1
|
Vadas PA, Stock MN, Feyereisen GW, Arriaga FJ, Good LW, Karthikeyan KG. Temperature and Manure Placement in a Snowpack Affect Nutrient Release from Dairy Manure during Snowmelt. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:848-855. [PMID: 30025035 DOI: 10.2134/jeq2017.12.0464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Agricultural nutrient management is an issue due to N and P losses from fields and water quality degradation. Better information is needed on the risk of nutrient loss in runoff from dairy manure applied in winter. We investigated the effect of temperature on nutrient release from liquid and semisolid manure to water, and of manure quantity and placement within a snowpack on nutrient release to melting snow. Temperature did not affect manure P and NH-N release during water extraction. Manure P release, but not NH-N release, was significantly influenced by the water/manure solids extraction ratio. During snowmelt, manure P release was not significantly affected by manure placement in the snowpack, and the rate of P release decreased as application rate increased. Water extraction data can reliably estimate P release from manure during snowmelt; however, snowmelt water interaction with manure of greater solids content and subsequent P release appears incomplete compared with liquid manures. Manure NH-N released during snowmelt was statistically the same regardless of application rate. For the semisolid manure, NH-N released during snowmelt increased with the depth of snow covering it, most likely due to reduced NH volatilization. For the liquid manure, there was no effect of manure placement within the snowpack on NH-N released during snowmelt. Water extraction data can also reliably estimate manure NH-N release during snowmelt as long as NH volatilization is accounted for with liquid manures for all placements in a snowpack and semisolid manures applied on top of snow.
Collapse
|
2
|
Sharpley A, Kleinman P, Baffaut C, Beegle D, Bolster C, Collick A, Easton Z, Lory J, Nelson N, Osmond D, Radcliffe D, Veith T, Weld J. Evaluation of Phosphorus Site Assessment Tools: Lessons from the USA. JOURNAL OF ENVIRONMENTAL QUALITY 2017; 46:1250-1256. [PMID: 29293829 DOI: 10.2134/jeq2016.11.0427] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Critical source area identification through phosphorus (P) site assessment is a fundamental part of modern nutrient management planning in the United States, yet there has been only sparse testing of the many versions of the P Index that now exist. Each P site assessment tool was developed to be applicable across a range of field conditions found in a given geographic area, making evaluation extremely difficult. In general, evaluation with in-field monitoring data has been limited, focusing primarily on corroborating manure and fertilizer "source" factors. Thus, a multiregional effort (Chesapeake Bay, Heartland, and Southern States) was undertaken to evaluate P Indices using a combination of limited field data, as well as output from simulation models (i.e., Agricultural Policy Environmental eXtender, Annual P Loss Estimator, Soil and Water Assessment Tool [SWAT], and Texas Best Management Practice Evaluation Tool [TBET]) to compare against P Index ratings. These comparisons show promise for advancing the weighting and formulation of qualitative P Index components but require careful vetting of the simulation models. Differences among regional conclusions highlight model strengths and weaknesses. For example, the Southern States region found that, although models could simulate the effects of nutrient management on P runoff, they often more accurately predicted hydrology than total P loads. Furthermore, SWAT and TBET overpredicted particulate P and underpredicted dissolved P, resulting in correct total P predictions but for the wrong reasons. Experience in the United States supports expanded regional approaches to P site assessment, assuming closely coordinated efforts that engage science, policy, and implementation communities, but limited scientific validity exists for uniform national P site assessment tools at the present time.
Collapse
|
3
|
do Nascimento CAC, Pagliari PH, Schmitt D, He Z, Waldrip H. Phosphorus Concentrations in Sequentially Fractionated Soil Samples as Affected by Digestion Methods. Sci Rep 2015; 5:17967. [PMID: 26647644 PMCID: PMC4673694 DOI: 10.1038/srep17967] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/10/2015] [Indexed: 11/09/2022] Open
Abstract
Sequential fractionation has helped improving our understanding of the lability and bioavailability of P in soil. Nevertheless, there have been no reports on how manipulation of the different fractions prior to analyses affects the total P (TP) concentrations measured. This study investigated the effects of sample digestion, filtration, and acidification on the TP concentrations determined by ICP-OES in 20 soil samples. Total P in extracts were either determined without digestion by ICP-OES, or ICP-OES following block digestion, or autoclave digestion. The effects of sample filtration, and acidification on undigested alkaline extracts prior to ICP-OES were also evaluated. Results showed that, TP concentrations were greatest in the block-digested extracts, though the variability introduced by the block-digestion was the highest. Acidification of NaHCO3 extracts resulted in lower TP concentrations, while acidification of NaOH randomly increased or decreased TP concentrations. The precision observed with ICP-OES of undigested extracts suggests this should be the preferred method for TP determination in sequentially extracted samples. Thus, observations reported in this work would be helpful in appropriate sample handling for P determination, thereby improving the precision of P determination. The results are also useful for literature data comparison and discussion when there are differences in sample treatments.
Collapse
Affiliation(s)
- Carlos A C do Nascimento
- Department of Soil Science, Luiz de Queiroz College of Agriculture, University of Sao Paulo, Av. Padua Dias, 11, Piracicaba SP, 13418-900, Brazil
| | - Paulo H Pagliari
- Department of Soil, Water, and Climate, University of Minnesota, Southwest Research and Outreach Center, 23669 130th St. Lamberton, MN 56152
| | | | - Zhongqi He
- USDA-ARS, Southern Regional Research Center, New Orleans, LA 70124
| | - Heidi Waldrip
- USDA-ARS, Conservation and Production Research Laboratory, Bushland, TX 79012
| |
Collapse
|
4
|
Sen S, Srivastava P, Vadas PA, Kalin L. Watershed-level comparison of predictability and sensitivity of two phosphorus models. JOURNAL OF ENVIRONMENTAL QUALITY 2012; 41:1642-1652. [PMID: 23099956 DOI: 10.2134/jeq2011.0242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Buildup of phosphorus (P) in agricultural soils and transport of P to nearby surface waters due to excessive, long-term application of poultry litter is an environmental concern in many poultry-producing states. Watershed models are often used to quantify soil and water quality impacts of poultry litter applications. However, depending on how P transport is simulated in watershed models, the anticipated impact could be quite different. The objective of this study was to determine the predictability and sensitivity of the Soil and Water Assessment Tool (SWAT) P model and a newly developed, state-of-the-art manure P model called SurPhos in a poultry litter-applied pasture watershed. A small, predominantly agricultural watershed in Randolph County, Alabama was used for this study. The SWAT model, calibrated for surface runoff and total stream flows (Nash-Sutcliffe coefficient of 0.70 for both), was used to provide runoff inputs to the SurPhos model. Total dissolved P (TDP) exports simulated by the SWAT P and SurPhos models from the hay hydrological response units of the watershed were compared for different poultry litter application rates and different initial soil Solution P levels. Both models showed sensitivity to poultry litter application rates, with SWAT simulating linear and SurPhos simulating nonlinear increases in TDP exports with increase in poultry litter application rates. SWAT showed greater sensitivity to initial soil Solution P levels, which can lead to overestimation of TDP exports, especially at low poultry litter application rates. As opposed to the SurPhos model simulations and contrary to recent studies, SWAT simulated excessive accumulation of Solution P in the top 10 mm of soil. Because SurPhos appears to simulate P transport and build-up processes from manure-applied areas more accurately, this study suggests that SWAT be replaced by SurPhos to more accurately determine watershed-level effectiveness of P management measures.
Collapse
Affiliation(s)
- Sumit Sen
- Department of Hdrology, Indian Institute of Technology, Roorkee, Uttarakhand, India.
| | | | | | | |
Collapse
|
5
|
Makris KC, Sarkar D, Salazar J, Punamiya P, Datta R. Alternative amendment for soluble phosphorus removal from poultry litter. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2010; 17:195-202. [PMID: 19340471 DOI: 10.1007/s11356-009-0132-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2008] [Accepted: 01/31/2009] [Indexed: 05/27/2023]
Abstract
BACKGROUND, AIM, AND SCOPE Alum (aluminum sulfate) is the currently preferred chemical amendment for phosphorus (P) treatment in poultry litter (PL). Aluminum-based drinking-water treatment residuals (Al-WTRs) are the waste by-product of the drinking-water treatment process and have been effectively used to remove P from aqueous solutions, but their effectiveness in PL water extracts has not been studied in detail. Elevated cost associated with alum could be minimized by using the equally effective WTRs to remove soluble P from PL, and they can be obtained at a minimal cost from drinking-water treatment plants. MATERIALS AND METHODS We set up batch and incubation experiments to determine: (1) the effect of WTR amendment rates on PL water-extractable P (WEP) concentrations and (2) the effects of incubation time, pH, and temperature on WEP concentrations of WTR-amended PL. RESULTS Removal of PL-soluble P by the WTR was biphasic, showing an initial fast reaction (60% removal within 10 min) followed by a slower reaction that was completed within 12 days (90% removal). Phosphorus removal by the WTR was unaffected by pH changes in the range of 3-8. Incubation experiments showed that all WTR rates (2.5-15 wt.%) significantly (p < 0.001) lowered WEP concentrations in PL to approximately 40% of the unamended PL (no WTR) at 23 degrees C. DISCUSSION Minimal reduction (20% of the unamended PL) in WEP concentrations for all WTR rates were observed up to 18 days, possibly due to P diffusion limitations. Increasing the temperature to 35 degrees C resulted in overcoming such diffusion limitations by increasing P removal rate of reaction. CONCLUSIONS Assuming year-round availability of adequate quantities in nearby drinking-water treatment plants, WTR may be a cost-effective treatment to reduce P availability in poultry litter. RECOMMENDATIONS AND PERSPECTIVES Field experiments are greatly needed in order to demonstrate the excellent performance of WTR in this laboratory-based study to remove soluble P concentrations in animal waste.
Collapse
Affiliation(s)
- Konstantinos C Makris
- International Institute for the Environment and Public Health in association with Harvard School of Public Health, Nicosia, 1105, Cyprus.
| | | | | | | | | |
Collapse
|
6
|
Pillai UPP, Manoharan V, Lisle A, Li X, Bryden W. Phytase supplemented poultry diets affect soluble phosphorus and nitrogen in manure and manure-amended soil. JOURNAL OF ENVIRONMENTAL QUALITY 2009; 38:1700-1708. [PMID: 19549947 DOI: 10.2134/jeq2008.0236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Understanding P and N dynamics in manure-amended soil is essential for estimating the environmental impact of manure utilization in land applications. A laboratory incubation study was conducted to assess, (i) the effect of feeding a standard Australian commercial diet, and diets modified with phytase supplementation and reduced nonphytase phosphorus (NPP), on the concentrations of P and N (total and soluble) in the manure derived from layer hens (Gallus domesticus L.), and (ii) the change in water-soluble phoshorus (P(WSP)) and mineral N (NH(4)-N and NO(3)-N) when used as a soil amendment, applied at rates equivalent to 200 kg ha(-1) (200N) and 400 kg ha(-1) (400N). Phytase supplementation increased %P(WSP) by 8 to 12% in the manures, regardless of the levels of NPP in the diets, and in the manure-amended soils by 27 to 30% at the 200N application rate, and up to 54% at the 400N rate. Phytase significantly (P < 0.05) reduced total nitrogen (TN) content (by 12-31%) of the manures but generally produced greater nitrate accumulation in the manure-amended soils. Net nitrification, which commenced 4 wk after incubation, was accompanied by a simultaneous decrease in soil pH (by one pH unit) and a concomitant decline in %P(WSP). The decline in %P(WSP) was primarily attributed to P retention by the soil as it became more acidic. This study suggests that phytase addition not only reduces manure total N content, and increases water-soluble P, but its effects on manure total phosphorus (TP) and 2 mol L(-1) KCl extractable mineral N is influenced by the NPP level in the diet.
Collapse
Affiliation(s)
- Usha P P Pillai
- Centre for Mined Land Rehabilitation, The Univ. of Queensland, St. Lucia, Qld. 4072, Australia.
| | | | | | | | | |
Collapse
|
7
|
Hanrahan LP, Jokela WE, Knapp JR. Dairy diet phosphorus and rainfall timing effects on runoff phosphorus from land-applied manure. JOURNAL OF ENVIRONMENTAL QUALITY 2009; 38:212-217. [PMID: 19141811 DOI: 10.2134/jeq2007.0672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Surface-applied dairy manure can increase P concentrations in runoff, which may contribute to eutrophication of lakes and streams. The amount of dietary P fed to dairy cows (Bos taurus) and the timing of a rain event after manure application may further affect runoff P losses. The objective of this study was to examine dietary P supplementation effects on manure and runoff P concentrations from rain events occurring at different time intervals after manure application. Manure from dairy cows fed an unsupplemented low P diet (LP; 3.6 g P kg(-1)) or a diet supplemented with either an inorganic (HIP; 4.4 g P kg(-1)) or an organic (HOP; 4.6 g P kg(-1)) source was hand-applied onto soil-packed pans at 56 wet Mg ha(-1). Thirty min of runoff was collected from simulated rain events (30 mm h(-1)) 2, 5, or 9 d after manure application. Total P (TP) concentrations in runoff from HIP and HOP diet manure from the 2-d rain were 46 and 31% greater than that of the LP diet. Runoff P concentrations from high P diets were numerically higher than that of the LP diet at 5 and 9 d after application, but differences were significant only for dissolved reactive P (DRP) at 5 d. Large decreases in runoff TP (89%) and DRP (65%) concentrations occurred with delay of rainfall from 2 d until 5 d. The proportion of TP as DRP increased as the time between manure application and runoff increased. Results showed that reducing dietary P and extending the time between manure application and a rain event can significantly reduce concentrations of TP and DRP in runoff.
Collapse
Affiliation(s)
- Laura P Hanrahan
- Vermont Agency of Agriculture, Food, and Markets, Montpelier, VT, USA
| | | | | |
Collapse
|
8
|
He Z, Cade-Menun BJ, Toor GS, Fortuna AM, Honeycutt CW, Sims JT. Comparison of phosphorus forms in wet and dried animal manures by solution phosphorus-31 nuclear magnetic resonance spectroscopy and enzymatic hydrolysis. JOURNAL OF ENVIRONMENTAL QUALITY 2007; 36:1086-95. [PMID: 17526888 DOI: 10.2134/jeq2006.0549] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Both enzymatic hydrolysis and solution (31)P nuclear magnetic resonance (NMR) spectroscopy have been used to characterize P compounds in animal manures. In this study, we comparatively investigated P forms in 0.25 M NaOH/0.05 M EDTA extracts of dairy and poultry manures by the two methods. For the dairy manure, enzymatic hydrolysis revealed that the majority of extracted P was inorganic P (56%), with 10% phytate-like P, 9% simple monoester P, 6% polynucleotide-like P, and 18% non-hydrolyzable P. Similar results were obtained by NMR spectroscopy, which showed that inorganic P was the major P fraction (64-73%), followed by 6% phytic acid, 14 to 22% other monoesters, and 7% phosphodiesters. In the poultry manure, enzymatic hydrolysis showed that inorganic P was the largest fraction (71%), followed by 15% phytate-like P and 1% other monoesters, and 3% polynucleotide-like P. NMR spectroscopy revealed that orthophosphate was 51 to 63% of extracted P, phytic acid 24 to 33%, other phosphomonoesters 6 to 12%, and phospholipids and DNA 2% each. Drying process increased orthophosphate (8.4% of total P) in dairy manure, but decreased orthophosphate (13.3% of total P) in poultry manure, suggesting that drying treatment caused the hydrolysis of some organic P to orthophosphate in dairy manure, but less recovery of orthophosphate in poultry manure. Comparison of these data indicates that the distribution patterns of major P forms in animal manure determined by the two methods were similar. Researchers can utilize the method that best fits their specific research goals or use both methods to obtain a full spectrum of manure P characterization.
Collapse
Affiliation(s)
- Zhongqi He
- USDA-ARS, New England Plant, Soil, and Water Lab., Orono, ME 04469, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Vadas PA, Gburek WJ, Sharpley AN, Kleinman PJA, Moore PA, Cabrera ML, Harmel RD. A model for phosphorus transformation and runoff loss for surface-applied manures. JOURNAL OF ENVIRONMENTAL QUALITY 2007; 36:324-32. [PMID: 17215242 DOI: 10.2134/jeq2006.0213] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Agricultural P transport in runoff is an environmental concern. An important source of P runoff is surface-applied, unincorporated manures, but computer models used to assess P transport do not adequately simulate P release and transport from surface manures. We developed a model to address this limitation. The model operates on a daily basis and simulates manure application to the soil surface, letting 60% of manure P infiltrate into soil if manure slurry with less than 15% solids is applied. The model divides manure P into four pools, water-extractable inorganic and organic P, and stable inorganic and organic P. The model simulates manure dry matter decomposition, and manure stable P transformation to water-extractable P. Manure dry matter and P are assimilated into soil to simulate bioturbation. Water-extractable P is leached from manure when it rains, and a portion of leached P can be transferred to surface runoff. Eighty percent of manure P leached into soil by rain remains in the top 2 cm, while 20% leaches deeper. This 2-cm soil layer contributes P to runoff via desorption. We used data from field studies in Texas, Pennsylvania, Georgia, and Arkansas to build and validate the model. Validation results show the model accurately predicted cumulative P loads in runoff, reflecting successful simulation of the dynamics of manure dry matter, manure and soil P pools, and storm-event runoff P concentrations. Predicted runoff P concentrations were significantly related to (r2=0.57) but slightly less than measured concentrations. Our model thus represents an important modification for field or watershed scale models that assess P loss from manured soils.
Collapse
Affiliation(s)
- P A Vadas
- USDA-ARS, U.S. Dairy Forage Research Center, 1925 Linden Drive West, Madison, WI 53706, USA.
| | | | | | | | | | | | | |
Collapse
|