1
|
Evaluation for Potential Drug-Drug Interaction of MT921 Using In Vitro Studies and Physiologically-Based Pharmacokinetic Models. Pharmaceuticals (Basel) 2021; 14:ph14070654. [PMID: 34358080 PMCID: PMC8308925 DOI: 10.3390/ph14070654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/01/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
MT921 is a new injectable drug developed by Medytox Inc. to reduce submental fat. Cholic acid is the active pharmaceutical ingredient, a primary bile acid biosynthesized from cholesterol, endogenously produced by liver in humans and other mammals. Although individuals treated with MT921 could be administered with multiple medications, such as those for hypertension, diabetes, and hyperlipidemia, the pharmacokinetic drug–drug interaction (DDI) has not been investigated yet. Therefore, we studied in vitro against drug-metabolizing enzymes and transporters. Moreover, we predicted the potential DDI between MT921 and drugs for chronic diseases using physiologically-based pharmacokinetic (PBPK) modeling and simulation. The magnitude of DDI was found to be negligible in in vitro inhibition and induction of cytochrome P450s and UDP-glucuronosyltransferases. Organic anion transporting polypeptide (OATP)1B3, organic anion transporter (OAT)3, Na+-taurocholate cotransporting polypeptide (NTCP), and apical sodium-dependent bile acid transporter (ASBT) are mainly involved in MT921 transport. Based on the result of in vitro experiments, the PBPK model of MT921 was developed and evaluated by clinical data. Furthermore, the PBPK model of amlodipine was developed and evaluated. PBPK DDI simulation results indicated that the pharmacokinetics of MT921 was not affected by the perpetrator drugs. In conclusion, MT921 could be administered without a DDI risk based on in vitro study and related in silico simulation. Further clinical studies are needed to validate this finding.
Collapse
|
2
|
Dall'igna DM, Luz JMDA, Vuolo F, Michels M, Dal-Pizzol F. Taurine Chloramine decreases cell viability and cytokine production in blood and spleen lymphocytes from septic rats. AN ACAD BRAS CIENC 2020; 92:e20191311. [PMID: 33237137 DOI: 10.1590/0001-3765202020191311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/23/2020] [Indexed: 11/22/2022] Open
Abstract
Taurine (Tau) is an abundant amino acid in polymorphonuclear leukocytes that react with hypochlorous acid to form taurine chloramine (TauCl) under inflammatory conditions. We investigated potential interactions between lymphocytes and TauCl in rats submitted to cecal ligation. Animals were divided into sham or CLP groups (24 or 120 h) to isolate lymphocytes from blood and spleen. Lymphocytes were cultured at a concentration of 1×106 cells/mL and activated by concanavalin A. Tau and TauCl were added at 1, 10, and 100 μM. Cells were incubated with MTT to evaluate cell viability and cytokine concentration in the supernatant was determined. TauCl decreased lymphocyte viability and altered the secretion pattern of important inflammatory mediators in non-specific-phenotype manner. The effort to a is elucidate mechanisms of immune cell (dys)function in sepsis is important to better understand the complex regulation of immune system during sepsis development, and further studies are necessary to confirm TauCl as potential target in this context.
Collapse
Affiliation(s)
- DhÉbora M Dall'igna
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense/UNESC, Laboratório de Fisiopatologia Experimental, Av. Universitária, 1105, 88806-000 Criciúma, SC, Brazil
| | - Jaqueline M DA Luz
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense/UNESC, Laboratório de Fisiopatologia Experimental, Av. Universitária, 1105, 88806-000 Criciúma, SC, Brazil
| | - Francieli Vuolo
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense/UNESC, Laboratório de Fisiopatologia Experimental, Av. Universitária, 1105, 88806-000 Criciúma, SC, Brazil
| | - Monique Michels
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense/UNESC, Laboratório de Fisiopatologia Experimental, Av. Universitária, 1105, 88806-000 Criciúma, SC, Brazil
| | - Felipe Dal-Pizzol
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense/UNESC, Laboratório de Fisiopatologia Experimental, Av. Universitária, 1105, 88806-000 Criciúma, SC, Brazil
| |
Collapse
|
3
|
Comhair SAA, McDunn J, Bennett C, Fettig J, Erzurum SC, Kalhan SC. Metabolomic Endotype of Asthma. THE JOURNAL OF IMMUNOLOGY 2015; 195:643-50. [PMID: 26048149 DOI: 10.4049/jimmunol.1500736] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/13/2015] [Indexed: 11/19/2022]
Abstract
Metabolomics, the quantification of small biochemicals in plasma and tissues, can provide insight into complex biochemical processes and enable the identification of biomarkers that may serve as therapeutic targets. We hypothesized that the plasma metabolome of asthma would reveal metabolic consequences of the specific immune and inflammatory responses unique to endotypes of asthma. The plasma metabolomic profiles of 20 asthmatic subjects and 10 healthy controls were examined using an untargeted global and focused metabolomic analysis. Individuals were classified based on clinical definitions of asthma severity or by levels of fraction of exhaled NO (FENO), a biomarker of airway inflammation. Of the 293 biochemicals identified in the plasma, 25 were significantly different among asthma and healthy controls (p < 0.05). Plasma levels of taurine, lathosterol, bile acids (taurocholate and glycodeoxycholate), nicotinamide, and adenosine-5-phosphate were significantly higher in asthmatics compared with healthy controls. Severe asthmatics had biochemical changes related to steroid and amino acid/protein metabolism. Asthmatics with high FENO, compared with those with low FENO, had higher levels of plasma branched-chain amino acids and bile acids. Asthmatics have a unique plasma metabolome that distinguishes them from healthy controls and points to activation of inflammatory and immune pathways. The severe asthmatic and high FENO asthmatic have unique endotypes that suggest changes in NO-associated taurine transport and bile acid metabolism.
Collapse
Affiliation(s)
- Suzy A A Comhair
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; Cleveland Clinic, Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195
| | | | - Carole Bennett
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Jade Fettig
- Cleveland Clinic, Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195
| | - Serpil C Erzurum
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; Cleveland Clinic, Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195; Respiratory Institute, Cleveland Clinic, Cleveland, OH 44195
| | - Satish C Kalhan
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195; Cleveland Clinic, Lerner College of Medicine, Case Western Reserve University, Cleveland, OH 44195;
| |
Collapse
|