yamamoto K. Effect of genetic polymorphisms on effectiveness of low-dose azathioprine in Japanese patients with systemic lupus erythematosus. Am J Health Syst Pharm 2012; 69:2072-8. [DOI: 10.2146/ajhp120179] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Ayumu Nagamine
- Department of Pharmacy Gunma University Hospital, Showa-machi, Maebashi, Japan
| | - Miki Takenaka
- Department of Pharmacy Gunma University Hospital, Showa-machi, Maebashi, Japan
| | - Tohru Aomori
- Department of Clinical Pharmacology, Graduate School of Medicine, Gunma University, Showa-machi
| | - Yuko Okada
- Faculty of Pharmacy, Takasaki University of Health and Welfare, Nakaoorui-machi, Takasaki, Japan
| | | | | | | | | | - Koujirou Yamamoto
- Department of Clinical Pharmacology, Graduate School of Medicine, Gunma University
| |
Collapse
|
18
|
Pharmacogenetic determinants of mercaptopurine disposition in children with acute lymphoblastic leukemia. Eur J Clin Pharmacol 2012; 68:1233-42. [PMID: 22421815 DOI: 10.1007/s00228-012-1251-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 02/14/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND The backbone of drug therapy used in acute lymphoblastic leukemia (ALL) in children includes 6-mercaptopurine (6-MP). Intracellular metabolism of this prodrug is a key component of the therapeutic response. Many metabolizing enzymes are involved in 6-MP disposition and active 6-MP metabolites are represented by 6-thioguanine nucleotides (6-TGN) and methylated metabolites primarily methylated by the thiopurine S-methyltransferase enzyme (TPMT). The genetic polymorphism affecting TPMT activity displays an important inter-subject variability in metabolites pharmacokinetics and influences the balance between 6-MP efficacy and toxicity: patients with high 6-TGN levels are at risk of myelosuppression while patients with high levels of methylated derivates are at hepatotoxic risk. However, the genetic TPMT polymorphism does not explain all 6-MP adverse events and some severe toxicities leading to life-threatening conditions remain unexplained. Additional single nucleotide polymorphisms (SNPs) in genes encoding enzymes involved in 6-MP metabolism and 6-MP transporters may also be responsible for this inter-individual 6-MP response variability. AIM This review presents the pharmacogenetic aspects of 6-MP metabolism in great detail. We have focused on published data on ALL treatment supporting the great potential of 6-MP pharmacogenetics to improve efficacy, tolerance, and event-free survival rates in children with ALL.
Collapse
|
19
|
Association Between Adverse Effects Under Azathioprine Therapy and Inosine Triphosphate Pyrophosphatase Activity in Patients With Chronic Inflammatory Bowel Disease. Ther Drug Monit 2011; 33:321-8. [DOI: 10.1097/ftd.0b013e31821a7c34] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|