1
|
Sadu L, Krishnan RH, Akshaya RL, Das UR, Satishkumar S, Selvamurugan N. Exosomes in bone remodeling and breast cancer bone metastasis. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2022; 175:120-130. [PMID: 36155749 DOI: 10.1016/j.pbiomolbio.2022.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 09/10/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Exosomes are endosome-derived microvesicles that carry cell-specific biological cargo, such as proteins, lipids, and noncoding RNAs (ncRNAs). They play a key role in bone remodeling by enabling the maintenance of a balance between osteoblast-mediated bone formation and osteoclast-mediated bone resorption. Recent evidence indicates that exosomes disrupt bone remodeling that occurs during breast cancer (BC) progression. The bone is a preferred site for BC metastasis owing to its abundant osseous reserves. In this review, we aimed to highlight the roles of exosomes derived from bone cells and breast tumor in bone remodeling and BC bone metastasis (BCBM). We also briefly outline the mechanisms of action of ncRNAs and proteins carried by exosomes secreted by bone and BCBM. Furthermore, this review highlights the potential of utilizing exosomes as biomarkers or delivery vehicles for the diagnosis and treatment of BCBM.
Collapse
Affiliation(s)
- Lakshana Sadu
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - R Hari Krishnan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - R L Akshaya
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - Udipt Ranjan Das
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - Sneha Satishkumar
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India
| | - N Selvamurugan
- Department of Biotechnology, School of Bioengineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, 603 103, Tamil Nadu, India.
| |
Collapse
|
2
|
The Intestinal Efflux Transporter Inhibition Activity of Xanthones from Mangosteen Pericarp: An In Silico, In Vitro and Ex Vivo Approach. Molecules 2020; 25:molecules25245877. [PMID: 33322620 PMCID: PMC7764676 DOI: 10.3390/molecules25245877] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/05/2020] [Accepted: 12/10/2020] [Indexed: 02/02/2023] Open
Abstract
The capacity of α-mangostin (α-MG) and β-mangostin (β-MG) from mangosteen pericarp on P-glycoprotein (Pgp) in silico, in vitro, and ex vivo was investigated in this study. Screening with the ADMET Predictor™ program predicted the two compounds to be both a Pgp inhibitor and Pgp substrate. The compounds tended to interact with Pgp and inhibit Pgp ATPase activity. Additionally, bidirectional transport on Caco-2 cell monolayers demonstrated a significantly lower efflux ratio than that of the control (α-(44.68) and β-(46.08) MG versus the control (66.26); p < 0.05) indicating an inhibitory effect on Pgp activity. Test compounds additionally revealed a downregulation of MDR1 mRNA expression. Moreover, an ex vivo absorptive transport in everted mouse ileum confirmed the previous results that α-MG had a Pgp affinity inhibitor, leading to an increase in absorption of the Pgp substrate in the serosal side. In conclusion, α- and β-MG have the capability to inhibit Pgp and they also alter Pgp expression, which makes them possible candidates for reducing multidrug resistance. Additionally, they influence the bioavailability and transport of Pgp substrate drugs.
Collapse
|
3
|
Quercetin Is a Flavonoid Breast Cancer Resistance Protein Inhibitor with an Impact on the Oral Pharmacokinetics of Sulfasalazine in Rats. Pharmaceutics 2020; 12:pharmaceutics12050397. [PMID: 32357395 PMCID: PMC7285070 DOI: 10.3390/pharmaceutics12050397] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/23/2020] [Accepted: 04/23/2020] [Indexed: 02/06/2023] Open
Abstract
The potential inhibitory effect of quercetin, a major plant flavonol, on breast cancer resistance protein (BCRP) activity was investigated in this study. The presence of quercetin significantly increased the cellular accumulation and associated cytotoxicity of the BCRP substrate mitoxantrone in human cervical cancer cells (HeLa cells) in a concentration-dependent manner. The transcellular efflux of prazosin, a stereotypical BCRP substrate, was also significantly reduced in the presence of quercetin in a bidirectional transport assay using human BCRP-overexpressing cells; further kinetic analysis revealed IC50 and Ki values of 4.22 and 3.91 μM, respectively. Moreover, pretreatment with 10 mg/kg quercetin in rats led to a 1.8-fold and 1.5-fold increase in the AUC8h (i.e., 44.5 ± 11.8 min∙μg/mL vs. 25.7 ± 9.98 min∙μg/mL, p < 0.05) and Cmax (i.e., 179 ± 23.0 ng/mL vs. 122 ± 23.2 ng/mL, p < 0.05) of orally administered sulfasalazine, respectively. Collectively, these results provide evidence that quercetin acts as an in vivo as well as in vitro inhibitor of BCRP. Considering the high dietary intake of quercetin as well as its consumption as a dietary supplement, issuing a caution regarding its food-drug interactions should be considered.
Collapse
|
4
|
Kazan HH, Urfali-Mamatoglu C, Gunduz U. Iron metabolism and drug resistance in cancer. Biometals 2017; 30:629-641. [DOI: 10.1007/s10534-017-0037-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/26/2017] [Indexed: 01/17/2023]
|
5
|
Liao M, Chuang BC, Zhu Q, Li Y, Guan E, Yu S, Yang J, Prakash S, Xia CQ. Preclinical absorption, distribution, metabolism, excretion and pharmacokinetics of a novel selective inhibitor of breast cancer resistance protein (BCRP). Xenobiotica 2017; 48:467-477. [PMID: 28485193 DOI: 10.1080/00498254.2017.1328147] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
1. Breast cancer resistance protein (BCRP) plays an important role in drug absorption, distribution and excretion. It is challenging to evaluate BCRP functions in preclinical models because commonly used BCRP inhibitors are nonspecific or unstable in animal plasma. 2. In this work, in vitro absorption, distribution, metabolism and elimination (ADME) assays and pharmacokinetic (PK) experiments in Bcrp knockout (KO) (Abcg2-/-) and wild-type (WT) FVB mice and Wistar rats were conducted to characterize the preclinical properties of a novel selective BCRP inhibitor (ML753286, a Ko143 analog). 3. ML753286 is a potent inhibitor for BCRP, but not for P-glycoprotein (P-gp), organic anion-transporting polypeptide (OATP) or major cytochrome P450s (CYPs). It has high permeability, but is not an efflux transporter substrate. ML753286 has low to medium clearance in rodent and human liver S9 fractions, and is stable in plasma cross species. Bcrp inhibition affects oral absorption and clearance of sulfasalazine in rodents. A single dose of ML753286 at 50-300 mg/kg orally, and at 20 mg/kg intravenously or 25 mg/kg orally inhibits Bcrp functions in mice and rats, respectively. 4. These findings confirm that ML753286 is a useful selective inhibitor to evaluate BCRP/Bcrp activity in vitro and in rodent model systems.
Collapse
Affiliation(s)
- Mingxiang Liao
- a Department of Drug Metabolism and Pharmacokinetics , Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Bei-Ching Chuang
- a Department of Drug Metabolism and Pharmacokinetics , Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Qing Zhu
- a Department of Drug Metabolism and Pharmacokinetics , Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Yuexian Li
- a Department of Drug Metabolism and Pharmacokinetics , Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Emily Guan
- a Department of Drug Metabolism and Pharmacokinetics , Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Shaoxia Yu
- a Department of Drug Metabolism and Pharmacokinetics , Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Johnny Yang
- a Department of Drug Metabolism and Pharmacokinetics , Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Shimoga Prakash
- a Department of Drug Metabolism and Pharmacokinetics , Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| | - Cindy Q Xia
- a Department of Drug Metabolism and Pharmacokinetics , Takeda Pharmaceuticals International Co , Cambridge , MA , USA
| |
Collapse
|
6
|
Momper JD, Tsunoda SM, Ma JD. Evaluation of Proposed In Vivo Probe Substrates and Inhibitors for Phenotyping Transporter Activity in Humans. J Clin Pharmacol 2016; 56 Suppl 7:S82-98. [DOI: 10.1002/jcph.736] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 02/23/2016] [Accepted: 03/07/2016] [Indexed: 01/10/2023]
Affiliation(s)
- Jeremiah D. Momper
- University of California, San Diego; Skaggs School of Pharmacy & Pharmaceutical Sciences; La Jolla CA USA
| | - Shirley M. Tsunoda
- University of California, San Diego; Skaggs School of Pharmacy & Pharmaceutical Sciences; La Jolla CA USA
| | - Joseph D. Ma
- University of California, San Diego; Skaggs School of Pharmacy & Pharmaceutical Sciences; La Jolla CA USA
| |
Collapse
|
7
|
Methotrexate influx via folate transporters into alveolar epithelial cell line A549. Drug Metab Pharmacokinet 2015; 30:276-81. [PMID: 26190800 DOI: 10.1016/j.dmpk.2015.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/22/2015] [Accepted: 04/29/2015] [Indexed: 12/31/2022]
Abstract
Methotrexate (MTX), a drug used for the treatment of certain cancers as well as rheumatoid arthritis, sometimes induces serious interstitial lung injury. Although lung toxicity of MTX is related to its accumulation, the information concerning MTX transport in the lungs is lacking. In this study, we investigated the mechanisms underlying MTX influx into human alveolar epithelial cell line A549. MTX influx into A549 cells was time-, pH-, and temperature-dependent and showed saturation kinetics. The influx was inhibited by folic acid with IC50 values of 256.1 μM at pH 7.4 and 1.6 μM at pH 5.5, indicating that the mechanisms underlying MTX influx would be different at these pHs. We then examined the role of two folate transporters in MTX influx, reduced folate carrier (RFC) and proton-coupled folate transporter (PCFT). The expression of RFC and PCFT mRNAs in A549 cells was confirmed by reverse transcription polymerase chain reaction. In addition, MTX influx was inhibited by thiamine monophosphate, an RFC inhibitor, at pH 7.4, and by sulfasalazine, a PCFT inhibitor, at pH 5.5. These results indicated that RFC and PCFT are predominantly involved in MTX influx into A549 cells at pH 7.4 and pH 5.5, respectively.
Collapse
|
8
|
Lee CA, O’Connor MA, Ritchie TK, Galetin A, Cook JA, Ragueneau-Majlessi I, Ellens H, Feng B, Taub ME, Paine MF, Polli JW, Ware JA, Zamek-Gliszczynski MJ. Breast Cancer Resistance Protein (ABCG2) in Clinical Pharmacokinetics and Drug Interactions: Practical Recommendations for Clinical Victim and Perpetrator Drug-Drug Interaction Study Design. Drug Metab Dispos 2015; 43:490-509. [DOI: 10.1124/dmd.114.062174] [Citation(s) in RCA: 96] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
9
|
Structure and function of BCRP, a broad specificity transporter of xenobiotics and endobiotics. Arch Toxicol 2014; 88:1205-48. [DOI: 10.1007/s00204-014-1224-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Accepted: 03/06/2014] [Indexed: 12/20/2022]
|
10
|
Cannabidiol enhances xenobiotic permeability through the human placental barrier by direct inhibition of breast cancer resistance protein: an ex vivo study. Am J Obstet Gynecol 2013; 209:573.e1-573.e15. [PMID: 23933222 DOI: 10.1016/j.ajog.2013.08.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 07/29/2013] [Accepted: 08/05/2013] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Drugs of abuse affect pregnancy outcomes, however, the mechanisms in which cannabis exerts its effects are not well understood. The aim of this study was to examine the influence of short-term (1-2 hours) exposure to cannabidiol, a major phytocannabinoid, on human placental breast cancer resistance protein function. STUDY DESIGN The in vitro effect of short-term exposure to cannabidoil on breast cancer resistance protein in BeWo and Jar cells (MCF7/P-gp cells were used for comparison) was tested with mitoxantrone uptake, and nicardipine was used as positive control. The ex vivo perfused cotyledon system was used for testing the effect of cannabidoil on glyburide transport across the placenta. Glyburide (200 ng/mL) was introduced to maternal and fetal compartments through a recirculating 2 hour perfusion, and its transplacental transport was tested with (n = 8) or without (n = 8) cannabidoil. RESULTS (1) Cannabidoil inhibition of breast cancer resistance protein-dependent mitoxantrone efflux was concentration dependent and of a noncell type specific nature (P < .0001); (2) In the cotyledon perfusion assay, the administration of cannabidoil to the maternal perfusion media increased the female/male ratio of glyburide concentrations (1.3 ± 0.1 vs 0.8 ± 0.1 at 120 minutes of perfusion, P < .001). CONCLUSION (1) Placental breast cancer resistance protein function is inhibited following even a short-term exposure to cannabidoil; (2) the ex vivo perfusion assay emphasize this effect by increased placental penetration of glyburide to the fetal compartment; and (3) these findings suggest that marijuana consumption enhances placental barrier permeability to xenobiotics and could endanger the developing fetus. Thus, the safety of drugs that are breast cancer resistance protein substrates is questionable during cannabis consumption by pregnant women.
Collapse
|