1
|
Fazal A, Yang M, Han H, Lu G, Hao C, Lai X, Song Y, Ma H, Yin T, Qi J, Sun S, Niu K, Wen Z, Yang Y. Impact of dual Bt-transgenic maize (2A7) on soil microbial communities and enzyme activities: A comparative study with control variety Z58. ENVIRONMENTAL RESEARCH 2024; 263:120006. [PMID: 39299448 DOI: 10.1016/j.envres.2024.120006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 09/10/2024] [Accepted: 09/13/2024] [Indexed: 09/22/2024]
Abstract
The impacts of transgenic crops on soil microbiology and fertility are critical in determining their biosafety. While transgenic crops can alter soil microbes, their effects are often context-dependent; therefore, the ecological importance of these changes remains a topic of ongoing research. Using high-throughput sequencing, we investigated the effects of Bacillus thuringiensis (Bt) maize expressing the mcry1Ab and mcry2Ab genes (2A7) on soil nutrient dynamics, as well as the diversity and function of soil microbial communities, including bacteria and fungi, within different soil compartments. Our findings revealed a plant-shaped rhizosphere (RS) microbial community as a result of the selective recruitment of microorganisms from the surrounding environment. The transgene insertion had a significant impact on the RS niche, and several species eventually became associated with Z58 and 2A7 plants. For example, Neocosmospora rubicola fungal and Pantoea dispersa bacterial microorganisms were significantly decreased in the dual Bt-transgenic 2A7 rhizosphere but enriched in the Z58 rhizospheres. The activity of soil enzymes such as urease, invertase, and alkaline phosphatase was boosted by Bt-transgenic 2A7. LefSe analysis identified significant bacterial and fungal biomarker species that were responsible for the differential effects of Bt-transgenic 2A7 and control Z58 within rhizosphere soils. Mantel analysis further demonstrated that the root exudates of 2A7 altered nutrient-acquisition enzymes by influencing biomarker taxa. PICRUSt2 functional characterization revealed a significantly higher abundance of the phosphate-starvation-inducible protein in control Z58 than in Bt-transgenic 2A7. Furthermore, taxonomy, alpha (Shannon diversity), and beta diversity analyses all revealed niche-driven microbial profile differentiation. Niche partitioning also had a significant impact on N- and P-related COGs as well. Our findings suggests that Bt-transgenic 2A7 modulates rhizosphere microbial communities by affecting biomarker taxa and soil enzyme activity. These findings will promote sustainable agriculture practices by advancing our knowledge of the ecological effects of Bt crops on soil microbial communities.
Collapse
Affiliation(s)
- Aliya Fazal
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Minkai Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Hongwei Han
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Guihua Lu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
| | - Chenyu Hao
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiaohui Lai
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yuhang Song
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Hanke Ma
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinliang Qi
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Shucun Sun
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Kechang Niu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhongling Wen
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yonghua Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
2
|
Fazal A, Wen Z, Yang M, Wang C, Hao C, Lai X, Jie W, Yang L, He Z, Yang H, Cai J, Qi J, Lu G, Niu K, Sun S, Yang Y. Triple-transgenic soybean in conjunction with glyphosate drive patterns in the rhizosphere microbial community assembly. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122337. [PMID: 37562532 DOI: 10.1016/j.envpol.2023.122337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/23/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Plant roots continuously influence the rhizosphere, which also serves as a recruitment site for microorganisms with desirable functions. The development of genetically engineered (GE) crop varieties has offered unparalleled yield advantages. However, in-depth research on the effects of GE crops on the rhizosphere microbiome is currently insufficient. We used a triple-transgenic soybean cultivar (JD606) that is resistant to insects, glyphosate, and drought, along with its control, ZP661, and JD606 treated with glyphosate (JD606G). Using 16S and ITS rDNA sequencing, their effects on the taxonomy and function of the bacterial and fungal communities in the rhizosphere, surrounding, and bulk soil compartment niches were determined. Alpha diversity demonstrated a strong influence of JD606 and JD606G on bacterial Shannon diversity. Both treatments significantly altered the soil's pH and nitrogen content. Beta diversity identified the soil compartment niche as a key factor with a significant probability of influencing the bacterial and fungal communities associated with soybeans. Further analysis showed that the rhizosphere effect had a considerable impact on bacterial communities in JD606 and JD606G soils but not on fungal communities. Microbacterium, Bradyrhizobium, and Chryseobacterium were found as key rhizobacterial nodes. In addition, the LEfSe analysis identified biomarker taxa with plant-beneficial attributes, demonstrating rhizosphere-driven microbial recruitment. FUNGuild, Bugbase, and FAPROTAX functional predictions showed that ZP661 soils had more plant pathogen-associated microbes, while JD606 and JD606G soils had more stress-tolerance, nitrogen, and carbon cycle-related microbes. Bacterial rhizosphere networks had more intricate topologies than fungal networks. Furthermore, correlation analysis revealed that the bacteria and fungi with higher abundances exhibited varying degrees of positive and negative correlations. Our findings shed new light on the niche partitioning of bacterial and fungal communities in soil. It also indicates that following triple-transgenic soybean cultivation and glyphosate application, plant roots recruit microbes with beneficial taxonomic and functional traits in the rhizosphere.
Collapse
Affiliation(s)
- Aliya Fazal
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhongling Wen
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Minkai Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Changyi Wang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Chenyu Hao
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xiaohui Lai
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wencai Jie
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Liu Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhuoyu He
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Huan Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jinfeng Cai
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Jinliang Qi
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Guihua Lu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China; School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China
| | - Kechang Niu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Shucun Sun
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yonghua Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China; Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
3
|
Ge L, Song L, Wang L, Li Y, Sun Y, Wang C, Chen J, Wu G, Pan A, Wu Y, Quan Z, Li P. Evaluating response mechanisms of soil microbiomes and metabolomes to Bt toxin additions. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130904. [PMID: 36860032 DOI: 10.1016/j.jhazmat.2023.130904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/21/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The accumulation and persistence of Bt toxins in soils from Bt plants and Bt biopesticides may result in environmental hazards such as adverse impacts on soil microorganisms. However, the dynamic relationships among exogenous Bt toxins, soil characteristics, and soil microorganisms are not well understood. Cry1Ab is one of the most commonly used Bt toxins and was added to soils in this study to evaluate subsequent changes in soil physiochemical properties, microbial taxa, microbial functional genes, and metabolites profiles via 16S rRNA gene pyrosequencing, high-throughput qPCR, metagenomic shotgun sequencing, and untargeted metabolomics. Higher additions of Bt toxins led to higher concentrations of soil organic matter (SOM), ammonium (NH+4-N), and nitrite (NO2--N) compared against controls without addition after 100 days of soil incubation. High-throughput qPCR analysis and shotgun metagenomic sequencing analysis revealed that the 500 ng/g Bt toxin addition significantly affected profiles of soil microbial functional genes involved in soil carbon (C), nitrogen (N), and phosphorus (P) cycling after 100 days of incubation. Furthermore, combined metagenomic and metabolomic analyses indicated that the 500 ng/g Bt toxin addition significantly altered low molecular weight metabolite profiles of soils. Importantly, some of these altered metabolites are involved in soil nutrient cycling, and robust associations were identified among differentially abundant metabolites and microorganisms due to Bt toxin addition treatments. Taken together, these results suggest that higher levels of Bt toxin addition can alter soil nutrients, probably by affecting the activities of Bt toxin-degrading microorganisms. These dynamics would then activate other microorganisms involved in nutrient cycling, finally leading to broad changes in metabolite profiles. Notably, the addition of Bt toxins did not cause the accumulation of potential microbial pathogens in soils, nor did it adversely affect the diversity and stability of microbial communities. This study provides new insights into the putative mechanistic associations among Bt toxins, soil characteristics, and microorganisms, providing new understanding into the ecological impacts of Bt toxins on soil ecosystems.
Collapse
Affiliation(s)
- Lei Ge
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Lili Song
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Luyao Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yujie Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yu Sun
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Cui Wang
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Jun Chen
- East China University of Technology, Nanchang 330013, China
| | - Guogan Wu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Aihu Pan
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China
| | - Yunfei Wu
- The College of Bioscience and Biotechnology, Yangzhou University, Yangzhou 225009, China
| | - Zhexue Quan
- School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Peng Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai 201106, China.
| |
Collapse
|
4
|
Yang M, Luo F, Song Y, Ma S, Ma Y, Fazal A, Yin T, Lu G, Sun S, Qi J, Wen Z, Li Y, Yang Y. The host niches of soybean rather than genetic modification or glyphosate application drive the assembly of root-associated microbial communities. Microb Biotechnol 2022; 15:2942-2957. [PMID: 36336802 PMCID: PMC9733649 DOI: 10.1111/1751-7915.14164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/10/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022] Open
Abstract
Plant roots significantly influence soil microbial diversity, and soil microorganisms play significant roles in both natural and agricultural ecosystems. Although the genetically modified (GM) crops with enhanced insect and herbicide resistance are thought to have unmatched yield and stress resistance advantages, thorough and in-depth case studies still need to be carried out in a real-world setting due to the potential effects of GM plants on soil microbial communities. In this study, three treatments were used: a recipient soybean variety Jack, a triple transgenic soybean line JD321, and the glyphosate-treated JD321 (JD321G). Three sampling stages (flowering, seed filling and maturing), as well as three host niches of soybean rhizosphere [intact roots (RT), rhizospheric soil (RS) and surrounding soil (SS)] were established. In comparison to Jack, the rhizospheric soil of JD321G had higher urease activity and lower nitrite reductase at the flowering stage. Different treatments and different sampling stages existed no significant effects on the compositions of microbial communities at different taxonomic levels. However, at the genus level, the relative abundance of three plant growth-promoting fungal genera (i.e. Mortierella, Chaetomium and Pseudombrophila) increased while endophytic bacteria Chryseobacterium and pathogenic bacteria Streptomyces decreased from the inside to the outside of the roots (i.e. RT → RS → SS). Moreover, two bacterial genera, Bradyrhizobium and Ensifer were more abundant in RT than in RS and SS, as well as three species, Agrobacterium radiobacter, Ensifer fredii and Ensifer meliloti, which are closely related to nitrogen-fixation. Furthermore, five clusters of orthologous groups (COGs) associated to nitrogen-fixation genes were higher in RT than in RS, whereas only one COG annotated as dinitrogenase iron-molybdenum cofactor biosynthesis protein was lower. Overall, the results imply that the rhizosphere host niches throughout the soil-plant continuum largely control the composition and function of the root-associated microbiome of triple transgenic soybean.
Collapse
Affiliation(s)
- Minkai Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Fuhe Luo
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Yuchen Song
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Shenglin Ma
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Yudi Ma
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Aliya Fazal
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Tongming Yin
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Guihua Lu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
- School of Life SciencesHuaiyin Normal UniversityHuaianChina
| | - Shucun Sun
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
| | - Jinliang Qi
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Zhongling Wen
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Yongchun Li
- State Key Laboratory of Subtropical Silviculture, College of Environmental and Resource SciencesZhejiang A&F UniversityHangzhouChina
| | - Yonghua Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life SciencesNanjing UniversityNanjingChina
- Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
5
|
Wen Z, Yao W, Han M, Xu X, Wu F, Yang M, Fazal A, Yin T, Qi J, Lu G, Yang R, Song X, Yang Y. Differential assembly of root-associated bacterial and fungal communities of a dual transgenic insect-resistant maize line at different host niches and different growth stages. Front Microbiol 2022; 13:1023971. [PMID: 36246225 PMCID: PMC9557180 DOI: 10.3389/fmicb.2022.1023971] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 09/15/2022] [Indexed: 11/13/2022] Open
Abstract
Transgenic technology has been widely applied to crop development, with genetically modified (GM) maize being the world's second-largest GM crop. Despite the fact that rhizosphere bacterial and fungal populations are critical regulators of plant performance, few studies have evaluated the influence of GM maize on these communities. Plant materials used in this study included the control maize line B73 and the mcry1Ab and mcry2Ab dual transgenic insect-resistant maize line 2A-7. The plants and soils samples were sampled at three growth stages (jointing, flowering, and maturing stages), and the sampling compartments from the outside to the inside of the root are surrounding soil (SS), rhizospheric soil (RS), and intact root (RT), respectively. In this study, the results of alpha diversity revealed that from the outside to the inside of the root, the community richness and diversity declined while community coverage increased. Morever, the different host niches of maize rhizosphere and maize development stages influenced beta diversity according to statistical analysis. The GM maize line 2A-7 had no significant influence on the composition of microbial communities when compared to B73. Compared to RS and SS, the host niche RT tended to deplete Chloroflexi, Gemmatimonadetes and Mortierellomycota at phylum level. Nitrogen-fixation bacteria Pseudomonas, Herbaspirillum huttiense, Rhizobium leguminosarum, and Sphingomonas azotifigens were found to be enriched in the niche RT in comparison to RS and SS, whilst Bacillus was found to be increased and Stenotrophomonas was found to be decreased at the maturing stage as compared to jointing and flowering stages. The nitrogen fixation protein FixH (clusters of orthologous groups, COG5456), was found to be abundant in RT. Furthermore, the pathogen fungus that causes maize stalk rot, Gaeumannomyces radicicola, was found to be abundant in RT, while the beneficial fungus Mortierella hyalina was found to be depleted in RT. Lastly, the abundance of G. radicicola gradually increased during the development of maize. In conclusion, the host niches throughout the soil-plant continuum rather than the Bt insect-resistant gene or Bt protein secretion were primarily responsible for the differential assembly of root-associated microbial communities in GM maize, which provides the theoretical basis for ecological agriculture.
Collapse
Affiliation(s)
- Zhongling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Weixuan Yao
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Mi Han
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xinhong Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Fengci Wu
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Minkai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Tongming Yin
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Jinliang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Guihua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
- School of Life Sciences, Huaiyin Normal University, Huaian, China
| | - Rongwu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xinyuan Song
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Agro-Biotechnology Research Institute, Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yonghua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, Institute for Plant Molecular Biology, School of Life Sciences, Nanjing University, Nanjing, China
- Co-innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
6
|
Assessing Impacts of Transgenic Plants on Soil Using Functional Indicators: Twenty Years of Research and Perspectives. PLANTS 2022; 11:plants11182439. [PMID: 36145839 PMCID: PMC9503467 DOI: 10.3390/plants11182439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/23/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Assessment of the effects of transgenic plants on microbiota and soil fertility is an important part of the overall assessment of their biosafety. However, the environmental risk assessment of genetically modified plants has long been focused on the aboveground effects. In this review, we discuss the results of two decades of research on the impact of transgenic plants on the physicochemical properties of soil, its enzyme activities and microbial biomass. These indicators allow us to assess both the short-term effects and long-term effects of cultivating transgenic plants. Most studies have shown that the effect of transgenic plants on the soil is temporary and inconsistent. Moreover, many other factors, such as the site location, weather conditions, varietal differences and management system, have a greater impact on soil quality than the transgenic status of the plants. In addition to the effects of transgenic crop cultivation, the review also considers the effects of transgenic plant residues on soil processes, and discusses the future prospects for studying the impact of genetically modified plants on soil ecosystems.
Collapse
|
7
|
Lv N, Liu Y, Guo T, Liang P, Li R, Liang P, Gao X. The influence of Bt cotton cultivation on the structure and functions of the soil bacterial community by soil metagenomics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113452. [PMID: 35366565 DOI: 10.1016/j.ecoenv.2022.113452] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 03/19/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Bt cotton successfully controlled major devastating pests in cotton,such as Helicoverpa armigera and Spodoptera exigua, and led to a drastic decrease in insecticide use in cotton fields, and it has been grown commercially worldwide. However, Bt cotton cultivation left Bt toxin residues in the soil, resulting in a response by its microbiome that caused potential environmental risks. In this research, the metagenomics analysis was performed to investigate the structure and functions of the soil bacterial community in the Bt cotton field from the Binzhou, Shandong province of China, where the Bt cotton has been cultivated for over fifteen years. Analysis of the function genes proved that the receptors of Bt toxins were absent in the soil bacteria and Bt toxins failed to target the soil bacteria. The microbiome structure and function were highly influenced by Bt cotton cultivation, however, no significant change in the total abundance of the bacteria was observed. Proteobacteria was the largest taxonomic group in the soil bacterial (42-52%) and its abundance was significantly increased after Bt cotton cultivation. The increase of Proteobacteria abundance resulted in an increase in ABC transporters gene abundance, indicating the improved ability of detoxification metabolism over Bt cotton cultivation. Xanthomonadales could be a biomarker of the Bt cotton group, whose abundance was significantly increased to contribute to the increase of the genes abundance in ABC transporters. The abundance of apoptosis genes was significantly decreased, and it might be related to the increase of Proteobacteria abundance by Bt cotton cultivation. In addition, Myxococcales was responsible for carotenoid biosynthesis, whoes genes abundance was significantly decreased due to the decrease of Myxococcales abundance by Bt cotton cultivation. These changes in soil bacterial community structure and functions indicate the influence by Bt cotton cultivation, leading to an understanding of the bacteria colonization patterns due to successive years of Bt cotton cultivation. These research results should be significant for the rational risk assessment of Bt cotton cultivation.
Collapse
Affiliation(s)
- Nannan Lv
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Ying Liu
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Tianfeng Guo
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Pingzhuo Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Ren Li
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Pei Liang
- Department of Entomology, China Agricultural University, Beijing 100193, China
| | - Xiwu Gao
- Department of Entomology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
8
|
Liu J, Liang YS, Hu T, Zeng H, Gao R, Wang L, Xiao YH. Environmental fate of Bt proteins in soil: Transport, adsorption/desorption and degradation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112805. [PMID: 34592526 DOI: 10.1016/j.ecoenv.2021.112805] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/05/2021] [Accepted: 09/16/2021] [Indexed: 05/26/2023]
Abstract
During the production and application of Bacillus thuringiensis (Bt) transgenic crops, large doses of insecticidal Bt toxic proteins are expressed continuously. The multi-interfacial behaviors of Bt proteins entering the environment in multi-media affects their states of existence transformation, transport and fate as well as biological and ecological impacts. Because both soil matrix and organisms will be exposed to Bt proteins to a certain extent, knowledge of the multi-interfacial behaviors and affecting factors of Bt proteins are vital not only for understanding the source-sink distribution mechanisms, predicting their bio-availability, but also for exploring the soil safety and environmental problems caused by the interaction between Bt proteins and soil matrix. This review summarized and analyzed various internal and external factors that affect the adsorption/ desorption and degradation of Bt proteins in the environment, so as to understand the multi-interfacial behaviors of Bt proteins. In addition, the reasons of concentration changes of Bt proteins in soil are discussed. This review will also discuss the existing knowledge of the combined effects of Bt proteins and other pollutants in environment. Finally, discussing the factors that should be considered when assessing the environmental risk of Bt proteins, thus to further improve the understanding of the environmental fate of Bt proteins.
Collapse
Affiliation(s)
- Jiao Liu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Yun-Shan Liang
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China; College of Bioscience and Biotechnology, Hunan Agricultural University and Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China.
| | - Teng Hu
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Hong Zeng
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Rong Gao
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China; College of Bioscience and Biotechnology, Hunan Agricultural University and Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| | - Li Wang
- College of Resources and Environment, Hunan Agricultural University and Hunan Provincial Key Laboratory of Rural Ecosystem Health in Dongting Lake Area, Changsha 410128, PR China
| | - Yun-Hua Xiao
- College of Bioscience and Biotechnology, Hunan Agricultural University and Hunan Engineering Laboratory for Pollution Control and Waste Utilization in Swine Production, Changsha 410128, PR China
| |
Collapse
|
9
|
Fazal A, Wen Z, Yang M, Liao Y, Fu J, He C, Wang X, Jie W, Ali F, Hu D, Yin T, Hong Z, Lu G, Qi J, Yang Y. Deciphering the rhizobacterial assemblages under the influence of genetically engineered maize carrying mcry genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:60154-60166. [PMID: 34151402 DOI: 10.1007/s11356-021-14901-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Genetically engineered (GE) maize has been thoroughly studied regarding its agro-environmental impact; however, its concerns for the soil environment remain. This work was aimed to decode rhizosphere microbe interactions and potential ecological hazards associated with GE maize. Rhizobacterial communities of field grown transgenic insect-resistant 2A5 maize carrying mcry1Ab and mcry2Ab genes were compared with control Z58 using PacBio sequencing platform. Also full-length 16S rDNA gene sequencing was used to verify the partial (V3-V4) sequencing results obtained in 2017. Measures of α-diversity displayed transgenic 2A5 to be significantly lower in species richness at the flowering stage; however, diversity remained undisturbed. β-diversity was least affected by genetic modifications where similar community profiles were shared by transgenic 2A5 and control Z58. In addition, root exudation patterns were found to drive variations in bacterial assemblages based on developmental stages. For example, genus Massilia successfully colonized the rhizosphere at jointing stage, while Mucilaginobacter showed higher relative abundance in flowering stages of both 2A5 and Z58. These members are known to possess attributes related to plant growth. The impact of dual-transgene insertion on nifH gene abundance was also analyzed where no apparent significant difference in nifH gene copy number was observed. Our results confirmed that full-length 16S rDNA sequencing was sufficient to provide higher taxonomic resolution. Also, results of our 2-year field trials confirmed that there is no significant impact of mcry gene integration on belowground biomasses. Therefore, GE insect-resistant 2A5 maize carrying mcry1Ab and mcry2Ab genes can continue to benefit human populations by increasing crop productivity. In future, further research needs to be catalyzed to analyze the impact of Bt-insertion on microbial community structure across the years for ecosystem sustainability.
Collapse
Affiliation(s)
- Aliya Fazal
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Zhongling Wen
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Minkai Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Yonghui Liao
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Jiangyan Fu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Cong He
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Xuan Wang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Wencai Jie
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Farman Ali
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Dongqing Hu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Tongming Yin
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China
| | - Zhi Hong
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China
| | - Guihua Lu
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- School of Life Sciences, Huaiyin Normal University, Huaian, 223300, China.
| | - Jinliang Qi
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| | - Yonghua Yang
- Institute for Plant Molecular Biology, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, China.
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, 210037, China.
| |
Collapse
|
10
|
Riaz Marral MW, Khan MB, Ahmad F, Farooq S, Hussain M. The influence of transgenic (Bt) and non-transgenic (non-Bt) cotton mulches on weed dynamics, soil properties and productivity of different winter crops. PLoS One 2020; 15:e0238716. [PMID: 32886700 PMCID: PMC7473575 DOI: 10.1371/journal.pone.0238716] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/22/2020] [Indexed: 01/18/2023] Open
Abstract
The introduction of transgenic cotton (Bt-cotton) for controlling bollworms has resulted in increased production; however, the residual effects of mulches from Bt-cotton are poorly understood. Therefore, the current study evaluated the impact of Bt and non-Bt cotton mulches on soil properties, weed dynamics and yield of winter crops sown after cotton. Three different winter crops, i.e., wheat (Triticum aestivum L.), canola (Brassica napus L.) and Egyptian clover (Trifolium alexandrinum L.) and two mulch types, i.e., Bt mulch (obtained from Bt-cotton cultivars, i.e., 'CIM-616' and 'GH-Mubarik') and non-Bt mulch (obtained from non-Bt cultivars, i.e., 'CIM-620' and 'N-414') were included in the study. The mulches were applied at a rate of 2 t ha-1 before planting the winter crops. The Bt and non-Bt mulches differentially affected soil properties, weed dynamics and productivity of winter crops. The non-Bt mulches decreased the soil bulk density and penetration resistance, while increased the soil porosity. Wheat crop increased the soil porosity, pH, available N and soil organic matter content. Overall, non-Bt mulches improved the productivity of winter crops compared with Bt mulches. The toxins released by Bt mulches lowered the weed density; however, it negatively influenced soil properties (bulk density and available nitrogen) and productivity of winter crops. Therefore, appropriate crop rotation measures may be opted for the soils cultivated with Bt-cotton to conserve soil and achieve yield sustainability for the crops sown after cotton. Nonetheless, non-Bt mulches can be used for improving soil properties and productivity of winter crops.
Collapse
Affiliation(s)
| | | | - Fiaz Ahmad
- Physiology/Chemistry Section, Central Cotton Research Institute, Multan, Pakistan
| | - Shahid Farooq
- Department of Agronomy, Ghazi University, Dera Ghazi Khan, Pakistan
| | - Mubshar Hussain
- Department of Agronomy, Bahauddin Zakariya University, Multan, Pakistan
- Agriculture Discipline, College of Science, Health, Engineering and Education, Murdoch University, Murdoch, WA, Australia
| |
Collapse
|
11
|
Londoño DMM, Meyer E, da Silva KJ, Hernández AG, de Armas RD, Soares LM, Stürmer SL, Nodari RO, Soares CRFS, Lovato PE. Root colonization and arbuscular mycorrhizal fungal community composition in a genetically modified maize, its non-modified isoline, and a landrace. MYCORRHIZA 2020; 30:611-621. [PMID: 32556837 DOI: 10.1007/s00572-020-00969-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/02/2020] [Indexed: 06/11/2023]
Abstract
The use of genetically modified (GM) plants has increased in recent decades, but there are uncertainties about their effects on soil microbial communities. Aiming to quantify root colonization and characterize arbuscular mycorrhizal fungi (AMF) communities associated with roots and rhizosphere soil of different maize genotypes, a field trial was carried out in Southern Brazil with three maize genotypes as follows: a GM hybrid (DKB 240 VTPRO), its non-modified isoline (DKB 240), and a landrace (Pixurum). Soil samples were collected to evaluate the occurrence of AMF during the growth of corn genotypes at sowing and V3 (vegetative), R1 (flowering), and R3 (grain formation) stages of the crop. The occurrence of AMF was determined by the morphological identification of spores, and by analyzing AMF community composition in soil and roots of maize, using PCR-DGGE. The GM genotype of maize promoted lower mycorrhizal colonization in the vegetative stage and had lower sporulation at grain development than the conventional hybrid and the landrace maize. Twenty AMF morphotypes were identified and 13 were associated with all maize genotypes. The genera Acaulospora, Glomus, and Dentiscutata had the largest numbers of species. There were no differences in AMF community composition due to maize genotypes or genetic modification, but crop phenological stages affected AMF communities associated with maize roots.
Collapse
Affiliation(s)
- Diana Marcela Morales Londoño
- Departamento de Engenharia Rural, Centro de Ciências Agrarias, Universidade Federal de Santa Catarina. Rodovia Admar Gonzaga, 1346, Florianópolis, Santa Catarina, CEP: 88034-001, Brazil
| | - Edenilson Meyer
- Departamento de Engenharia Rural, Centro de Ciências Agrarias, Universidade Federal de Santa Catarina. Rodovia Admar Gonzaga, 1346, Florianópolis, Santa Catarina, CEP: 88034-001, Brazil
| | - Kelly Justin da Silva
- Centro Universitário Católica de Santa Catarina - Joinville, Campus Joinville. Rua Visconde de Taunay 427, Joinville, Santa Catarina, CEP 89203-005, Brazil
| | - Anabel González Hernández
- Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina. Campus Reitor João David Ferreira Lima, Florianópolis, Santa Catarina, CEP 88040-900, Brazil
| | - Rafael Dutra de Armas
- Centro Universitário Católica de Santa Catarina - Joinville, Campus Joinville. Rua Visconde de Taunay 427, Joinville, Santa Catarina, CEP 89203-005, Brazil
| | - Luis Macedo Soares
- Departamento de Ecologia e Zoologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina. Campus Reitor João David Ferreira Lima, Florianópolis, Santa Catarina, CEP 88040-900, Brazil
| | - Sidney Luiz Stürmer
- Departamento de Ciencias Naturais, Centro de Ciencias Exatas e Naturais, Fundação Universidade Regional de Blumenau. Rua Antonio da Veiga, 140, Centro, Blumenau, Santa Catarina, CEP 89030-903, Brazil
| | - Rubens Onofre Nodari
- Departamento de Fitotecnia, Centro de Ciências Agrárias Universidade Federal de Santa Catarina. Rodovia Admar Gonzaga, 1346, Bloco B, Itacorubi, Florianópolis, Santa Catarina, CEP 88040-900, Brazil
| | - Cláudio Roberto Fonsêca Sousa Soares
- Departamento de Microbiologia, Imunologia e Parasitologia, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina. Campus Reitor João David Ferreira Lima, Florianópolis, Santa Catarina, CEP 88040-900, Brazil
| | - Paulo Emilio Lovato
- Departamento de Engenharia Rural, Centro de Ciências Agrarias, Universidade Federal de Santa Catarina. Rodovia Admar Gonzaga, 1346, Florianópolis, Santa Catarina, CEP: 88034-001, Brazil.
| |
Collapse
|
12
|
Alok D, Annapragada H, Singh S, Murugesan S, Singh NP. Symbiotic nitrogen fixation and endophytic bacterial community structure in Bt-transgenic chickpea (Cicer arietinum L). Sci Rep 2020; 10:5453. [PMID: 32214159 PMCID: PMC7096491 DOI: 10.1038/s41598-020-62199-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/10/2020] [Indexed: 01/11/2023] Open
Abstract
Symbiotic nitrogen fixation (SNF) of transgenic grain legumes might be influenced either by the site of transgene integration into the host genome or due to constitutive expression of transgenes and antibiotic-resistant marker genes. The present investigation confirmed proper nodulation of five tested Bt-chickpea events (IPCa2, IPCa4, IPCT3, IPCT10, and IPCT13) by native Mesorhizobium under field environment. Quantitative variations for nodulation traits among Bt-chickpea were determined and IPCT3 was found superior for nodule number and nodule biomass. Diversity, as well as richness indices, confirmed the changes in bacterial community structure of root and root-nodules from Bt-chickpea events IPCa2 and IPCT10. Especially, Gram-positive bacteria belonging to Firmicutes and Actinobacteria were selectively eliminated from root colonization of IPCa2. Richness indices (CHAO1 and ACE) of the root-associated bacterial community of IPCa2 was 13-14 times lesser than that of parent cv DCP92-3. Root nodule associated bacterial community of IPCT10 was unique with high diversity and richness, similar to the roots of non-Bt and Bt-chickpea. It indicated that the root nodules of IPCT10 might have lost their peculiar characteristics and recorded poor colonization of Mesorhizobium with a low relative abundance of 0.27. The impact of Bt-transgene on bacterial community structure and nodulation traits should be analyzed across the years and locations to understand and stabilize symbiotic efficiency for ecosystem sustainability.
Collapse
Affiliation(s)
- Das Alok
- Division of Plant Biotechnology, Indian Institute of Pulses Research, Kalyanpur, Kanpur, India
| | - Harika Annapragada
- Division of Basic Sciences, Indian Institute of Pulses Research, Kalyanpur, Kanpur, India
| | - Shilpa Singh
- Division of Basic Sciences, Indian Institute of Pulses Research, Kalyanpur, Kanpur, India
| | - Senthilkumar Murugesan
- Division of Basic Sciences, Indian Institute of Pulses Research, Kalyanpur, Kanpur, India.
| | - Narendra Pratap Singh
- Division of Plant Biotechnology, Indian Institute of Pulses Research, Kalyanpur, Kanpur, India
| |
Collapse
|
13
|
Jin Z, Shah T, Zhang L, Liu H, Peng S, Nie L. Effect of straw returning on soil organic carbon in rice–wheat rotation system: A review. Food Energy Secur 2020. [DOI: 10.1002/fes3.200] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Affiliation(s)
- Zhaoqiang Jin
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource College of Tropical Crops Hainan University Haikou China
- College of Plant Science and Technology Huazhong Agricultural University Wuhan China
| | - Tariq Shah
- Department of Agronomy Faculty of Crop Production Sciences University of Agriculture Peshawar Peshawar Pakistan
| | - Li Zhang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource College of Tropical Crops Hainan University Haikou China
| | - Hongyan Liu
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource College of Tropical Crops Hainan University Haikou China
| | - Shaobing Peng
- College of Plant Science and Technology Huazhong Agricultural University Wuhan China
| | - Lixiao Nie
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource College of Tropical Crops Hainan University Haikou China
- Hubei Collaborative Innovation Center for Grain Industry Yangtze University Jingzhou China
| |
Collapse
|
14
|
Szoboszlay M, Näther A, Mullins E, Tebbe CC. Annual replication is essential in evaluating the response of the soil microbiome to the genetic modification of maize in different biogeographical regions. PLoS One 2019; 14:e0222737. [PMID: 31846458 PMCID: PMC6917299 DOI: 10.1371/journal.pone.0222737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Accepted: 11/27/2019] [Indexed: 12/14/2022] Open
Abstract
The importance of geographic location and annual variation on the detection of differences in the rhizomicrobiome caused by the genetic modification of maize (Bt-maize, event MON810) was evaluated at experimental field sites across Europe including Sweden, Denmark, Slovakia and Spain. DNA of the rhizomicrobiome was collected at the maize flowering stage in three consecutive years and analyzed for the abundance and diversity of PCR-amplified structural genes of Bacteria, Archaea and Fungi, and functional genes for bacterial nitrite reductases (nirS, nirK). The nirK genes were always more abundant than nirS. Maize MON810 did not significantly alter the abundance of any microbial genetic marker, except for sporadically detected differences at individual sites and years. In contrast, annual variation between sites was often significant and variable depending on the targeted markers. Distinct, site-specific microbial communities were detected but the sites in Denmark and Sweden were similar to each other. A significant effect of the genetic modification of the plant on the community structure in the rhizosphere was detected among the nirK denitrifiers at the Slovakian site in only one year. However, most nirK sequences with opposite response were from the same or related source organisms suggesting that the transient differences in community structure did not translate to the functional level. Our results show a lack of effect of the genetic modification of maize on the rhizosphere microbiome that would be stable and consistent over multiple years. This demonstrates the importance of considering annual variability in assessing environmental effects of genetically modified crops.
Collapse
Affiliation(s)
- Márton Szoboszlay
- Thünen Institute of Biodiversity, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, Germany
| | - Astrid Näther
- Thünen Institute of Biodiversity, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, Germany
| | - Ewen Mullins
- Teagasc, Agriculture and Food Development Authority, Dept. Crop Science, Oak Park, Carlow, Ireland
| | - Christoph C. Tebbe
- Thünen Institute of Biodiversity, Federal Research Institute for Rural Areas, Forestry and Fisheries, Braunschweig, Germany
- * E-mail:
| |
Collapse
|
15
|
Wen ZL, Yang MK, Du MH, Zhong ZZ, Lu YT, Wang GH, Hua XM, Fazal A, Mu CH, Yan SF, Zhen Y, Yang RW, Qi JL, Hong Z, Lu GH, Yang YH. Enrichments/Derichments of Root-Associated Bacteria Related to Plant Growth and Nutrition Caused by the Growth of an EPSPS-Transgenic Maize Line in the Field. Front Microbiol 2019; 10:1335. [PMID: 31275269 PMCID: PMC6591461 DOI: 10.3389/fmicb.2019.01335] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 05/29/2019] [Indexed: 11/13/2022] Open
Abstract
During the past decades, the effects of the transgenic crops on soil microbial communities have aroused widespread interest of scientists, which was mainly related to the health and growth of plants. In this study, the maize root-associated bacterial communities of 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS) transgenic glyphosate-tolerant (GT) maize line CC-2 (CC2) and its recipient variety Zhengdan958 (Z958) were compared at the tasseling and flowering stages by high-throughput sequencing of V3-V4 hypervariable regions of 16S rRNA gene (16S rDNA) amplicons via Illumina MiSeq. In addition, real-time quantitative PCR (qPCR) was also performed to analyze the nifH gene abundance between CC2 and Z958. Our results showed no significant difference in alpha/beta diversity of root-associated bacterial communities at the tasseling or flowering stage between CC2 and Z958 under field growth conditions. The relative abundances of the genera Bradyrhizobium and Bacillus including species B. cereus and B. muralis were significantly lower in the roots of CC2 than that of Z985 under field conditions. Both these species are regarded as plant growth promoting bacteria (PGPB), as they belong to both nitrogen-fixing and phosphate-solubilizing bacterial genera. The comparison of the relative abundance of nitrogen-fixing/phosphate-solubilizing bacteria at the class, order or family levels indicated that only one class Bacilli, one order Bacillales and one family Bacillaceae were found to be significantly lower in the roots of CC2 than that of Z985. These bacteria were also enriched in the roots and rhizospheric soil than in the surrounding soil at both two stages. Furthermore, the class Betaproteobacteria, the order Burkholderiales, the family Comamonadaceae, and the genus Acidovorax were significantly higher in the roots of CC2 than that of Z985 at the tasseling stage, meanwhile the order Burkholderiales and the family Comamonadaceae were also enriched in the roots than in the rhizospheric soil at both stages. Additionally, the nifH gene abundance at the tasseling stage in the rhizosphere soil also showed significant difference. The relative abundance of nifH gene was higher in the root samples and lower in the surrounding soil, which implicated that the roots of maize tend to be enriched in nitrogen-fixing bacteria.
Collapse
Affiliation(s)
- Zhong-Ling Wen
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Min-Kai Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Mei-Hang Du
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhao-Zhao Zhong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China
| | - Yun-Ting Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Gu-Hao Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China
| | - Xiao-Mei Hua
- Research Center for Soil Pollution Prevention and Control, Nanjing Institute of Environmental Sciences, MEE, Nanjing, China
| | - Aliya Fazal
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China
| | - Chun-Hua Mu
- Shandong Academy of Agriculture Sciences, Jinan, China
| | - Shu-Feng Yan
- Henan Academy of Agriculture Sciences, Zhengzhou, China
| | - Yan Zhen
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Rong-Wu Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China
| | - Jin-Liang Qi
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Zhi Hong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China
| | - Gui-Hua Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| | - Yong-Hua Yang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Institute for Plant Molecular Biology, Nanjing University, Nanjing, China.,Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
16
|
Li J, Shu Y, Wang F, Wang J. Effects of Cry1Ab-expressing Bt rice straw return on juvenile and adult Eisenia fetida. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 169:881-893. [PMID: 30597788 DOI: 10.1016/j.ecoenv.2018.11.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/09/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
A 90 day experiment was conducted in the laboratory to investigate the potential effects of transgenic Cry1Ab-expressing rice (Bacillus thuringiensis (Bt) rice: T775 and its F1 hybrid) straw return on earthworm Eisenia fetida, compared to non-Bt rice (TYHZ) straw. Juvenile E. fetida could survive, grow up, mature and reproduce offspring well in a Bt rice treated test during the whole experiment. The significantly higher relative growth rate (RGR) was found in earthworms from Bt rice treatment than from non-Bt rice treatment on the 7th day. The period of sexual maturity for earthworms from Bt rice treatments was shortened significantly, compared to non-Bt rice treatments. Adult E. fetida survived with weight loss under Bt rice treatments. On the 7th and 15th day, earthworm RGR decreased and glutathione peroxidase (GSH-PX) activity increased under Bt rice straw treatments. Significantly fewer offspring were produced by earthworms from Bt rice than non-Bt rice treatments on the 60th and 75th day. Enzyme-linked immunosorbent assay (ELISA) determined a sharp decrease of Cry1Ab in straw mixed soil along with the experimental time, regardless of juvenile or adult earthworm treatments. Cry1Ab concentration in the earthworms from the juvenile group was significantly higher than those from the adult group. Bt rice straw return had significant effects on soil nutrients, especially on the content of total and available phosphorus. In view of two bioassays, Bt rice (T775 and its F1 hybrid) straw return presented different effects on E. fetida from the juvenile (no deleterious effect) and adult (a little negative effect) groups, that were not directly related to Cry1Ab presence and nutrient differences among the three rice variety treatments.
Collapse
Affiliation(s)
- Junfei Li
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou, China; Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yinghua Shu
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou, China
| | - Feng Wang
- Rice Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou, China.
| | - Jianwu Wang
- Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China; Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou, China; Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
17
|
Han C, Liu B, Zhong W. Effects of transgenic Bt rice on the active rhizospheric methanogenic archaeal community as revealed by DNA-based stable isotope probing. J Appl Microbiol 2018; 125:1094-1107. [PMID: 29846995 DOI: 10.1111/jam.13939] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/16/2018] [Accepted: 05/28/2018] [Indexed: 11/29/2022]
Abstract
AIMS This study aimed to investigate the influence of planting Cry1Ab/Cry1Ac gene expressing rice (Bt rice) on rhizospheric active methanogenic archaeal communities. METHODS AND RESULTS The nontransgenic parental line was used as the control (Ck rice). DNA-based stable isotope probing (DNA-SIP) technology traced the rhizospheric active methanogens at the tillering stage. The results revealed significantly lower CH4 emission flux from Bt soil than that from Ck soil during the whole growth period. The active methanogenic community composition remained stable. The RC-I lineage (77·9-79·8%) and Methanosaetaceae (13·9-15·1%) were the predominant active methanogens in Bt and Ck rice rhizospheres. However, the abundance of functionally active methanogens in the Bt rice rhizosphere was significantly reduced. Lower levels of root exudates (that included carbohydrate and organic acids) from Bt rice were also detected at the tillering stage. CONCLUSION This study found that the genetic modification of rice reduced the potential methanogenic substrates came from plant-derived root exudates, which represented an important factor in reducing CH4 generation and active methanogenic archaeal abundance in Bt rhizosphere soil. SIGNIFICANCE AND IMPACT OF THE STUDY The effect of genetically modified (GM) insect-resistant crops on soil micro-organisms has become an issue of public concern, especially the indirect effect of plant metabolisms caused by the insertion of foreign genes. Methanogenesis, which is regarded as a critical ecological process in paddy soil, is influenced by plant root exudates; these are mainly derived from photosynthesis. The variations in root exudates across the Bt and Ck rice suggested the indirect influence of foreign gene insertion. DNA-SIP successfully traced the active methanogenic archaeal populations assimilating 13 C-labelled photosynthetic carbon and found a strong influence of planting Bt rice on active methanogens. As a consequence, we proposed that analysis of functionally active micro-organisms is more suitable for monitoring and predicting the environmental influence of GM plants.
Collapse
Affiliation(s)
- C Han
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geography Science, Nanjing Normal University - Xianlin Campus, Nanjing, Jiangsu Province, China.,Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University - Xianlin Campus, Nanjing, Jiangsu Province, China
| | - B Liu
- Ministry of Environmental Protection of the People's Republic of China, Key Laboratory of Biosafety, Nanjing Institute of Environmental Sciences, Beijing, China
| | - W Zhong
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, School of Geography Science, Nanjing Normal University - Xianlin Campus, Nanjing, Jiangsu Province, China.,Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University - Xianlin Campus, Nanjing, Jiangsu Province, China
| |
Collapse
|
18
|
Ling L, Jiang Y, Meng JJ, Cai LM, Cao GC. Phloem transport capacity of transgenic rice T1c-19 (Cry1C*) under several potassium fertilizer levels. PLoS One 2018; 13:e0195058. [PMID: 29596474 PMCID: PMC5875849 DOI: 10.1371/journal.pone.0195058] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/15/2018] [Indexed: 11/18/2022] Open
Abstract
Genetic modification of Cry-proteins from Bacillus thuringiensis (Bt) is a common practice in economically important crops to improve insecticide resistance and reduce the use of pesticides. However, introduction of these genes can have unintended side effects, which should be closely monitored for effective breeding and crop management. To determine the potential cause of these negative effects, we explored assimilate partitioning in the transgenic Bt rice line T1c-19 (Cry1C*), which was compared with that of its wild-type counterpart Minghui 63 (MH63) under different potassium fertilization application treatment conditions. In a pot experiment, 0, 0.4, and 0.6 g K2O was applied per kg of dry soil to determine the phloem transport characteristics of the two rice lines. We used a variety of assessment indicators ranging from morphological to physiological aspects, including the number of large and small vascular bundles in the neck internode at the heading stage, the diameter and bleeding intensity of the neck internode at the filling stage, and the content and apparent ratio of transferred non-structural carbohydrates (NSC) in the culm and sheath from the heading to maturing stages. The K utilization and grain yield at the maturing stage were also concerned. Results presented that the mean setting rate and grain yield of T1c-19 (Cry1C*) decreased by 22.3% and 26.2% compared to those in MH63, respectively. Compared to MH63, the K concentration and accumulation were significantly higher in the culms and leaves, but significantly lower in grain of T1c-19 (Cry1C*). T1c-19 (Cry1C*) had less apparent NSC efflux in the culm and sheath, fewer small vascular bundles, and a smaller diameter and bleeding intensity of the neck internode than MH63. In addition, linear correlation analysis indicated that there were positive correlations among grain yield, setting rate, the apparent NSC efflux in the culm and sheath, number of small vascular bundles, and the neck internode diameter and bleeding intensity. These unintended effects may directly or indirectly be caused by insertion of exogenous Bt (Cry1C*) gene, which should be further considered in the future breeding of transgenic crops.
Collapse
Affiliation(s)
- Lin Ling
- Ministry of Agriculture Key Laboratory of Crop Physiology, Ecology and Cultivation (The Middle Reaches of Yangtze River), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yang Jiang
- Ministry of Agriculture Key Laboratory of Crop Physiology, Ecology and Cultivation (The Middle Reaches of Yangtze River), Huazhong Agricultural University, Wuhan, Hubei, China
- * E-mail:
| | - Jiao Jing Meng
- Ministry of Agriculture Key Laboratory of Crop Physiology, Ecology and Cultivation (The Middle Reaches of Yangtze River), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Li Ming Cai
- Ministry of Agriculture Key Laboratory of Crop Physiology, Ecology and Cultivation (The Middle Reaches of Yangtze River), Huazhong Agricultural University, Wuhan, Hubei, China
| | - Gui Cou Cao
- Ministry of Agriculture Key Laboratory of Crop Physiology, Ecology and Cultivation (The Middle Reaches of Yangtze River), Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
19
|
van Wyk DAB, Adeleke R, Rhode OHJ, Bezuidenhout CC, Mienie C. Ecological guild and enzyme activities of rhizosphere soil microbial communities associated with Bt-maize cultivation under field conditions in North West Province of South Africa. J Basic Microbiol 2017; 57:781-792. [DOI: 10.1002/jobm.201700043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 05/25/2017] [Accepted: 06/10/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Deidré A. B. van Wyk
- Unit for Environmental Sciences and Management; North-West University; Potchefstroom South Africa
- Microbiology and Environmental Biotechnology Research group; Agricultural Research Council-Institute for Soil Climate and Water (ARC-ISCW); Pretoria South Africa
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management; North-West University; Potchefstroom South Africa
- Microbiology and Environmental Biotechnology Research group; Agricultural Research Council-Institute for Soil Climate and Water (ARC-ISCW); Pretoria South Africa
| | - Owen H. J. Rhode
- Agricultural Research Council- Grain Crops Institute (ARC-GCI); Potchefstroom; South Africa
| | - Carlos C. Bezuidenhout
- Unit for Environmental Sciences and Management; North-West University; Potchefstroom South Africa
| | - Charlotte Mienie
- Unit for Environmental Sciences and Management; North-West University; Potchefstroom South Africa
| |
Collapse
|
20
|
Shu Y, Zhang Y, Zeng H, Zhang Y, Wang J. Effects of Cry1Ab Bt maize straw return on bacterial community of earthworm Eisenia fetida. CHEMOSPHERE 2017; 173:1-13. [PMID: 28104475 DOI: 10.1016/j.chemosphere.2017.01.023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 06/06/2023]
Abstract
The eco-toxicological effects of Bacillus thuringiensis (Bt) maize on earthworm life-history traits were widely studied and the results were controversial, while their effects on earthworm bacterial community have been rarely studied. Here, effects of two hybrids of Bt maize [5422Bt1 (event Bt11) and 5422CBCL (MON810)] straw return on Eisenia fetida bacterial community were investigated by the terminal restriction fragment length polymorphism (T-RFLP) and polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) combing with DNA sequencing, compared to near-isogenic non-Bt maize (5422). Bt maize straw return had significant effects on soil nutrients, especially for available nitrogen (N). The significant differences were shown in soil bacterial community between Bt and non-Bt maize treatments on the 75th and 90th d, which was closely correlated with soil available N, P and K rather than Cry1Ab protein. There was no statistically significant difference in the bacterial community of earthworm gut contents between Bt and non-Bt maize treatments. The significant differences in the bacterial community of earthworm casts were found among three maize varieties treatments, which were closely correlated with Cry1Ab protein and N levels. The differentiated bacterial species in earthworm casts mainly belonged to Proteobacteria, including Brevundimonas, Caulobacter, Pseudomonas, Stenotrophomonas, Methylobacterium, Asticcacaulis and Achromobacter etc., which were associated with the mineralization, metabolic process and degradation of plants residues. Therefore, Bt maize straw return caused changes in the bacterial community of E. fetida casts, which was possibly caused by the direct (Cry1Ab protein) and non-expected effects (N levels) of Bt maize straw.
Collapse
Affiliation(s)
- Yinghua Shu
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Centre for Modern Eco-agriculture, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yanyan Zhang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Centre for Modern Eco-agriculture, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Huilan Zeng
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Centre for Modern Eco-agriculture, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yahui Zhang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Centre for Modern Eco-agriculture, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jianwu Wang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China; Guangdong Engineering Research Centre for Modern Eco-agriculture, Guangzhou 510642, China; Department of Ecology, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
21
|
Singh AK, Dubey SK. Current trends in Bt crops and their fate on associated microbial community dynamics: a review. PROTOPLASMA 2016; 253:663-681. [PMID: 26560114 DOI: 10.1007/s00709-015-0903-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 06/05/2023]
Abstract
Cry protein expressing insect-resistant trait is mostly deployed to control major devastating pests and minimize reliance on the conventional pesticides. However, the ethical and environmental issues are the major constraints in their acceptance, and consequently, the cultivation of genetically modified (GM) crops has invited intense debate. Since root exudates of Bacillus thuringiensis (Bt) crops harbor the insecticidal protein, there is a growing concern about the release and accumulation of soil-adsorbed Cry proteins and their impact on non-target microorganisms and soil microbial processes. This review pertains to reports from the laboratory studies and field trials to assess the Bt toxin proteins in soil microbes and the processes determining the soil quality in conjunction with the existing hypothesis and molecular approaches to elucidate the risk posed by the GM crops. Ecological perturbations hinder the risk aspect of soil microbiota in response to GM crops. Therefore, extensive research based on in vivo and interpretation of results using high-throughput techniques such as NGS on risk assessment are imperative to evaluate the impact of Bt crops to resolve the controversy related to their commercialization. But more studies are needed on the risk associated with stacked traits. Such studies would strengthen our knowledge about the plant-microbe interactions.
Collapse
Affiliation(s)
| | - Suresh Kumar Dubey
- Department of Botany, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
22
|
Schmidt JE, Bowles TM, Gaudin ACM. Using Ancient Traits to Convert Soil Health into Crop Yield: Impact of Selection on Maize Root and Rhizosphere Function. FRONTIERS IN PLANT SCIENCE 2016; 7:373. [PMID: 27066028 PMCID: PMC4811947 DOI: 10.3389/fpls.2016.00373] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 03/11/2016] [Indexed: 05/21/2023]
Abstract
The effect of domestication and modern breeding on aboveground traits in maize (Zea mays) has been well-characterized, but the impact on root systems and the rhizosphere remain unclear. The transition from wild ecosystems to modern agriculture has focused on selecting traits that yielded the largest aboveground production with increasing levels of crop management and nutrient inputs. Root morphology, anatomy, and ecophysiological processes may have been affected by the substantial environmental and genetic shifts associated with this transition. As a result, root and rhizosphere traits that allow more efficient foraging and uptake in lower synthetic input environments might have been lost. The development of modern maize has led to a shift in microbiome community composition, but questions remain as to the dynamics and drivers of this change during maize evolution and its implications for resource acquisition and agroecosystem functioning under different management practices. Better understanding of how domestication and breeding affected root and rhizosphere microbial traits could inform breeding strategies, facilitate the sourcing of favorable alleles, and open new frontiers to improve resource use efficiency through greater integration of root development and ecophysiology with agroecosystem functioning.
Collapse
Affiliation(s)
- Jennifer E. Schmidt
- Department of Plant Sciences, University of California at DavisDavis, CA, USA
| | - Timothy M. Bowles
- Department of Natural Resources and the Environment, University of New HampshireDurham, NH, USA
| | - Amélie C. M. Gaudin
- Department of Plant Sciences, University of California at DavisDavis, CA, USA
- *Correspondence: Amélie C. M. Gaudin
| |
Collapse
|
23
|
Shu Y, Zhang Y, Cheng M, Zeng H, Wang J. Multilevel assessment of Cry1Ab Bt-maize straw return affecting the earthworm Eisenia fetida. CHEMOSPHERE 2015; 137:59-69. [PMID: 26011413 DOI: 10.1016/j.chemosphere.2015.05.038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/12/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
Non-target effects of two varieties of Bacillus thuringiensis (Bt)-maize straw (5422Bt1 [event Bt11] and 5422CBCL [MON810]) return on the Eisenia fetida were investigated by using multilevel assessments, compared to near-isogenic non-Bt-maize (5422). 5422Bt1 straw return had no deleterious effects on adult earthworms and had significantly positive effects on juveniles over three generations. Negative, no, and positive effects on adults treated with 5422CBCL straw were observed in the 1st, 2nd and 3rd generation, respectively. Negative and positive effects were observed on juveniles produced from the 1st- and 2nd-generation adults treated with 5422CBCL straw, respectively. Glutathione peroxidase activity of earthworms from Bt-maize treatments was significantly higher than that of control on the 90th d. Translationally controlled tumour protein (TCTP) and superoxide dismutase (SOD) genes were down-regulated, while annetocin (ANN) expression was up-regulated in 5422Bt1 treatments. TCTP and SOD genes were up-regulated, while ANN and heat shock protein 70 were down-regulated in E. fetida from 5422CBCL treatments. Enzyme-linked immunosorbent assay revealed that Cry1Ab released from 5422Bt1 and 5422CBCL straw degraded rapidly on the 15th and 30th d and had a slow decline in the rest testing time. Cry1Ab concentrations in the soil, casts and guts of earthworm significantly decreased over the course of the experiment. This study was the first to evaluate generational effects of Bt-maize straw return on earthworms under laboratory conditions. The responses of enzymes activity and genes expression may contribute to better understand above different effects of Bt-maize straw return on earthworms from the 1st generation.
Collapse
Affiliation(s)
- Yinghua Shu
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Yanyan Zhang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Miaomiao Cheng
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Huilan Zeng
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jianwu Wang
- Key Laboratory of Agro-Environment in the Tropics, Ministry of Agriculture, South China Agricultural University, Guangzhou 510642, China; Key Laboratory of Agroecology and Rural Environment of Guangdong Regular Higher Education Institutions, South China Agricultural University, Guangzhou 510642, China; Department of Ecology, College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
24
|
Turrini A, Sbrana C, Giovannetti M. Belowground environmental effects of transgenic crops: a soil microbial perspective. Res Microbiol 2015; 166:121-31. [DOI: 10.1016/j.resmic.2015.02.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/21/2015] [Accepted: 02/17/2015] [Indexed: 10/23/2022]
|
25
|
Sahoo RK, Ansari MW, Tuteja R, Tuteja N. Salt tolerant SUV3 overexpressing transgenic rice plants conserve physicochemical properties and microbial communities of rhizosphere. CHEMOSPHERE 2015; 119:1040-1047. [PMID: 25303666 DOI: 10.1016/j.chemosphere.2014.08.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/19/2014] [Accepted: 08/06/2014] [Indexed: 06/04/2023]
Abstract
Key concerns in the ecological evaluation of GM crops are undesirably spread, gene flow, other environmental impacts, and consequences on soil microorganism's biodiversity. Numerous reports have highlighted the effects of transgenic plants on the physiology of non-targeted rhizospheric microbes and the food chain via causing adverse effects. Therefore, there is an urgent need to develop transgenics with insignificant toxic on environmental health. In the present study, SUV3 overexpressing salt tolerant transgenic rice evaluated in New Delhi and Cuttack soil conditions for their effects on physicochemical and biological properties of rhizosphere. Its cultivation does not affect soil properties viz., pH, Eh, organic C, P, K, N, Ca, Mg, S, Na and Fe(2+). Additionally, SUV3 rice plants do not cause any change in the phenotype, species characteristics and antibiotic sensitivity of rhizospheric bacteria. The population and/or number of soil organisms such as bacteria, fungi and nematodes were unchanged in the soil. Also, the activity of bacterial enzymes viz., dehydrogenase, invertase, phenol oxidases, acid phosphatases, ureases and proteases was not significantly affected. Further, plant growth promotion (PGP) functions of bacteria such as siderophore, HCN, salicylic acid, IAA, GA, zeatin, ABA, NH3, phosphorus metabolism, ACC deaminase and iron tolerance were, considerably, not influenced. The present findings suggest ecologically pertinent of salt tolerant SUV3 rice to sustain the health and usual functions of the rhizospheric organisms.
Collapse
Affiliation(s)
- Ranjan K Sahoo
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Mohammad W Ansari
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Renu Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110 067, India.
| |
Collapse
|
26
|
Canfora L, Sbrana C, Avio L, Felici B, Scatà MC, Neri U, Benedetti A. Risk management tools and the case study Brassica napus: evaluating possible effects of genetically modified plants on soil microbial diversity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 493:983-994. [PMID: 25014185 DOI: 10.1016/j.scitotenv.2014.06.086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/19/2014] [Accepted: 06/20/2014] [Indexed: 06/03/2023]
Abstract
The cultivation of GMPs in Europe raises many questions about the environmental risks, in particular about their ecological impact on non-target organisms and on soil properties. The aim of a multidisciplinary group engaged in a LIFE+project (MAN-GMP-ITA) was to validate and improve an existing environmental risk assessment (ERA) methodology on GMPs within the European legislative framework on GMOs. Given the impossibility of evaluating GMO impact directly, as GMPs are banned in Italy, GMPs have not been used at any stage of the project. The project thus specifically focused on the conditions for the implementation of ERA in different areas of Italy, with an emphasis on some sensitive and protected areas located in the North, Centre, and South of the country, in order to lay the necessary baseline for evaluating the possible effects of a GMP on soil communities. Our sub-group carried out soil analyses in order to obtain soil health and fertility indicators to be used as baselines in the ERA model. Using various methods of chemical, biochemical, functional and genetic analysis, our study assessed the changes in diversity and functionality of bacterial populations, and arbuscular mycorrhizal fungi. The results show that plant identity and growth, soil characteristics, and field site climatic parameters are key factors in contributing to variation in microbial community structure and diversity, thus validating our methodological approach. Our project has come to the conclusion that the uneven composition and biological-agronomical quality of soils need to be taken into consideration in a risk analysis within the framework of ERA for the release of genetically modified plants.
Collapse
Affiliation(s)
- Loredana Canfora
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per lo studio delle relazioni tra Pianta e Suolo, Via della Navicella 2, 4, Roma 00184, Italy.
| | - Cristiana Sbrana
- C.N.R. - Istituto di Biologia e Biotecnologia Agraria UOS Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Luciano Avio
- C.N.R. - Istituto di Biologia e Biotecnologia Agraria UOS Pisa, Via Moruzzi 1, 56124 Pisa, Italy
| | - Barbara Felici
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per lo studio delle relazioni tra Pianta e Suolo, Via della Navicella 2, 4, Roma 00184, Italy
| | - Maria Carmela Scatà
- Consiglio per la Ricerca e la sperimentazione in Agricoltura, Centro di Ricerca per la Produzione delle carni e del miglioramento genetico, cxVia Salaria 31, Monterotondo Scalo 00016, Italy
| | - Ulderico Neri
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per lo studio delle relazioni tra Pianta e Suolo, Via della Navicella 2, 4, Roma 00184, Italy
| | - Anna Benedetti
- Consiglio per la Ricerca e la Sperimentazione in Agricoltura, Centro di Ricerca per lo studio delle relazioni tra Pianta e Suolo, Via della Navicella 2, 4, Roma 00184, Italy
| |
Collapse
|
27
|
Different effects of transgenic maize and nontransgenic maize on nitrogen-transforming archaea and bacteria in tropical soils. Appl Environ Microbiol 2014; 80:6437-45. [PMID: 25107970 DOI: 10.1128/aem.01778-14] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The composition of the rhizosphere microbiome is a result of interactions between plant roots, soil, and environmental conditions. The impact of genetic variation in plant species on the composition of the root-associated microbiota remains poorly understood. This study assessed the abundances and structures of nitrogen-transforming (ammonia-oxidizing) archaea and bacteria as well as nitrogen-fixing bacteria driven by genetic modification of their maize host plants. The data show that significant changes in the abundances (revealed by quantitative PCR) of ammonia-oxidizing bacterial and archaeal communities occurred as a result of the maize host being genetically modified. In contrast, the structures of the total communities (determined by PCR-denaturing gradient gel electrophoresis) were mainly driven by factors such as soil type and season and not by plant genotype. Thus, the abundances of ammonia-oxidizing bacterial and archaeal communities but not structures of those communities were revealed to be responsive to changes in maize genotype, allowing the suggestion that community abundances should be explored as candidate bioindicators for monitoring the possible impacts of cultivation of genetically modified plants.
Collapse
|
28
|
Singh AK, Singh M, Dubey SK. Rhizospheric fungal community structure of a Bt brinjal and a near isogenic variety. J Appl Microbiol 2014; 117:750-65. [PMID: 24848712 DOI: 10.1111/jam.12549] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 05/17/2014] [Accepted: 05/17/2014] [Indexed: 11/27/2022]
Abstract
AIMS The objective of this study was to investigate the influence of Cry1Ac gene expressing brinjal (VRBT-8) on the rhizospheric fungal community structure. METHODS AND RESULTS qPCR indicated variations in the fungal ITS rRNA copy numbers of non-Bt (1·43-4·43) × 10(9) g(-1) dws and Bt (1·43-3·32) × 10(9) g(-1) dws plots. Phylogenetic analysis of ITS rRNA clones indicated fungal-related group majority of being Ascomycota compared to that of Basidiomycota and Zygomycota in non-Bt- and Bt-planted soils. Sordariomycetes was the dominant class detected in all the stages. CONCLUSIONS Despite the variations in the population size and the distribution pattern observed across the non-Bt and Bt brinjal, plant-growth-dependent variability was more prominent compared with genetic modification. Therefore, this study concludes that genetic modification of brinjal crop has minor effect on the fungal community. SIGNIFICANCE AND IMPACT OF THE STUDY Brinjal, the important solanaceous crop, is also prone to attack by many insect pests, especially by Leucinoides orbonalis, resulting in significant losses in the crop yield. However, the reports on the effect of transgenic crops and the associated microbial community are inconsistent. The present communication takes into account for the first time the possible interactions between Bt brinjal and the associated fungal community; the latter playing a significant role in maintaining soil fertility. As this study is limited to the structural diversity of fungal community, additional information regarding the functional diversity of the group seems imperative before recommending the commercialization of GM crops.
Collapse
Affiliation(s)
- A K Singh
- Department of Botany, Banaras Hindu University, Varanasi, India
| | | | | |
Collapse
|
29
|
Wu J, Yu M, Xu J, Du J, Ji F, Dong F, Li X, Shi J. Impact of transgenic wheat with wheat yellow mosaic virus resistance on microbial community diversity and enzyme activity in rhizosphere soil. PLoS One 2014; 9:e98394. [PMID: 24897124 PMCID: PMC4045665 DOI: 10.1371/journal.pone.0098394] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 05/02/2014] [Indexed: 11/19/2022] Open
Abstract
The transgenic wheat line N12-1 containing the WYMV-Nib8 gene was obtained previously through particle bombardment, and it can effectively control the wheat yellow mosaic virus (WYMV) disease transmitted by Polymyxa graminis at turngreen stage. Due to insertion of an exogenous gene, the transcriptome of wheat may be altered and affect root exudates. Thus, it is important to investigate the potential environmental risk of transgenic wheat before commercial release because of potential undesirable ecological side effects. Our 2-year study at two different experimental locations was performed to analyze the impact of transgenic wheat N12-1 on bacterial and fungal community diversity in rhizosphere soil using polymerase chain reaction-denaturing gel gradient electrophoresis (PCR-DGGE) at four growth stages (seeding stage, turngreen stage, grain-filling stage, and maturing stage). We also explored the activities of urease, sucrase and dehydrogenase in rhizosphere soil. The results showed that there was little difference in bacterial and fungal community diversity in rhizosphere soil between N12-1 and its recipient Y158 by comparing Shannon's, Simpson's diversity index and evenness (except at one or two growth stages). Regarding enzyme activity, only one significant difference was found during the maturing stage at Xinxiang in 2011 for dehydrogenase. Significant growth stage variation was observed during 2 years at two experimental locations for both soil microbial community diversity and enzyme activity. Analysis of bands from the gel for fungal community diversity showed that the majority of fungi were uncultured. The results of this study suggested that virus-resistant transgenic wheat had no adverse impact on microbial community diversity and enzyme activity in rhizosphere soil during 2 continuous years at two different experimental locations. This study provides a theoretical basis for environmental impact monitoring of transgenic wheat when the introduced gene is derived from a virus.
Collapse
Affiliation(s)
- Jirong Wu
- Institute of Food Safety and Detection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Nanjing, China
- Jiangsu Center for GMO evaluation and detection, Nanjing, China
| | - Mingzheng Yu
- Institute of Food Safety and Detection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Nanjing, China
- Jiangsu Center for GMO evaluation and detection, Nanjing, China
| | - Jianhong Xu
- Institute of Food Safety and Detection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Nanjing, China
- Jiangsu Center for GMO evaluation and detection, Nanjing, China
| | - Juan Du
- Institute of Food Safety and Detection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Nanjing, China
- Jiangsu Center for GMO evaluation and detection, Nanjing, China
| | - Fang Ji
- Institute of Food Safety and Detection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Nanjing, China
- Jiangsu Center for GMO evaluation and detection, Nanjing, China
| | - Fei Dong
- Institute of Food Safety and Detection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Nanjing, China
- Jiangsu Center for GMO evaluation and detection, Nanjing, China
| | - Xinhai Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jianrong Shi
- Institute of Food Safety and Detection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- Key Lab of Food Quality and Safety of Jiangsu Province—State Key Laboratory Breeding Base, Nanjing, China
- Jiangsu Center for GMO evaluation and detection, Nanjing, China
| |
Collapse
|
30
|
Ondreičková K, Mihálik D, Ficek A, Hudcovicová M, Kraic J, Drahovská H. Impact of Genetically Modified Maize on the Genetic Diversity of Rhizosphere Bacteria: a Two-Year Study in Slovakia. POLISH JOURNAL OF ECOLOGY 2014. [DOI: 10.3161/104.062.0107] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
31
|
Li YL, Du J, Fang ZX, You J. Dissipation of insecticidal Cry1Ac protein and its toxicity to nontarget aquatic organisms. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:10864-10871. [PMID: 24151928 DOI: 10.1021/jf403472j] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The widespread cultivation of Bacillus thuringiensis crops has raised public concerns on their risk to nontarget organisms. Persistence of Cry1Ac protein in soil, sediment and water and its toxicity to nontarget aquatic organisms were determined. The dissipation of Cry1Ac toxin was well described using first order kinetics, with the half-lives (DT50) ranging from 0.8 to 3.2, 2.1 to 7.6 and 11.0 to 15.8 d in soil, sediment and water, respectively. Microbial degradation played a key role in the dissipation of Cry1Ac toxin and high temperature accelerated the processes. Cry1Ac toxin was more toxic to the midge Chironomus dilutus than the amphipod Hyalella azteca, with the median lethal concentration (LC50) of C. dilutus being 155 ng/g dry weight and 201 ng/mL in 10-d sediment and 4-d water bioassays, respectively. While Cry1Ac toxin showed toxicity to the midges, risk of Bt proteins to aquatic nontarget organisms was limited because their environmentally relevant concentrations were much lower than the LC50s.
Collapse
Affiliation(s)
- Yan-Liang Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences , Guangzhou 510640, People's Republic of China
| | | | | | | |
Collapse
|
32
|
Singh AK, Rai GK, Singh M, Dubey SK. Bacterial community structure in the rhizosphere of a Cry1Ac Bt-brinjal crop and comparison to its non-transgenic counterpart in the tropical soil. MICROBIAL ECOLOGY 2013; 66:927-39. [PMID: 24046073 DOI: 10.1007/s00248-013-0287-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 08/30/2013] [Indexed: 05/26/2023]
Abstract
To elucidate whether the transgenic crop alters the rhizospheric bacterial community structure, a 2-year study was performed with Cry1Ac gene-inserted brinjal crop (Bt) and their near isogenic non-transformed trait (non-Bt). The event of Bt crop (VRBT-8) was screened using an insect bioassay and enzyme-linked immunosorbent assay. Soil moisture, NH4 (+)-N, NO3 (-)-N, and PO4 (-)-P level had non-significant variation. Quantitative polymerase chain reaction revealed that abundance of bacterial 16S rRNA gene copies were lower in soils associated with Bt brinjal. Microbial biomass carbon (MBC) showed slight reduction in Bt brinjal soils. Higher MBC values in the non-Bt crop soil may be attributed to increased root activity and availability of readily metabolizable carbon compounds. The restriction fragment length polymorphism of PCR-amplified rRNA gene fragments detected 13 different bacterial groups with the exclusive presence of β-Proteobacteria, Chloroflexus, Planctomycetes, and Fusobacteria in non-Bt, and Cyanobacteria and Bacteroidetes in Bt soils, respectively, reflecting minor changes in the community structure. Despite the detection of Cry1Ac protein in the rhizospheric soil, the overall impact of Cry1Ac expressing Bt brinjal was less compared to that due to seasonal changes.
Collapse
|
33
|
Sahoo RK, Tuteja N. Effect of salinity tolerant PDH45 transgenic rice on physicochemical properties, enzymatic activities and microbial communities of rhizosphere soils. PLANT SIGNALING & BEHAVIOR 2013; 8:24950. [PMID: 23733066 PMCID: PMC3999083 DOI: 10.4161/psb.24950] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The effect of genetically modified (GM) plants on environment is now major concern worldwide. The plant roots of rhizosphere soil interact with variety of bacteria which could be influenced by the transgene in GM plants. The antibiotic resistance genes in GM plants may be transferred to soil microbes. In this study we have examined the effect of overexpression of salinity tolerant pea DNA helicase 45 (PDH45) gene on microbes and enzymatic activities in the rhizosphere soil of transgenic rice IR64 in presence and absence of salt stress in two different rhizospheric soils (New Delhi and Odisha, India). The diversity of the microbial community and soil enzymes viz., dehydrogenase, alkaline phosphatase, urease and nitrate reductase was assessed. The results revealed that there was no significant effect of transgene expression on rhizosphere soil of the rice plants. The isolated bacteria were phenotyped both in absence and presence of salt and no significant changes were found in their phenotypic characters as well as in their population. Overall, the overexpression of PDH45 in rice did not cause detectable changes in the microbial population, soil enzymatic activities and functional diversity of the rhizosphere soil microbial community.
Collapse
|
34
|
A 2-year field study shows little evidence that the long-term planting of transgenic insect-resistant cotton affects the community structure of soil nematodes. PLoS One 2013; 8:e61670. [PMID: 23613899 PMCID: PMC3628874 DOI: 10.1371/journal.pone.0061670] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2012] [Accepted: 03/12/2013] [Indexed: 11/19/2022] Open
Abstract
Transgenic insect-resistant cotton has been released into the environment for more than a decade in China to effectively control the cotton bollworm (Helicoverpa armigera) and other Lepidoptera. Because of concerns about undesirable ecological side-effects of transgenic crops, it is important to monitor the potential environmental impact of transgenic insect-resistant cotton after commercial release. Our 2-year study included 1 cotton field where non-transgenic cotton had been planted continuously and 2 other cotton fields where transgenic insect-resistant cotton had been planted for different lengths of time since 1997 and since 2002. In 2 consecutive years (2009 and 2010), we took soil samples from 3 cotton fields at 4 different growth stages (seedling, budding, boll-forming and boll-opening stages), collected soil nematodes from soil with the sugar flotation and centrifugation method and identified the soil nematodes to the genus level. The generic composition, individual densities and diversity indices of the soil nematodes did not differ significantly between the 2 transgenic cotton fields and the non-transgenic cotton field, but significant seasonal variation was found in the individual densities of the principal trophic groups and in the diversity indices of the nematodes in all 3 cotton fields. The study used a comparative perspective to monitor the impact of transgenic insect-resistant cotton grown in typical ‘real world’ conditions. The results of the study suggested that more than 10 years of cultivation of transgenic insect-resistant cotton had no significant effects–adverse or otherwise–on soil nematodes. This study provides a theoretical basis for ongoing environmental impact monitoring of transgenic plants.
Collapse
|
35
|
Scientific Opinion on an application from Pioneer Hi‐Bred International and Dow AgroSciences LLC (EFSA‐GMO‐NL‐2005‐23) for placing on the market of genetically modified maize 59122 for food and feed uses, import, processing and cultivation under Regulation (EC) No 1829/2003. EFSA J 2013. [DOI: 10.2903/j.efsa.2013.3135] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
36
|
Li YL, Fang ZX, You J. Application of Box-Behnken experimental design to optimize the extraction of insecticidal Cry1Ac from soil. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:1464-1470. [PMID: 23327690 DOI: 10.1021/jf304970g] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A validated method for analyzing Cry proteins is a premise to study the fate and ecological effects of contaminants associated with genetically engineered Bacillus thuringiensis crops. The current study has optimized the extraction method to analyze Cry1Ac protein in soil using a response surface methodology with a three-level-three-factor Box-Behnken experimental design (BBD). The optimum extraction conditions were at 21 °C and 630 rpm for 2 h. Regression analysis showed a good fit of the experimental data to the second-order polynomial model with a coefficient of determination of 0.96. The method was sensitive and precise with a method detection limit of 0.8 ng/g dry weight and relative standard deviations at 7.3%. Finally, the established method was applied for analyzing Cry1Ac protein residues in field-collected soil samples. Trace amounts of Cry1Ac protein were detected in the soils where transgenic crops have been planted for 8 and 12 years.
Collapse
Affiliation(s)
- Yan-Liang Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, Peoples' Republic of China
| | | | | |
Collapse
|
37
|
Scientific Opinion updating the risk assessment conclusions and risk management recommendations on the genetically modified insect resistant maize MON 810. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.3017] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
38
|
Chaudhry V, Dang HQ, Tran NQ, Mishra A, Chauhan PS, Gill SS, Nautiyal CS, Tuteja N. Impact of salinity-tolerant MCM6 transgenic tobacco on soil enzymatic activities and the functional diversity of rhizosphere microbial communities. Res Microbiol 2012; 163:511-7. [PMID: 22989673 DOI: 10.1016/j.resmic.2012.08.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 08/08/2012] [Indexed: 10/27/2022]
Abstract
The development of genetically modified plants for agriculture has provided numerous economic benefits, but has also raised concern over the potential impact of transgenic plants upon the environment. The rhizosphere is the soil compartment that is directly under the influence of living roots; it constitutes a complex niche likely to be exploited by a wide variety of bacteria potentially influenced by the introduction of transgenes in genetically modified plants. In the present study, the impact of overexpression of the salinity stress-tolerant minichromosome maintenance complex subunit 6 (MCM6) gene upon functional diversity and soil enzymatic activity in the rhizosphere of transgenic tobacco in the presence and absence of salt stress was examined. The diversity of culturable bacterial communities and soil enzymes, namely, dehydrogenases and acid phosphatases, was assessed and revealed no significant (or only minor) alterations due to transgenes in the rhizosphere soil of tobacco plants. Patterns in principal components analysis showed clustering of transgenic and non-transgenic tobacco plants according to the fingerprint of their associated bacterial communities. However, the presence of MCM6 tobacco did not cause changes in microbial populations, soil enzymatic activities or the functional diversity of the rhizosphere soil microbial community.
Collapse
Affiliation(s)
- Vasvi Chaudhry
- CSIR - National Botanical Research Institute, Rana Pratap Marg, Lucknow, UP 226001, India
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Scientific Opinion on a request from the European Commission related to the emergency measure notified by France on genetically modified maize MON 810 according to Article 34 of Regulation (EC) No 1829/2003. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2705] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
40
|
Devos Y, De Schrijver A, De Clercq P, Kiss J, Romeis J. Bt-maize event MON 88017 expressing Cry3Bb1 does not cause harm to non-target organisms. Transgenic Res 2012; 21:1191-214. [DOI: 10.1007/s11248-012-9617-z] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Accepted: 04/04/2012] [Indexed: 11/28/2022]
|
41
|
Barriuso J, Valverde JR, Mellado RP. Effect of Cry1Ab protein on rhizobacterial communities of Bt-maize over a four-year cultivation period. PLoS One 2012; 7:e35481. [PMID: 22558158 PMCID: PMC3340378 DOI: 10.1371/journal.pone.0035481] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Accepted: 03/16/2012] [Indexed: 11/29/2022] Open
Abstract
Background Bt-maize is a transgenic variety of maize expressing the Cry toxin from Bacillus turingiensis. The potential accumulation of the relative effect of the transgenic modification and the cry toxin on the rhizobacterial communities of Bt-maize has been monitored over a period of four years. Methodology/Principal Findings The accumulative effects of the cultivation of this transgenic plant have been monitored by means of high throughput DNA pyrosequencing of the bacterial DNA coding for the 16S rRNA hypervariable V6 region from rhizobacterial communities. The obtained sequences were subjected to taxonomic, phylogenetic and taxonomic-independent diversity studies. The results obtained were consistent, indicating that variations detected in the rhizobacterial community structure were possibly due to climatic factors rather than to the presence of the Bt-gene. No variations were observed in the diversity estimates between non-Bt and Bt-maize. Conclusions/Significance The cultivation of Bt-maize during the four-year period did not change the maize rhizobacterial communities when compared to those of the non-Bt maize. This is the first study to be conducted with Bt-maize during such a long cultivation period and the first evaluation of rhizobacterial communities to be performed in this transgenic plant using Next Generation Sequencing.
Collapse
Affiliation(s)
- Jorge Barriuso
- Centro Nacional de Biotecnología (CSIC), Campus de la Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - José R. Valverde
- Centro Nacional de Biotecnología (CSIC), Campus de la Universidad Autónoma, Cantoblanco, Madrid, Spain
| | - Rafael P. Mellado
- Centro Nacional de Biotecnología (CSIC), Campus de la Universidad Autónoma, Cantoblanco, Madrid, Spain
- * E-mail:
| |
Collapse
|
42
|
Li X, Liu B, Wang X, Han Z, Cui J, Luo J. Field trials to evaluate effects of continuously planted transgenic insect-resistant cottons on soil invertebrates. ACTA ACUST UNITED AC 2012; 14:1055-63. [DOI: 10.1039/c2em10378h] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Fang H, Dong B, Yan H, Tang F, Wang B, Yu Y. Effect of vegetation of transgenic Bt rice lines and their straw amendment on soil enzymes, respiration, functional diversity and community structure of soil microorganisms under field conditions. J Environ Sci (China) 2012; 24:1259-69. [PMID: 23513447 DOI: 10.1016/s1001-0742(11)60939-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
With the development of transgenic crops, there is an increasing concern about the possible adverse effects of their vegetation and residues on soil environmental quality. This study was carried out to evaluate the possible effects of the vegetation of transgenic Bt rice lines Huachi B6 (HC) and TT51 (TT) followed by the return of their straw to the soil on soil enzymes (catalase, urease, neutral phosphatase and invertase), anaerobic respiration activity, microbial utilization of carbon substrates and community structure, under field conditions. The results indicated that the vegetation of the two transgenic rice lines (HC and TT) and return of their straw had few adverse effects on soil enzymes and anaerobic respiration activity compared to their parent and distant parent, although some transient differences were observed. The vegetation and subsequent straw amendment of Bt rice HC and TT did not appear to have a harmful effect on the richness, evenness and community structure of soil microorganisms. No different pattern of impact due to plant species was found between HC and TT. It could be concluded that the vegetation of transgenic Bt rice lines and the return of their straw as organic fertilizer may not alter soil microbe-mediated functions.
Collapse
Affiliation(s)
- Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | | | | | | | | | | |
Collapse
|
44
|
Scientific Opinion updating the evaluation of the environmental risk assessment and risk management recommendations on insect resistant genetically modified maize 1507 for cultivation. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2429] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
45
|
Scientific Opinion on application (EFSA-GMO-CZ-2008-54) for placing on the market of genetically modified insect resistant and herbicide tolerant maize MON 88017 for cultivation under Regulation (EC) No 1829/2003 from Monsanto. EFSA J 2011. [DOI: 10.2903/j.efsa.2011.2428] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
46
|
Effect of transgenic alfalfa plants with introduced gene for Alfalfa Mosaic Virus coat protein on rhizosphere microbial community composition and physiological profile. Biologia (Bratisl) 2011. [DOI: 10.2478/s11756-011-0082-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
47
|
Yu HL, Li YH, Wu KM. Risk assessment and ecological effects of transgenic Bacillus thuringiensis crops on non-target organisms. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:520-38. [PMID: 21564541 DOI: 10.1111/j.1744-7909.2011.01047.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The application of recombinant DNA technology has resulted in many insect-resistant varieties by genetic engineering (GE). Crops expressing Cry toxins derived from Bacillus thuringiensis (Bt) have been planted worldwide, and are an effective tool for pest control. However, one ecological concern regarding the potential effects of insect-resistant GE plants on non-target organisms (NTOs) has been continually debated. In the present study, we briefly summarize the data regarding the development and commercial use of transgenic Bt varieties, elaborate on the procedure and methods for assessing the non-target effects of insect-resistant GE plants, and synthetically analyze the related research results, mostly those published between 2005 and 2010. A mass of laboratory and field studies have shown that the currently available Bt crops have no direct detrimental effects on NTOs due to their narrow spectrum of activity, and Bt crops are increasing the abundance of some beneficial insects and improving the natural control of specific pests. The use of Bt crops, such as Bt maize and Bt cotton, results in significant reductions of insecticide application and clear benefits on the environment and farmer health. Consequently, Bt crops can be a useful component of integrated pest management systems to protect the crop from targeted pests.
Collapse
Affiliation(s)
- Hui-Lin Yu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | | |
Collapse
|
48
|
Höss S, Nguyen HT, Menzel R, Pagel-Wieder S, Miethling-Graf R, Tebbe CC, Jehle JA, Traunspurger W. Assessing the risk posed to free-living soil nematodes by a genetically modified maize expressing the insecticidal Cry3Bb1 protein. THE SCIENCE OF THE TOTAL ENVIRONMENT 2011; 409:2674-2684. [PMID: 21511326 DOI: 10.1016/j.scitotenv.2011.03.041] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Revised: 03/31/2011] [Accepted: 03/31/2011] [Indexed: 05/30/2023]
Abstract
Before pest-resistant genetically modified maize can be grown commercially, the risks for soil-beneficial, non-target organisms must be determined. Here, a tiered approach was used to assess the risk to free-living soil nematodes posed by maize genetically modified to express the insecticidal Cry3Bb1 protein (event Mon88017), which confers resistance towards western corn rootworm (Diabrotica virgifera; Coleoptera). The toxicity of purified Cry3Bb1 for the nematode Caenorhabditis elegans was determined using a bioassay and gene expression analysis. In addition, a soil toxicity test was used to assess the effects on C. elegans of rhizosphere soil obtained from plots of an experimental field grown with Mon88017, the near-isogenic cultivar, or either of two conventional cultivars. Finally, the indigenous nematode communities from the experimental field site with Mon88017 and from the control cultivars were analyzed. The results showed a dose-dependent inhibitory effect of Cry3Bb1 on the growth and reproduction of C. elegans, with EC50 values of 22.3 mg l⁻¹ and 7.9 mg l⁻¹, respectively. Moreover, Cry-protein-specific defense genes were found to be up-regulated in the presence of either Cry1Ab or Cry3Bb1. However, C. elegans was not affected by rhizosphere soils from Mon88017 compared to the control plots, due to the very low Cry3Bb1 concentrations, as indicated by quantitative analyses (< 1 ng g⁻¹ soil). Nematode abundance and diversity were essentially the same between the various maize cultivars. At the last sampling date, nematode genus composition in Bt-maize plots differed significantly from that in two of the three non-Bt cultivars, including the near-isogenic maize, but the shift in genus composition did not influence the composition of functional guilds within the nematode communities. In conclusion, the risk to free-living soil nematodes posed by Mon88017 cultivation can be regarded as low, as long as Cry3Bb1 concentrations in soil remain four orders of magnitude below the toxicity threshold.
Collapse
Affiliation(s)
- S Höss
- Institute of Biodiversity-Network (ibn), Drei-Kronen-Gasse 2, 93047 Regensburg, Germany; Ecossa (Ecological Sediment and Soil Assessment), Giselastr. 6, 82319 Starnberg, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Decomposition rates and residue-colonizing microbial communities of Bacillus thuringiensis insecticidal protein Cry3Bb-expressing (Bt) and non-Bt corn hybrids in the field. Appl Environ Microbiol 2010; 77:839-46. [PMID: 21148693 DOI: 10.1128/aem.01954-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Despite the rapid adoption of crops expressing the insecticidal Cry protein(s) from Bacillus thuringiensis (Bt), public concern continues to mount over the potential environmental impacts. Reduced residue decomposition rates and increased tissue lignin concentrations reported for some Bt corn hybrids have been highlighted recently as they may influence soil carbon dynamics. We assessed the effects of MON863 Bt corn, producing the Cry3Bb protein against the corn rootworm complex, on these aspects and associated decomposer communities by terminal restriction fragment length polymorphism (T-RFLP) analysis. Litterbags containing cobs, roots, or stalks plus leaves from Bt and unmodified corn with (non-Bt+I) or without (non-Bt) insecticide applied were placed on the soil surface and at a 10-cm depth in field plots planted with these crop treatments. The litterbags were recovered and analyzed after 3.5, 15.5, and 25 months. No significant effect of treatment (Bt, non-Bt, and non-Bt+I) was observed on initial tissue lignin concentrations, litter decomposition rate, or bacterial decomposer communities. The effect of treatment on fungal decomposer communities was minor, with only 1 of 16 comparisons yielding separation by treatment. Environmental factors (litterbag recovery year, litterbag placement, and plot history) led to significant differences for most measured variables. Combined, these results indicate that the differences detected were driven primarily by environmental factors rather than by any differences between the corn hybrids or the use of tefluthrin. We conclude that the Cry3Bb corn tested in this study is unlikely to affect carbon residence time or turnover in soils receiving these crop residues.
Collapse
|
50
|
Sohn SI, Oh YJ, Oh SD, Kim MK, Ryu TH, Lee KJ, Suh SC, Baek HJ, Park JS. Molecular Analysis of Microbial Community in Soils Cultivating Bt Chinese Cabbage. ACTA ACUST UNITED AC 2010. [DOI: 10.5338/kjea.2010.29.3.293] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|