1
|
Ijaz R, Shahzad N, Farhan Ul Haque M. Detection of BK and JC polyomaviruses in sewage water of the urban areas of Lahore, Pakistan. Biologia (Bratisl) 2023; 78:1-8. [PMID: 37363645 PMCID: PMC10173206 DOI: 10.1007/s11756-023-01430-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/02/2023] [Indexed: 06/28/2023]
Abstract
The surveillance of sewage water has become an extremely essential tool to trace the circulation of viruses in a population and to predict the outbreak of viral diseases. Sewage monitoring is important for those viruses which cause subclinical infections since it is difficult to determine their prevalence. Polyomaviruses are ubiquitously present, circular double-stranded DNA viruses that can infect humans as well. Among all human polyomaviruses, BK polyomavirus and JC polyomavirus associated with the development of aggressive diseases in immunocompromised individuals, are highly prevalent. This study aimed to investigate the presence and the quantitative prevalence of these two disease-associated human polyomaviruses in sewage water collected from six drains of Lahore, Pakistan. The viruses present in the environmental samples were concentrated by PEG method before isolating viral nucleic acids. Conventional PCR amplifications were performed for molecular detection of BK polyomavirus and JC polyomavirus targeting their large tumor antigen genetic region. The presence of BK polyomavirus and JC polyomavirus was confirmed in the DNA extracted from concentrated sewage samples of each drain by performing both qualitative and quantitative PCR. Our data shows that the viral load ranged from 1278 to 178368 copies per µg of environmental DNA for BK polyomavirus and 5173 to 79129 copies per µg of environmental DNA for JC polyomavirus. In conclusion, here we report first time the detection of BK polyomavirus and JC polyomavirus in sewage water collected from six main drains in urban areas of Lahore, Pakistan showing the high prevalence of these viruses in the Pakistani population. This assay could be used as a proxy to determine the prevalence of these viruses in the Pakistani population.
Collapse
Affiliation(s)
- Rabia Ijaz
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54000 Pakistan
| | - Naveed Shahzad
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54000 Pakistan
| | - Muhammad Farhan Ul Haque
- School of Biological Sciences, University of the Punjab, Quaid-i-Azam Campus, Lahore, 54000 Pakistan
| |
Collapse
|
2
|
Maidana-Kulesza MN, Poma HR, Sanguino-Jorquera DG, Reyes SI, Del Milagro Said-Adamo M, Mainardi-Remis JM, Gutiérrez-Cacciabue D, Cristóbal HA, Cruz MC, Aparicio González M, Rajal VB. Tracking SARS-CoV-2 in rivers as a tool for epidemiological surveillance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157707. [PMID: 35908692 PMCID: PMC9334864 DOI: 10.1016/j.scitotenv.2022.157707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 07/04/2022] [Accepted: 07/26/2022] [Indexed: 05/22/2023]
Abstract
The aim of this work was to evaluate if rivers could be used for SARS-CoV-2 surveillance. Five sampling points from three rivers (AR-1 and AR-2 in Arenales River, MR-1 and MR-2 in Mojotoro River, and CR in La Caldera River) from Salta (Argentina), two of them receiving discharges from wastewater plants (WWTP), were monitored from July to December 2020. Fifteen water samples from each point (75 in total) were collected and characterized physico-chemically and microbiologically and SARS-CoV-2 was quantified by RT-qPCR. Also, two targets linked to human contributions, human polyomavirus (HPyV) and RNase P, were quantified and used to normalize SARS-CoV-2 concentration, which was compared to reported COVID-19 cases. Statistical analyses allowed us to verify the correlation between SARS-CoV-2 and the concentration of fecal indicator bacteria (FIB), as well as to find similarities and differences between sampling points. La Caldera River showed the best water quality; FIBs were within acceptable limits for recreational activities. Mojotoro River's water quality was not affected by the northern WWTP of the city. Instead, Arenales River presented the poorest water quality; at AR-2 was negatively affected by the discharges of the southern WWTP, which contributed to significant increase of fecal contamination. SARS-CoV-2 was found in about half of samples in low concentrations in La Caldera and Mojotoro Rivers, while it was high and persistent in Arenales River. No human tracers were detected in CR, only HPyV was found in MR-1, MR-2 and AR-1, and both were quantified in AR-2. The experimental and normalized viral concentrations strongly correlated with reported COVID-19 cases; thus, Arenales River at AR-2 reflected the epidemiological situation of the city. This is the first study showing the dynamic of SARS-CoV-2 concentration in an urban river highly impacted by wastewater and proved that can be used for SARS-CoV-2 surveillance to support health authorities.
Collapse
Affiliation(s)
- María Noel Maidana-Kulesza
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Hugo Ramiro Poma
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Diego Gastón Sanguino-Jorquera
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Sarita Isabel Reyes
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - María Del Milagro Said-Adamo
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ciencias Naturales, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Juan Martín Mainardi-Remis
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Dolores Gutiérrez-Cacciabue
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Héctor Antonio Cristóbal
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ciencias Naturales, UNSa, Av. Bolivia 5150, Salta 4400, Argentina
| | - Mercedes Cecilia Cruz
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Mónica Aparicio González
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina
| | - Verónica Beatriz Rajal
- Laboratorio de Aguas y Suelos, Instituto de Investigaciones para la Industria Química (INIQUI), Universidad Nacional de Salta (UNSa) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Bolivia 5150, Salta 4400, Argentina; Facultad de Ingeniería, UNSa, Av. Bolivia 5150, Salta 4400, Argentina; Singapore Centre for Environmental Life Science Engineering (SCELSE), Nanyang Technological University, Singapore.
| |
Collapse
|
3
|
Lee WL, Gu X, Armas F, Leifels M, Wu F, Chandra F, Chua FJD, Syenina A, Chen H, Cheng D, Ooi EE, Wuertz S, Alm EJ, Thompson J. Monitoring human arboviral diseases through wastewater surveillance: Challenges, progress and future opportunities. WATER RESEARCH 2022; 223:118904. [PMID: 36007397 DOI: 10.1016/j.watres.2022.118904] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 07/19/2022] [Accepted: 07/23/2022] [Indexed: 05/21/2023]
Abstract
Arboviral diseases are caused by a group of viruses spread by the bite of infected arthropods. Amongst these, dengue, Zika, west nile fever and yellow fever cause the greatest economic and social impact. Arboviral epidemics have increased in frequency, magnitude and geographical extent over the past decades and are expected to continue increasing with climate change and expanding urbanisation. Arboviral prevalence is largely underestimated, as most infections are asymptomatic, nevertheless existing surveillance systems are based on passive reporting of loosely defined clinical syndromes with infrequent laboratory confirmation. Wastewater-based surveillance (WBS), which has been demonstrated to be useful for monitoring diseases with significant asymptomatic populations including COVID19 and polio, could be a useful complement to arboviral surveillance. We review the current state of knowledge and identify key factors that affect the feasibility of monitoring arboviral diseases by WBS to include viral shedding loads by infected persons, the persistence of shed arboviruses and the efficiency of their recovery from sewage. We provide a simple model on the volume of wastewater that needs to be processed for detection of arboviruses, in face of lower arboviral shedding rates. In all, this review serves to reflect on the key challenges that need to be addressed and overcome for successful implementation of arboviral WBS.
Collapse
Affiliation(s)
- Wei Lin Lee
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Xiaoqiong Gu
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Federica Armas
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Mats Leifels
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Fuqing Wu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, Center for Infectious Disease, University of Texas School of Public Health, Houston, TX, USA
| | - Franciscus Chandra
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Feng Jun Desmond Chua
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Ayesa Syenina
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore
| | - Hongjie Chen
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore
| | - Dan Cheng
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore
| | - Eng Eong Ooi
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore; Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore 169857, Singapore; Viral Research and Experimental Medicine Centre (ViREMiCS), SingHealth Duke-NUS Academic Medical Centre, Singapore 169856, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, Singapore 117549, Singapore
| | - Stefan Wuertz
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Eric J Alm
- Antimicrobial Resistance Interdisciplinary Research Group, Singapore-MIT Alliance for Research and Technology, Singapore 138602, Singapore; Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, MA 02139, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| | - Janelle Thompson
- Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 138602, Singapore; Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore 637551, Singapore; Asian School of the Environment, Nanyang Technological University, Singapore 637459, Singapore.
| |
Collapse
|
4
|
Opere WM, John M, Ombori O, Kiulia NM. Identification of enteroviruses along Lake Victoria shoreline - a potential indicator of sewage pollution. Access Microbiol 2022; 4:000334. [PMID: 35812714 PMCID: PMC9260088 DOI: 10.1099/acmi.0.000334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 01/23/2022] [Indexed: 11/29/2022] Open
Abstract
Enteric viruses are mainly transmitted by the faecal-oral route and have been linked to several diseases including gastroenteritis and respiratory infections. Their presence in surface waters has been exacerbated by pollution from a variety of point sources such as sewage discharge. We studied the occurrence of enteroviruses in water samples from Lake Victoriain Kenya to investigate if there was a link between sewage pollution and detection of enteroviruses (EVs) to build a baseline for an enteric viruses monitoring platform for this region. We analysed 216 samples collected over 6 months from six different locations along the Homa Bay Pier. The six sampling locations comprised of three sites (P3, P5, P6) located <500 m from a local sewage treatment plant and pit latrines while three other sites (P1, P2, P4) were located at approximately 0.5 to 3 Km. EVs were concentrated using glass wool adsorption elution protocol and identified using the nested reverse transcription-polymerase chain reaction. The odds ratio was performed to determine whether the location of the sources of sewage pollution near the lake was associated with the EVs contamination. Five out of 108 (5 %) samples collected from the sites (P3, P5 and P6 were EV positive, while 2 % (2/108) of samples from P1, P2 and P4 were EV positive. The presence of the EVs was associated with the distance from the possible sources of faecal contamination (odds ratio 20.28 and 4.86, confidence interval 2.42, and 0.95) for pit latrines and the sewage treatment plant respectively. The result from this study indicates that sewage discharge at the shoreline of Lake Victoria may have been the source of EVs contamination. Data from this study could significantly contribute to informing risk management on sewage pollution in Lake Victoria and it is important to continue monitoring this lake for potentially pathogenic enteric viruses.
Collapse
Affiliation(s)
- Wasonga M. Opere
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Maingi John
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, Nairobi, Kenya
| | - Omwoyo Ombori
- Department of Plant Sciences, Kenyatta University, Nairobi, Kenya
| | - Nicholas M. Kiulia
- Enteric pathogens & Water Research Laboratory, Institute of Primate Research (IPR), Nairobi, Kenya
| |
Collapse
|
5
|
Nam SJ, Hu WS, Koo OK. Evaluation of crAssphage as a human-specific microbial source-tracking marker in the Republic of Korea. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:367. [PMID: 35426058 DOI: 10.1007/s10661-022-09918-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
CrAssphage is a novel and by far the most abundant bacteriophage in the human gut and has been proposed as a human-specific microbial source tracking (MST) marker. However, its global use as a human-specific MST marker requires validation in more extensive regions. The purpose of this study was to evaluate the specificity and abundance of the human-specific MST marker crAssphage with PCR and RT-PCR assays in human and animal feces in Korea. The prevalence of crAssphage was confirmed in 94 human feces samples (subjects: 19 to 45 years old) and 56 animal feces samples (from birds, raccoons, squirrels, weasels, deer, wild boars, hares, cats, and dogs). CrAssphage showed sensitivity of 0.39 and specificity of 1.00 in Korea, with a sequencing analysis showing that genotype II was dominant at 71.9%. The quantitative analysis showed that crAssphage is sufficiently abundant in human feces given the high concentration range of 4.26 to 8.25 log gene copies (GC)/ng in human feces. In conclusion, this study confirmed the crAssphage as a specific and abundant MST marker with which to identify human fecal contamination in Korea.
Collapse
Affiliation(s)
- Su Jin Nam
- Department of Food and Nutrition, Gyeongsang National University, Jinju, 52828, Republic of Korea
| | - Wen Si Hu
- Department of Food Science and Engineering, Liaocheng University, Liaocheng, 252059, China
| | - Ok Kyung Koo
- Department of Food Science, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
6
|
Sojobi AO, Zayed T. Impact of sewer overflow on public health: A comprehensive scientometric analysis and systematic review. ENVIRONMENTAL RESEARCH 2022; 203:111609. [PMID: 34216613 DOI: 10.1016/j.envres.2021.111609] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/16/2021] [Accepted: 06/24/2021] [Indexed: 05/09/2023]
Abstract
Sewer overflow (SO), which has attracted global attention, poses serious threat to public health and ecosystem. SO impacts public health via consumption of contaminated drinking water, aerosolization of pathogens, food-chain transmission, and direct contact with fecally-polluted rivers and beach sediments during recreation. However, no study has attempted to map the linkage between SO and public health including Covid-19 using scientometric analysis and systematic review of literature. Results showed that only few countries were actively involved in SO research in relation to public health. Furthermore, there are renewed calls to scale up environmental surveillance to safeguard public health. To safeguard public health, it is important for public health authorities to optimize water and wastewater treatment plants and improve building ventilation and plumbing systems to minimize pathogen transmission within buildings and transportation systems. In addition, health authorities should formulate appropriate policies that can enhance environmental surveillance and facilitate real-time monitoring of sewer overflow. Increased public awareness on strict personal hygiene and point-of-use-water-treatment such as boiling drinking water will go a long way to safeguard public health. Ecotoxicological studies and health risk assessment of exposure to pathogens via different transmission routes is also required to appropriately inform the use of lockdowns, minimize their socio-economic impact and guide evidence-based welfare/social policy interventions. Soft infrastructures, optimized sewer maintenance and prescreening of sewer overflow are recommended to reduce stormwater burden on wastewater treatment plant, curtail pathogen transmission and marine plastic pollution. Comprehensive, integrated surveillance and global collaborative efforts are important to curtail on-going Covid-19 pandemic and improve resilience against future pandemics.
Collapse
Affiliation(s)
| | - Tarek Zayed
- Department of Building and Real Estate, The Hong Kong Polytechnic University, Hong Kong, China.
| |
Collapse
|
7
|
Goh SG, Liang L, Gin KYH. Assessment of Human Health Risks in Tropical Environmental Waters with Microbial Source Tracking Markers. WATER RESEARCH 2021; 207:117748. [PMID: 34837748 DOI: 10.1016/j.watres.2021.117748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 10/06/2021] [Accepted: 10/07/2021] [Indexed: 06/13/2023]
Abstract
Human specific microbial source tracking (MST) markers which are highly specific to human waste contamination offer the advantage of better association with human pathogens than traditional microbial indicators. However, the performance of these MST markers may vary across different geographical regions. The magnitude of MST markers also plays an important role in interpreting the health risks. This study aims to (i) validate the specificity and sensitivity of human markers for tropical urban catchments; (ii) identify the threshold concentrations of MST markers, i.e. human polyomaviruses (HPyVs), Bacteroides thetaiotaomicron (B. theta) and Methanobrevibacter smithii (M. smithii), that correspond to the acceptable gastrointestinal (GI) illness risks associated with swimming using the QMRA approach; and (iii) validate the threshold concentrations of MST markers using the surveillance data obtained from the tropical urban environment. Among the three MST markers, HPyVs showed the highest specificity (100%) to sewage samples, followed by M. smithii (97%) and B. theta (90%). All MST markers showed 100% sensitivity towards sewage contamination, with B. theta present in highest abundance in sewage, followed by HPyVs and M. smithii. This study demonstrates a risk-based framework to identify the threshold concentrations of MST markers associated with GI illness risks in environmental waters by considering two main influencing factors (i.e. decay and dilution factors). This study successfully validated the B. theta threshold concentration range (581 to 8073 GC/100 mL) with field data (370 to 6500 GC/100 mL) in estimating GI illness risks with an Enterococcus model. Field data showed that the MST markers at threshold concentrations were able to classify the safe level in more than 83% of the samples, according to GI illness risks from Enterococcus and adenovirus. The study also highlighted the lack of associations between MST markers and GI illness risks from norovirus. With comprehensive information on specificity, sensitivity and threshold concentrations of MST markers, increasing confidence can be placed on identifying human source contamination and evaluating the health risks posed in environmental waters in Singapore.
Collapse
Affiliation(s)
- S G Goh
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, #02-01, 5A Engineering Drive 1 117411, Singapore
| | - L Liang
- Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, Block E1A, #07-03,1 Engineering Drive 2 117576, Singapore
| | - K Y H Gin
- NUS Environmental Research Institute, National University of Singapore, T-Lab Building, #02-01, 5A Engineering Drive 1 117411, Singapore; Department of Civil & Environmental Engineering, Faculty of Engineering, National University of Singapore, Block E1A, #07-03,1 Engineering Drive 2 117576, Singapore.
| |
Collapse
|
8
|
Makkaew P, Kongprajug A, Chyerochana N, Sresung M, Precha N, Mongkolsuk S, Sirikanchana K. Persisting antibiotic resistance gene pollution and its association with human sewage sources in tropical marine beach waters. Int J Hyg Environ Health 2021; 238:113859. [PMID: 34655856 DOI: 10.1016/j.ijheh.2021.113859] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/25/2021] [Accepted: 10/05/2021] [Indexed: 12/12/2022]
Abstract
Antibiotic-resistant bacteria (ARB) and antibiotic resistance genes (ARGs) are pollutants of worldwide concern that threaten human health and ecosystems. Anthropogenic activities and wastewater could be ARB and ARG pollution sources; however, research on ARG abundance and microbial source tracking (MST) of contamination in tropical marine waters is limited. This study examined spatiotemporal variations of six ARGs (blaNDM, blaTEM, blaVIM, mcr-1, sul1, and tetQ) against the widely used antibiotic groups and a class 1 integron-integrase gene (intI1) at two Thai tropical recreational beaches (n = 41). Correlations between ARGs and sewage-specific MST markers (i.e., crAssphage and human polyomaviruses [HPyVs]) and fecal indicator bacteria (i.e., total coliforms, fecal coliforms, and enterococci) were also investigated. BlaTEM, intI1, sul1, and tetQ were ubiquitous at both beaches (85.4-100% detection rate); intI1 was the most abundant (3-6 orders in log10 copies/100 mL), followed by blaTEM (2-4 orders), sul1 (2-3 orders), and tetQ (2-4 orders). BlaNDM was found in 7.3% (up to 4 orders), and no mcr-1 was detected. Interestingly, blaVIM was prevalent at one beach (2-5 orders; n = 17), but found in only one sample at the other (4 orders). Temporal, but not spatial, differences were noticed; blaTEM was at higher levels in the wet season. IntI1 correlated with sul1 and tetQ (Spearman's rho = 0.47-0.97), suggesting potential horizontal gene transfer. CrAssphage, but not HPyVs, correlated with intI1, sul1, and tetQ (Spearman's rho = 0.50-0.74). Higher numbers of ARGs tended to co-occur in samples with higher crAssphage concentrations, implying sewage contribution to the marine water, with a persisting ARG background. This study provides insight into the ARG pollution status of tropical coastal waters and suggests crAssphage as a proxy for ARG pollution, which could facilitate effective management policies to minimize ARG dissemination in marine environments.
Collapse
Affiliation(s)
- Prasert Makkaew
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Akechai Kongprajug
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Natcha Chyerochana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Montakarn Sresung
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand
| | - Nopadol Precha
- Department of Environmental Health and Technology, School of Public Health, Walailak University, Nakhon Si Thammarat, 80160, Thailand; One Health Research Center, Walailak University, Nakhon Si Thammarat, 80160, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology EHT, Ministry of Education, Bangkok, 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology EHT, Ministry of Education, Bangkok, 10400, Thailand.
| |
Collapse
|
9
|
Human Polyomaviruses (HPyV) in Wastewater and Environmental Samples from the Lisbon Metropolitan Area: Detection and Genetic Characterization of Viral Structural Protein-Coding Sequences. Pathogens 2021; 10:pathogens10101309. [PMID: 34684259 PMCID: PMC8540013 DOI: 10.3390/pathogens10101309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 10/04/2021] [Accepted: 10/08/2021] [Indexed: 12/02/2022] Open
Abstract
Due to the lack of reliable epidemiological information regarding the geographic distribution and genetic diversity of human polyomaviruses (HPyV) in Portugal, we addressed these issues in this initial study by focusing on the Lisbon Metropolitan area, the most populated and culturally diverse hub in the country. The HPyV structural protein-coding sequence was partially amplified using two touch-down PCR multiplex protocols, starting from water samples, collected between 2018 and 2020, where viral genomes were detected. The obtained results disclosed the frequent detection of HPyV1, HPyV2, HPyV5, and HPyV6 in 35.3% (n = 6), 29.4% (n = 5), 47.1% (n = 8) and 29.4% (n = 5), respectively, of the water samples analyzed. The sequences assigned to a given viral species did not segregate to a single genotype, this being especially true for HPyV2 for which five genotypes (including a putative new genotype 9) could be identified. The phylogenetic trees obtained for HPyV5 and HPyV6 had less resolving power than those obtained for HPyV1/HPyV2, but both viruses were shown to be genetically diverse. This analysis emphasizes the epidemiological helpfulness of these detection/genetic characterization studies in addition to being relevant tools for assessment of human waste contamination.
Collapse
|
10
|
Yasar SA, Mills TJT, Uluturk ZI, Ruszczyk JMS, LeBard RJ, Neilan BA. Quantitative detection of human- and canine-associated Bacteroides genetic markers from an urban coastal lagoon. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1732-1744. [PMID: 34662309 DOI: 10.2166/wst.2021.341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The contamination of water catchments by nonpoint source faecal pollution is a major issue affecting the microbial quality of receiving waters and is associated with the occurrence of a range of enteric illnesses in humans. The potential sources of faecal pollution in surface waters are diverse, including urban sewage leaks, surface runoff and wildlife contamination originating from a range of hosts. The major contributing hosts require identification to allow targeted management of this public health concern. In this study, two high-performing Microbial Source Tracking (MST) assays, HF183/Bac242 and BacCan-UCDmodif, were used for their ability to detect host-specific Bacteroides 16Sr RNA markers for faecal pollution in a 12-month study on an urban coastal lagoon in Sydney, Australia. The lagoon was found to contain year-round high numbers of human and canine faecal markers, as well as faecal indicator bacteria counts, suggesting considerable human and animal faecal pollution. The high sensitivity and specificity of the HF183/Bac242 and BacCan-UCDmodif assays, together with the manageable levels of PCR inhibition and high level DNA extraction efficiency obtained from lagoon water samples make these markers candidates for inclusion in an MST 'toolbox' for investigating host origins of faecal pollution in urban surface waters.
Collapse
Affiliation(s)
- Serhat A Yasar
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Toby J T Mills
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, Australia E-mail:
| | - Zehra I Uluturk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | | | - Rebecca J LeBard
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, Australia
| | - Brett A Neilan
- School of Environmental and Life Sciences, The University of Newcastle, Callaghan, Australia E-mail:
| |
Collapse
|
11
|
Sangkaew W, Kongprajug A, Chyerochana N, Ahmed W, Rattanakul S, Denpetkul T, Mongkolsuk S, Sirikanchana K. Performance of viral and bacterial genetic markers for sewage pollution tracking in tropical Thailand. WATER RESEARCH 2021; 190:116706. [PMID: 33310444 DOI: 10.1016/j.watres.2020.116706] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/26/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Identifying sewage contamination via microbial source tracking (MST) marker genes has proven useful for effective water quality management worldwide; however, performance evaluations for these marker genes in tropical areas are limited. Therefore, this research evaluated four human-associated MST marker genes (human polyomaviruses (JC and BK viruses [HPyVs]), bacteriophage crAssphage (CPQ_056), Lachnospiraceae Lachno3, and Bacteroides BacV6-21) for tracking sewage pollution in aquatic environments of Thailand. The viral marker genes, HPyV and crAssphage were highly sensitive and specific to sewage from onsite wastewater treatment plants (OWTPs; n = 19), with no cross-detection in 120 composite swine, cattle, chicken, duck, goat, sheep, and buffalo fecal samples. The bacterial marker genes, Lachno3 and BacV6-21, demonstrated high sensitivity but moderate specificity; however, using both markers could improve specificity to >0.80 (max value of 1.00). The most abundant markers in OWTP samples were Lachno3 and BacV6-21 (5.42-8.02 and nondetect-8.05 log10 copies/100 mL), crAssphage (5.28-7.38 log10 copies/100 mL), and HPyVs (3.66-6.53 log10 copies/100 mL), respectively. Due to their increased specificity, the abundance of viral markers were further investigated in environmental waters, in which HPyVs showed greater levels (up to 4.33 log10 copies/100 mL) and greater detection rates (92.7%) in two coastal beaches (n = 41) than crAssphage (up to 3.51 log10 copies/100 mL and 56.1%). HPyVs were also found at slightly lower levels (up to 5.10 log10 copies/100 mL), but at higher detection rates (92.6%), in a freshwater canal (n = 27) than crAssphage (up to 5.21 log10 copies/100 mL and 88.9%). HPyVs and crAssphage marker genes were identified as highly sensitive and specific for tracking sewage pollution in aquatic environments of Thailand. This study underlines the importance of characterizing and validating MST markers in host groups and environmental waters before including them in a water quality management toolbox.
Collapse
Affiliation(s)
- Watsawan Sangkaew
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kampangpetch 6 Road, Laksi, Bangkok, 10210, Thailand
| | - Akechai Kongprajug
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kampangpetch 6 Road, Laksi, Bangkok, 10210, Thailand
| | - Natcha Chyerochana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kampangpetch 6 Road, Laksi, Bangkok, 10210, Thailand
| | - Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia
| | - Surapong Rattanakul
- Department of Environmental Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi, 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
| | - Thammanitchpol Denpetkul
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, 420/6 Ratchawithi Road, Ratchathewi, Bangkok 10400, Thailand
| | - Skorn Mongkolsuk
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kampangpetch 6 Road, Laksi, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, 272 Rama 6 Road, Ratchathevi, Bangkok, 10400, Thailand
| | - Kwanrawee Sirikanchana
- Research Laboratory of Biotechnology, Chulabhorn Research Institute, 54 Kampangpetch 6 Road, Laksi, Bangkok, 10210, Thailand; Center of Excellence on Environmental Health and Toxicology, CHE, Ministry of Education, 272 Rama 6 Road, Ratchathevi, Bangkok, 10400, Thailand.
| |
Collapse
|
12
|
Stevenson LC, Allen T, Mendez D, Sellars D, Gould GS. Is open defaecation in outdoor recreation and camping areas a public health issue in Australia? A literature review. Health Promot J Austr 2019; 31:525-532. [PMID: 31608519 PMCID: PMC7586839 DOI: 10.1002/hpja.300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 08/13/2019] [Accepted: 10/03/2019] [Indexed: 11/07/2022] Open
Abstract
Issue addressed In Australia, natural areas used for outdoor recreation activities or camping often have limited or no sanitation infrastructure. Recreationist and campers may use open defaecation practices where toilets are not provided. Contaminated soils and watercourses are associated with gastrointestinal illnesses. This review aims to determine if open defaecation is a public health issue in outdoor recreation and camping areas in Australia. Method A literature review was conducted using the following search engines: CINAHL, Informit Database, Scopus, ProQuest Science & Technology, Medline (Ovid) and EBSCOhost. Inclusion criteria for this review were both experimental and observational research designs for studies describing the public health issues associated with open defaecation practice. Results Out of 12 147 papers identified, only three studies met the inclusion criteria, showing a lack of research into this area. Included were two studies that addressed human waste management practices in outdoor environments and the breakdown of human waste in alpine regions of Tasmania. The third study measured water contamination at a freshwater beach on K'gari‐Fraser Island, Queensland. Visitors to natural areas are potentially at high risk of illness due to exposure to faecal contamination from other visitors using unsafe open defaecation practices in high‐use camping areas. Conclusion The limited number of studies addressing open defaecation in the outdoor recreation and camp areas in Australia indicates this review is a starting point to identify critical areas that may be of concern when managing visitors in an outdoor recreation setting. This review recommends investigating barriers and enablers motivating human disposal waste in these settings to help formulate health promotion content; environmental management policies related to sanitation and hygiene should be also underpinned by public health policy; and providing appropriate sanitation options depending on the ecological and visitor numbers to natural areas. So what‐relevance of findings Outdoor recreation activities offer physical and mental health benefits for communities. The popularity of outdoor recreation activities is on the increase in Australia. With the rise in visitation to natural areas, management of human waste needs to be addressed to reduce the public health risk of illness.
Collapse
|
13
|
Malla B, Ghaju Shrestha R, Tandukar S, Sherchand JB, Haramoto E. Performance Evaluation of Human-Specific Viral Markers and Application of Pepper Mild Mottle Virus and CrAssphage to Environmental Water Samples as Fecal Pollution Markers in the Kathmandu Valley, Nepal. FOOD AND ENVIRONMENTAL VIROLOGY 2019; 11:274-287. [PMID: 31087275 DOI: 10.1007/s12560-019-09389-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 04/30/2019] [Indexed: 05/23/2023]
Abstract
Monitoring of environmental water is crucial to protecting humans and animals from possible health risks. Although numerous human-specific viral markers have been designed to track the presence of human fecal contamination in water, they lack adequate sensitivity and specificity in different geographical regions. We evaluated the performances of six human-specific viral markers [Aichi virus 1 (AiV-1), human adenoviruses (HAdVs), BK and JC polyomaviruses (BKPyVs and JCPyVs), pepper mild mottle virus (PMMoV), and crAssphage] using 122 fecal-source samples collected from humans and five animal hosts in the Kathmandu Valley, Nepal. PMMoV and crAssphage showed high sensitivity (90-100%) with concentrations of 4.5-9.1 and 6.2-7.0 log10 copies/g wet feces (n = 10), respectively, whereas BKPyVs, JCPyVs, HAdVs, and AiV-1 showed poor performances with sensitivities of 30-40%. PMMoV and crAssphage were detected in 40-100% and 8-90%, respectively, of all types of animal fecal sources and showed no significantly different concentrations among most of the fecal sources (Kruskal-Wallis test, P > 0.05), suggesting their applicability as general fecal pollution markers. Furthermore, a total of 115 environmental water samples were tested for PMMoV and crAssphage to identify fecal pollution. PMMoV and crAssphage were successfully detected in 62% (71/115) and 73% (84/115) of water samples, respectively. The greater abundance and higher mean concentration of crAssphage (4.1 ± 0.9 log10 copies/L) compared with PMMoV (3.3 ± 1.4 log10 copies/L) indicated greater chance of detection of crAssphage in water samples, suggesting that crAssphage could be preferred to PMMoV as a marker of fecal pollution.
Collapse
Affiliation(s)
- Bikash Malla
- Department of Natural, Biotic and Social Environment Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
| | - Rajani Ghaju Shrestha
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
| | - Sarmila Tandukar
- Department of Natural, Biotic and Social Environment Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
| | - Jeevan B Sherchand
- Institute of Medicine, Tribhuvan University, Maharajgunj, Kathmandu, Nepal
| | - Eiji Haramoto
- Interdisciplinary Center for River Basin Environment, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan.
| |
Collapse
|
14
|
Host Specificity and Sensitivity of Established and Novel Sewage-Associated Marker Genes in Human and Nonhuman Fecal Samples. Appl Environ Microbiol 2019; 85:AEM.00641-19. [PMID: 31076423 DOI: 10.1128/aem.00641-19] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 05/02/2019] [Indexed: 12/13/2022] Open
Abstract
Microbial source tracking (MST) methods measure fecal contamination levels and identify possible sources using quantitative PCR (qPCR) that targets host-associated fecal microorganisms. To date, most established MST assays for human sources, especially bacterial markers, have shown some nonhuman host cross-reactions. Recently developed assays, such as the crAssphage CPQ_056, Lachnospiraceae Lachno3, and Bacteroides BacV6-21, have more limited information on host sensitivity and host specificity for human or sewage sources, particularly in countries other than the United States. In this study, we rigorously evaluated six sewage-associated MST assays (i.e., Bacteroides HF183, human adenovirus [HAdV], human polyomavirus [HPyV], crAssphage CPQ_056, Lachno3, and BacV6-21) to show advantages and disadvantages of their applications for MST. A total of 29 human and 3 sewage samples and 360 nonhuman fecal samples across 14 hosts collected from a subtropical region of Australia were tested for marker host specificity, host sensitivity, and concentrations. All sewage samples were positive for all six marker genes tested in this study. Bacterial markers were more prevalent than viral markers in human feces. Testing against animal hosts showed human feces (or sewage)-associated marker gene specificity was HAdV (1.00) > HPyV (0.99) > crAssphage CPQ_056 (0.98) > HF183 (0.96) > Lachno3 (0.95) > BacV6-21 (0.90), with marker concentrations in some animal fecal samples being 3 to 5 orders of magnitude lower than those in sewage. When considering host specificity, sensitivity, and concentrations in source samples, the HF183, Lachno3, and crAssphage CPQ_056 tests were the most suitable assays in this study for sewage contamination tracking in subtropical waters of Australia.IMPORTANCE Large financial investments are required to remediate fecal contamination sources in waterways, and accurate results from field studies are crucial to build confidence in MST approaches. Host specificity and sensitivity are two main performance characteristics for consideration when choosing MST assays. Ongoing efforts for marker assay validation will improve interpretation of results and could shed light on patterns of occurrence in nontarget hosts that might explain the underlying drivers of cross-reaction of certain markers. For field applications, caution should be taken to choose appropriate MST marker genes and assays based on available host specificity and sensitivity data and background knowledge of the contaminating sources in the study area. Since many waterborne pathogens are viruses, employing both viral and bacterial markers in investigations could provide insight into contamination dynamics and ecological behavior in the environment. Therefore, combined usage of marker assays is recommended for more accurate and informative sewage contamination detection and fecal source resolution.
Collapse
|
15
|
Ahmed W, Hamilton KA, Lobos A, Hughes B, Staley C, Sadowsky MJ, Harwood VJ. Quantitative microbial risk assessment of microbial source tracking markers in recreational water contaminated with fresh untreated and secondary treated sewage. ENVIRONMENT INTERNATIONAL 2018; 117:243-249. [PMID: 29772486 DOI: 10.1016/j.envint.2018.05.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Revised: 05/05/2018] [Accepted: 05/05/2018] [Indexed: 05/09/2023]
Abstract
Microbial source tracking (MST) methods have provided the means to identify sewage contamination in recreational waters, but the risk associated with elevated levels of MST targets such as sewage-associated Bacteroides HF183 and other markers is uncertain. Quantitative microbial risk assessment (QMRA) modeling allows interpretation of MST data in the context of the risk of gastrointestinal (GI) illness caused by exposure to pathogens. In this study, five sewage-associated, quantitative PCR (qPCR) MST markers [Bacteroides HF183 (HF183), Methanobrevibacter smithii nifH (nifH), human adenovirus (HAdV), human polyomavirus (HPyV) and pepper mild mottle virus (PMMoV)] were evaluated to determine at what concentration these nucleic acid markers reflected a significant health risk from exposure to fresh untreated or secondary treated sewage in beach water. The QMRA models were evaluated for a target probability of illness of 36 GI illnesses/1000 swimming events (i.e., risk benchmark 0.036) for the reference pathogens norovirus (NoV) and human adenovirus 40/41 (HAdV 40/41). Sewage markers at several dilutions exceeded the risk benchmark for reference pathogens NoV and HAdV 40/41. HF183 concentrations 3.22 × 103 (for both NoV and HAdV 40/41) gene copies (GC)/100 mL of water contaminated with fresh untreated sewage represented risk >0.036. Similarly, HF183 concentrations 3.66 × 103 (for NoV and HAdV 40/41) GC/100 mL of water contaminated with secondary treated sewage represented risk >0.036. HAdV concentration as low as 4.11 × 101 GC/100 mL of water represented risk >0.036 when water was contaminated with secondary treated sewage. Results of this study provide a valuable context for water quality managers to evaluate human health risks associated with contamination from fresh sewage. The approach described here may also be useful in the future for evaluating health risks from contamination with aged or treated sewage or feces from other animal sources as more data are made available.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia.
| | - Kerry A Hamilton
- Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - Aldo Lobos
- Department of Integrative Biology, SCA 110, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620, USA
| | - Bridie Hughes
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, QLD 4102, Australia
| | - Christopher Staley
- BioTechnology Institute, University of Minnesota, 1479 Gortner Ave, St. Paul, MN 55108, USA
| | - Michael J Sadowsky
- BioTechnology Institute, University of Minnesota, 1479 Gortner Ave, St. Paul, MN 55108, USA; Department of Soil, Water and Climate, 1991 Upper Buford Circle, Room 439, Saint Paul, MN 55108, USA
| | - Valerie J Harwood
- Department of Integrative Biology, SCA 110, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620, USA
| |
Collapse
|
16
|
Ahmed W, Lobos A, Senkbeil J, Peraud J, Gallard J, Harwood VJ. Evaluation of the novel crAssphage marker for sewage pollution tracking in storm drain outfalls in Tampa, Florida. WATER RESEARCH 2018; 131:142-150. [PMID: 29281808 DOI: 10.1016/j.watres.2017.12.011] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 12/05/2017] [Accepted: 12/07/2017] [Indexed: 05/25/2023]
Abstract
CrAssphage are recently-discovered DNA bacteriophages that are prevalent and abundant in human feces and sewage. We assessed the performance characteristics of a crAssphage quantitative PCR (qPCR) assay for quantifying sewage impacts in stormwater and surface water in subtropical Tampa, Florida. The mean concentrations of crAssphage in untreated sewage ranged from 9.08 to 9.98 log10 gene copies/L. Specificity was 0.927 against 83 non-human fecal reference samples and the sensitivity was 1.0. Cross-reactivity was observed in DNA extracted from soiled poultry litter but the concentrations were substantially lower than untreated sewage. The presence of the crAssphage marker was monitored in water samples from storm drain outfalls during dry and wet weather conditions in Tampa, Florida. In dry weather conditions, 41.6% of storm drain outfalls samples were positive for the crAssphage marker and the concentrations ranged from 3.60 to 4.65 log10 gene copies/L of water. After a significant rain event, 66.6% of stormwater outlet samples were positive for the crAssphage marker and the concentration ranged from 3.62 to 4.91 log10 gene copies/L of water. The presence of the most commonly used Bacteroides HF183 marker in storm drain outfalls was also tested along with the crAssphage. Thirteen samples (55%) were either positive (i.e., both markers were present) or negative (i.e., both markers were absent) for both the markers. Due to the observed cross-reactivity of this marker with DNA extracted from poultry litter samples, it is recommended that this marker should be used in conjunction with additional markers such as HF183. Our data indicate that the crAssphage marker is highly sensitive to sewage, is adequately specific, and will be a valuable addition to the MST toolbox.
Collapse
Affiliation(s)
- Warish Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia.
| | - Aldo Lobos
- Department of Integrative Biology, SCA 110, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620, USA
| | - Jacob Senkbeil
- Department of Integrative Biology, SCA 110, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620, USA
| | - Jayme Peraud
- Department of Integrative Biology, SCA 110, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620, USA
| | - Javier Gallard
- Department of Integrative Biology, SCA 110, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620, USA
| | - Valerie J Harwood
- Department of Integrative Biology, SCA 110, University of South Florida, 4202 East Fowler Ave, Tampa, FL 33620, USA
| |
Collapse
|
17
|
Shrestha S, Shrestha S, Shindo J, Sherchand JB, Haramoto E. Virological Quality of Irrigation Water Sources and Pepper Mild Mottle Virus and Tobacco Mosaic Virus as Index of Pathogenic Virus Contamination Level. FOOD AND ENVIRONMENTAL VIROLOGY 2018; 10:107-120. [PMID: 29098656 DOI: 10.1007/s12560-017-9324-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Accepted: 10/28/2017] [Indexed: 05/04/2023]
Abstract
Irrigation water is a doorway for the pathogen contamination of fresh produce. We quantified pathogenic viruses [human adenoviruses, noroviruses of genogroups I and II, group A rotaviruses, Aichi virus 1 (AiV-1), enteroviruses (EnVs), and salivirus (SaliV)] and examined potential index viruses [JC and BK polyomaviruses (JCPyVs and BKPyVs), pepper mild mottle virus (PMMoV), and tobacco mosaic virus (TMV)] in irrigation water sources in the Kathmandu Valley, Nepal. River, sewage, wastewater treatment plant (WWTP) effluent, pond, canal, and groundwater samples were collected in September 2014, and in April and August 2015. Viruses were concentrated using an electronegative membrane-vortex method and quantified using TaqMan (MGB)-based quantitative PCR (qPCR) assays with murine norovirus as a molecular process control to determine extraction-reverse transcription-qPCR efficiency. Tested pathogenic viruses were prevalent with maximum concentrations of 5.5-8.8 log10 copies/L, and there was a greater abundance of EnVs, SaliV, and AiV-1. Virus concentrations in river water were equivalent to those in sewage. Canal, pond, and groundwater samples were found to be less contaminated than river, sewage, and WWTP effluent. Seasonal dependency was clearly evident for most of the viruses, with peak concentrations in the dry season. JCPyVs and BKPyVs had a poor detection ratio and correspondence with pathogenic viruses. Instead, the frequently proposed PMMoV and the newly proposed TMV were strongly predictive of the pathogen contamination level, particularly in the dry season. We recommend utilizing canal, pond, and groundwater for irrigation to minimize deleterious health effects and propose PMMoV and TMV as indexes to elucidate pathogenic virus levels in environmental samples.
Collapse
Affiliation(s)
- Sadhana Shrestha
- Interdisciplinary Centre for River Basin Environment, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan.
| | - Shankar Shrestha
- Interdisciplinary Centre for River Basin Environment, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
| | - Junko Shindo
- Interdisciplinary Centre for River Basin Environment, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
| | - Jeevan B Sherchand
- Institute of Medicine, Tribhuvan University, Maharajgunj, P.O.Box 1524, Kathmandu, Nepal
| | - Eiji Haramoto
- Interdisciplinary Centre for River Basin Environment, Graduate Faculty of Interdisciplinary Research, University of Yamanashi, 4-3-11 Takeda, Kofu, Yamanashi, 400-8511, Japan
| |
Collapse
|
18
|
Assetta B, Atwood WJ. The biology of JC polyomavirus. Biol Chem 2017; 398:839-855. [PMID: 28493815 DOI: 10.1515/hsz-2016-0345] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Accepted: 04/20/2017] [Indexed: 02/06/2023]
Abstract
JC polyomavirus (JCPyV) is the causative agent of a fatal central nervous system demyelinating disease known as progressive multifocal leukoencephalopathy (PML). PML occurs in people with underlying immunodeficiency or in individuals being treated with potent immunomodulatory therapies. JCPyV is a DNA tumor virus with a double-stranded DNA genome and encodes a well-studied oncogene, large T antigen. Its host range is highly restricted to humans and only a few cell types support lytic infection in vivo or in vitro. Its oncogenic potential in humans has not been firmly established and the international committee on oncogenic viruses lists JCPyV as possibly carcinogenic. Significant progress has been made in understanding the biology of JCPyV and here we present an overview of the field and discuss some important questions that remain unanswered.
Collapse
|
19
|
Rachmadi AT, Torrey JR, Kitajima M. Human polyomavirus: Advantages and limitations as a human-specific viral marker in aquatic environments. WATER RESEARCH 2016; 105:456-469. [PMID: 27665433 DOI: 10.1016/j.watres.2016.09.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/07/2016] [Accepted: 09/07/2016] [Indexed: 05/27/2023]
Abstract
Human polyomaviruses (HPyVs) cause persistent infections in organs such as kidney, brain, skin, liver, respiratory tract, etc., and some types of HPyV are constantly excreted in the urine and/or feces of infected and healthy individuals. The use of an enteric virus as an indicator for human sewage/waste contamination in aquatic environments has been proposed; HPyVs are a good candidate since they are routinely found in environmental water samples from different geographical areas with relatively high abundance. HPyVs are highly human specific, having been detected in human waste from all age ranges and undetected in animal waste samples. In addition, HPyVs show a certain degree of resistance to high temperature, chlorine, UV, and low pH, with molecular signals (i.e., DNA) persisting in water for several months. Recently, various concentration methods (electronegative/positive filtration, ultrafiltration, skim-milk flocculation) and detection methods (immunofluorescence assay, cell culture, polymerase chain reaction (PCR), integrated cell culture PCR (ICC-PCR), and quantitative PCR) have been developed and demonstrated for HPyV, which has enabled the identification and quantification of HPyV in various environmental samples, such as sewage, surface water, seawater, drinking water, and shellfish. In this paper, we summarize these recent advancements in detection methods and the accumulation of environmental surveillance and laboratory-scale experiment data, and discuss the potential advantages as well as limitations of HPyV as a human-specific viral marker in aquatic environments.
Collapse
Affiliation(s)
- Andri T Rachmadi
- Division of Environmental Engineering, Graduate School of Engineering, Hokkaido University, Japan
| | - Jason R Torrey
- Department of Urban Engineering, Graduate School of Engineering, The University of Tokyo, Japan
| | - Masaaki Kitajima
- Division of Environmental Engineering, Graduate School of Engineering, Hokkaido University, Japan.
| |
Collapse
|
20
|
Human-Associated Bacteroides spp. and Human Polyomaviruses as Microbial Source Tracking Markers in Hawaii. Appl Environ Microbiol 2016; 82:6757-6767. [PMID: 27613686 DOI: 10.1128/aem.01959-16] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 09/05/2016] [Indexed: 11/20/2022] Open
Abstract
Identification of sources of fecal contaminants is needed to (i) determine the health risk associated with recreational water use and (ii) implement appropriate management practices to mitigate this risk and protect the environment. This study evaluated human-associated Bacteroides spp. (HF183TaqMan) and human polyomavirus (HPyV) markers for host sensitivity and specificity using human and animal fecal samples collected in Hawaii. The decay rates of those markers and indicator bacteria were identified in marine and freshwater microcosms exposed and not exposed to sunlight, followed by field testing of the usability of the molecular markers. Both markers were strongly associated with sewage, although the cross-reactivity of the HF183TaqMan (also present in 82% of canine [n = 11], 30% of mongoose [n = 10], and 10% of feline [n = 10] samples) needs to be considered. Concentrations of HF183TaqMan in human fecal samples exceeded those in cross-reactive animals at least 1,000-fold. In the absence of sunlight, the decay rates of both markers were comparable to the die-off rates of enterococci in experimental freshwater and marine water microcosms. However, in sunlight, the decay rates of both markers were significantly lower than the decay rate of enterococci. While both markers have their individual limitations in terms of sensitivity and specificity, these limitations can be mitigated by using both markers simultaneously; ergo, this study supports the concurrent use of HF183TaqMan and HPyV markers for the detection of sewage contamination in coastal and inland waters in Hawaii. IMPORTANCE This study represents an in-depth characterization of microbial source tracking (MST) markers in Hawaii. The distribution and concentrations of HF183TaqMan and HPyV markers in human and animal fecal samples and in wastewater, coupled with decay data obtained from sunlight-exposed and unexposed microcosms, support the concurrent application of HF183TaqMan and HPyV markers for sewage contamination detection in Hawaii waters. Both markers are more conservative and more specific markers of sewage than fecal indicator bacteria (enterococci and Escherichia coli). Analysis of HF183TaqMan (or newer derivatives) is recommended for inclusion in future epidemiological studies concerned with beach water quality, while better concentration techniques are needed for HPyV. Such epidemiological studies can be used to develop new recreational water quality criteria, which will provide direct information on the absence or presence of sewage contamination in water samples as well as reliable measurements of the risk of waterborne disease transmission to swimmers.
Collapse
|
21
|
Evaluation of the Gastrointestinal Tract as Potential Route of Primary Polyomavirus Infection in Mice. PLoS One 2016; 11:e0150786. [PMID: 26939117 PMCID: PMC4777556 DOI: 10.1371/journal.pone.0150786] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/17/2016] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Detection of Polyomavirus (PyV) DNA in metropolitan rivers worldwide has led to the suggestion that primary viral infection can occur by the oral route. The aim of this study was to test this notion experimentally. METHODS Mouse PyV (MPyV) was used to infect C57BL/6J mice by the nasal or intragastric route. Viral load kinetics was studied 3, 7, 10, 14, 21 and 28 days post-infection (dpi) using quantitative PCR. RESULTS Following nasal infection, MPyV DNA was readily detected in many organs including lung, heart, aorta, colon, and stool with viral loads in the range of 10(3)-10(6) copies/mg wet weight that peaked 7-10 dpi. Complete viral clearance occurred in the serum and kidney by 28 dpi, while clearance in other organs was partial with a 10-100 fold decrease in viral load. In contrast, following intragastric infection peak detection of PyV was delayed to 21 dpi, and viral loads were up to 3 logs lower. There was no detectable virus in the heart, colon, or stool. CONCLUSIONS The intragastric route of MPyV infection is successful, not as efficacious as the respiratory route, and associated with delayed viral dissemination as well as a lower peak MPyV load in individual organs.
Collapse
|
22
|
Ahmed W, Harwood VJ, Nguyen K, Young S, Hamilton K, Toze S. Utility of Helicobacter spp. associated GFD markers for detecting avian fecal pollution in natural waters of two continents. WATER RESEARCH 2016; 88:613-622. [PMID: 26562798 DOI: 10.1016/j.watres.2015.10.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/18/2015] [Accepted: 10/26/2015] [Indexed: 06/05/2023]
Abstract
Avian fecal droppings may negatively impact environmental water quality due to the presence of high concentrations of fecal indicator bacteria (FIB) and zoonotic pathogens. This study was aimed at evaluating the performance characteristics and utility of a Helicobacter spp. associated GFD marker by screening 265 fecal and wastewater samples from a range of avian and non-avian host groups from two continents (Brisbane, Australia and Florida, USA). The host-prevalence and -specificity of this marker among fecal and wastewater samples tested from Brisbane were 0.58 and 0.94 (maximum value of 1.00). These values for the Florida fecal samples were 0.30 (host-prevalence) and 1.00 (host-specificity). The concentrations of the GFD markers in avian and non-avian fecal nucleic acid samples were measured at a test concentration of 10 ng of nucleic acid at Brisbane and Florida laboratories using the quantitative PCR (qPCR) assay. The mean concentrations of the GFD marker in avian fecal nucleic acid samples (5.2 × 10(3) gene copies) were two orders of magnitude higher than non-avian fecal nucleic acid samples (8.6 × 10(1) gene copies). The utility of this marker was evaluated by testing water samples from the Brisbane River, Brisbane and a freshwater creek in Florida. Among the 18 water samples tested from the Brisbane River, 83% (n = 18) were positive for the GFD marker, and the concentrations ranged from 6.0 × 10(1)-3.2 × 10(2) gene copies per 100 mL water. In all, 92% (n = 25) water samples from the freshwater creek in Florida were also positive for the GFD marker with concentrations ranging from 2.8 × 10(1)-1.3 × 10(4) gene copies per 100 mL water. Based on the results, it can be concluded that the GFD marker is highly specific to avian host groups, and could be used as a reliable marker to detect the presence and amount of avian fecal pollution in environmental waters.
Collapse
Affiliation(s)
- W Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia; Faculty of Science, Health and Education, University of the Sunshine Coast, Maroochydore, DC, Qld 4558, Australia.
| | - V J Harwood
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, SCA 110, Tampa, FL 33620, USA
| | - K Nguyen
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, SCA 110, Tampa, FL 33620, USA
| | - S Young
- Department of Integrative Biology, University of South Florida, 4202 East Fowler Avenue, SCA 110, Tampa, FL 33620, USA
| | - K Hamilton
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia; Department of Civil, Architectural, and Environmental Engineering, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA
| | - S Toze
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia; School of Population Health, University of Queensland, Herston Road, Qld 4006, Australia
| |
Collapse
|
23
|
Distributions of Fecal Markers in Wastewater from Different Climatic Zones for Human Fecal Pollution Tracking in Australian Surface Waters. Appl Environ Microbiol 2015; 82:1316-1323. [PMID: 26682850 DOI: 10.1128/aem.03765-15] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 12/10/2015] [Indexed: 01/31/2023] Open
Abstract
Recreational and potable water supplies polluted with human wastewater can pose a direct health risk to humans. Therefore, sensitive detection of human fecal pollution in environmental waters is very important to water quality authorities around the globe. Microbial source tracking (MST) utilizes human fecal markers (HFMs) to detect human wastewater pollution in environmental waters. The concentrations of these markers in raw wastewater are considered important because it is likely that a marker whose concentration is high in wastewater will be more frequently detected in polluted waters. In this study, quantitative PCR (qPCR) assays were used to determine the concentrations of fecal indicator bacteria (FIB) Escherichia coli and Enterococcus spp., HFMs Bacteroides HF183, human adenoviruses (HAdVs), and polyomaviruses (HPyVs) in raw municipal wastewater influent from various climatic zones in Australia. E. coli mean concentrations in pooled human wastewater data sets (from various climatic zones) were the highest (3.2 × 10(6) gene copies per ml), followed by those of HF183 (8.0 × 10(5) gene copies per ml) and Enterococcus spp. (3.6 × 10(5) gene copies per ml). HAdV and HPyV concentrations were 2 to 3 orders of magnitude lower than those of FIB and HF183. Strong positive and negative correlations were observed between the FIB and HFM concentrations within and across wastewater treatment plants (WWTPs). To identify the most sensitive marker of human fecal pollution, environmental water samples were seeded with raw human wastewater. The results from the seeding experiments indicated that Bacteroides HF183 was more sensitive for detecting human fecal pollution than HAdVs and HPyVs. Since the HF183 marker can occasionally be present in nontarget animal fecal samples, it is recommended that HF183 along with a viral marker (HAdVs or HPyVs) be used for tracking human fecal pollution in Australian environmental waters.
Collapse
|
24
|
Comparison of concentration methods for quantitative detection of sewage-associated viral markers in environmental waters. Appl Environ Microbiol 2015; 81:2042-9. [PMID: 25576614 DOI: 10.1128/aem.03851-14] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Pathogenic human viruses cause over half of gastroenteritis cases associated with recreational water use worldwide. They are relatively difficult to concentrate from environmental waters due to typically low concentrations and their small size. Although rapid enumeration of viruses by quantitative PCR (qPCR) has the potential to greatly improve water quality analysis and risk assessment, the upstream steps of capturing and recovering viruses from environmental water sources along with removing PCR inhibitors from extracted nucleic acids remain formidable barriers to routine use. Here, we compared the efficiency of virus recovery for three rapid methods of concentrating two microbial source tracking (MST) viral markers human adenoviruses (HAdVs) and polyomaviruses (HPyVs) from one liter tap water and river water samples on HA membranes (90 mm in diameter). Samples were spiked with raw sewage, and viral adsorption to membranes was promoted by acidification (method A) or addition of MgCl2 (methods B and C). Viral nucleic acid was extracted directly from membranes (method A), or viruses were eluted with NaOH and concentrated by centrifugal ultrafiltration (methods B and C). No inhibition of qPCR was observed for samples processed by method A, but inhibition occurred in river samples processed by B and C. Recovery efficiencies of HAdVs and HPyVs were ∼10-fold greater for method A (31 to 78%) than for methods B and C (2.4 to 12%). Further analysis of membranes from method B revealed that the majority of viruses were not eluted from the membrane, resulting in poor recovery. The modification of the originally published method A to include a larger diameter membrane and a nucleic acid extraction kit that could accommodate the membrane resulted in a rapid virus concentration method with good recovery and lack of inhibitory compounds. The frequently used strategy of viral absorption with added cations (Mg(2+)) and elution with acid were inefficient and more prone to inhibition, and will result in underestimation of the prevalence and concentrations of HAdVs and HPyVs markers in environmental waters.
Collapse
|
25
|
Ahmed W, Gyawali P, Sidhu J, Toze S. Relative inactivation of faecal indicator bacteria and sewage markers in freshwater and seawater microcosms. Lett Appl Microbiol 2014; 59:348-54. [DOI: 10.1111/lam.12285] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 05/13/2014] [Accepted: 05/14/2014] [Indexed: 11/28/2022]
Affiliation(s)
- W. Ahmed
- CSIRO Land and Water; Ecosciences Precinct; Brisbane Qld Australia
- Faculty of Science, Health and Education; University of the Sunshine Coast; Maroochydore DC Qld Australia
| | - P. Gyawali
- CSIRO Land and Water; Ecosciences Precinct; Brisbane Qld Australia
- School of Population Health; University of Queensland; Brisbane Qld Australia
| | - J.P.S. Sidhu
- CSIRO Land and Water; Ecosciences Precinct; Brisbane Qld Australia
- Faculty of Science, Health and Education; University of the Sunshine Coast; Maroochydore DC Qld Australia
| | - S. Toze
- CSIRO Land and Water; Ecosciences Precinct; Brisbane Qld Australia
- School of Population Health; University of Queensland; Brisbane Qld Australia
| |
Collapse
|
26
|
Fratini M, Di Bonito P, La Rosa G. Oncogenic Papillomavirus and Polyomavirus in Water Environments: Is There a Potential for Waterborne Transmission? FOOD AND ENVIRONMENTAL VIROLOGY 2014; 6:1-12. [PMID: 24293168 DOI: 10.1007/s12560-013-9134-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2013] [Accepted: 11/21/2013] [Indexed: 05/27/2023]
Abstract
Waterborne exposure to human viruses through contact with sewage-contaminated water environments can result in infections associated with a wide range of illnesses. Gastrointestinal symptoms are the most commonly encountered manifestations of waterborne viral illness. Respiratory diseases, neurological diseases and paralysis can also occur. Whether viral infections resulting in health outcomes like cancer might also be transmitted by the waterborne route is unknown. Recently, viruses belonging to two oncogenic groups-Human Papillomaviruses (HPVs) and Human Polyomaviruses (HPyVs)-have been detected in urban sewages worldwide. The latter have also been identified in other water environments. HPVs are epitheliotropic viruses responsible for several diseases of skin and mucosae, from common warts to squamous intraepithelial lesions that can either heal or progress to invasive carcinoma of the cervix, vulva, vagina, penis, anus or oropharynx. Human PyVs infect different tissues and organs, causing infections that are usually subclinical in immunocompetent individuals but can be serious in immunocompromised hosts. These pathogens belong to a family of DNA tumour viruses. Merkel cell polyomavirus, a HPyV identified in recent years, has attracted much attention due to its link with a rare and aggressive form of human cancer. Merkel cell carcinoma, the incidence of which has tripled over the past two decades. JC polyomavirus and BK polyomavirus are also potentially oncogenic. The observed abundance and wide dissemination of HPVs and HPyVs in water environments strongly suggest the need to shed light on the fate of these viruses in water environments and to elucidate their potential for waterborne transmission. Such information is essential for the improvement of wastewater management programs in terms of both sewage treatment and water quality surveillance.
Collapse
Affiliation(s)
- M Fratini
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy
| | - P Di Bonito
- Department of Infectious Parasitic and Immune-mediated Diseases, Istituto Superiore di Sanità, Rome, Italy
| | - G La Rosa
- Department of Environment and Primary Prevention, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161, Rome, Italy.
| |
Collapse
|
27
|
Hewitt J, Greening GE, Leonard M, Lewis GD. Evaluation of human adenovirus and human polyomavirus as indicators of human sewage contamination in the aquatic environment. WATER RESEARCH 2013; 47:6750-61. [PMID: 24094728 DOI: 10.1016/j.watres.2013.09.001] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/02/2013] [Accepted: 09/03/2013] [Indexed: 05/04/2023]
Abstract
Discharge of inadequately treated human wastewater into surface waters used for recreation, drinking water, irrigation and shellfish cultivation may present a public health hazard due to the potential shedding of high concentrations of pathogenic viruses from the human gastrointestinal tract. Human adenovirus (HAdV) and human polyomavirus (HPyV) are ubiquitous in humans and have excellent survival characteristics in the environment, so are potential candidates for indicators of human sewage contamination. Using qPCR assays, the prevalence and quantity of HAdV and HPyV JC and BK were determined in influent and effluent wastewater and receiving waters (river, urban stream, estuarine), then compared with norovirus (NoV) presence, a significant human pathogen which is not necessarily ubiquitously excreted into the environment. HAdV and HPyV were frequently detected in high concentrations in wastewater and wastewater-contaminated waters confirming their use as potential indicators for the presence of human sewage. Overall, there was a correlation between the presence of HAdV and HPyV with NoV but there were some notable exceptions including the higher frequency of NoV compared to HAdV and HPyV in estuarine waters impacted by wastewater overflows. We found that HAdV and HPyV detection by qPCR was a suitable tool for evaluating water quality and that their detection can aid in determining pollution sources, thus providing useful information for health risk assessments.
Collapse
Affiliation(s)
- Joanne Hewitt
- Institute of Environmental Science & Research Ltd., Kenepuru Science Centre, PO Box 50-348, Porirua, New Zealand; School of Biological Sciences, University of Auckland, Auckland, New Zealand.
| | | | | | | |
Collapse
|
28
|
Abstract
The human JC polyomavirus (JCPyV) causes the rapidly progressing demyelinating disease progressive multifocal leukoencephalopathy (PML). The disease occurs most often in individuals with AIDS but also occurs in individuals receiving immunomodulatory therapies for immune-related diseases such as multiple sclerosis. JCPyV infection of host cells requires the pentasaccharide lactoseries tetrasaccharide c (LSTc) and the serotonin receptor 5-hydroxytryptamine (5-HT) receptor 5-HT2AR. While LSTc is involved in the initial attachment of virus to cells via interactions with VP1, the mechanism by which 5-HT2AR contributes to infection is not clear. To further define the roles of serotonin receptors in infection, HEK293A cells, which are poorly permissive to JCPyV, were transfected with 14 different isoforms of serotonin receptor. Only 5-HT2 receptors were found to support infection by JCPyV. None of the other 11 isoforms of serotonin receptor supported JCPyV infection. Expression of 5-HT2 receptors did not increase binding of JCPyV to cells, but this was not unexpected, given that the cells uniformly expressed the major attachment receptor, LSTc. Infection of these cells remained sensitive to inhibition with soluble LSTc, confirming that LSTc recognition is required for JCPyV infection. Virus internalization into HEK293A cells was significantly and specifically enhanced when 5HT2 receptors were expressed. Taken together, these data confirm that the carbohydrate LSTc is the attachment receptor for JCPyV and that the type 2 serotonin receptors contribute to JCPyV infection by facilitating entry.
Collapse
|
29
|
Brinkman NE, Haffler TD, Cashdollar JL, Rhodes ER. Evaluation of methods using celite to concentrate norovirus, adenovirus and enterovirus from wastewater. J Virol Methods 2013; 193:140-6. [DOI: 10.1016/j.jviromet.2013.05.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/10/2013] [Accepted: 05/16/2013] [Indexed: 11/15/2022]
|
30
|
Progressive multifocal leukoencephalopathy-associated mutations in the JC polyomavirus capsid disrupt lactoseries tetrasaccharide c binding. mBio 2013; 4:e00247-13. [PMID: 23760462 PMCID: PMC3685208 DOI: 10.1128/mbio.00247-13] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The human JC polyomavirus (JCPyV) is the causative agent of the fatal, demyelinating disease progressive multifocal leukoencephalopathy (PML). The Mad-1 prototype strain of JCPyV uses the glycan lactoseries tetrasaccharide c (LSTc) and serotonin receptor 5-HT2A to attach to and enter into host cells, respectively. Specific residues in the viral capsid protein VP1 are responsible for direct interactions with the α2,6-linked sialic acid of LSTc. Viral isolates from individuals with PML often contain mutations in the sialic acid-binding pocket of VP1 that are hypothesized to arise from positive selection. We reconstituted these mutations in the Mad-1 strain of JCPyV and found that they were not capable of growth. The mutations were then introduced into recombinant VP1 and reconstituted as pentamers in order to conduct binding studies and structural analyses. VP1 pentamers carrying PML-associated mutations were not capable of binding to permissive cells. High-resolution structure determination revealed that these pentamers are well folded but no longer bind to LSTc due to steric clashes in the sialic acid-binding site. Reconstitution of the mutations into JCPyV pseudoviruses allowed us to directly quantify the infectivity of the mutants in several cell lines. The JCPyV pseudoviruses with PML-associated mutations were not infectious, nor were they able to engage sialic acid as measured by hemagglutination of human red blood cells. These results demonstrate that viruses from PML patients with single point mutations in VP1 disrupt binding to sialic acid motifs and render these viruses noninfectious. Infection with human JC polyomavirus (JCPyV) is common and asymptomatic in healthy individuals, but during immunosuppression, JCPyV can spread from the kidney to the central nervous system (CNS) and cause a fatal, demyelinating disease, progressive multifocal leukoencephalopathy (PML). Individuals infected with HIV, those who have AIDS, or those receiving immunomodulatory therapies for autoimmune diseases are at serious risk for PML. Recent reports have demonstrated that viral isolates from PML patients often have distinct changes within the major capsid protein. Our structural-functional approach highlights that these mutations result in abolished engagement of the carbohydrate receptor motif LSTc that is necessary for infection. Viruses with PML-associated mutations are not infectious in glial cells, suggesting that they may play an alternative role in PML pathogenesis.
Collapse
|
31
|
Human polyomavirus reactivation: disease pathogenesis and treatment approaches. Clin Dev Immunol 2013; 2013:373579. [PMID: 23737811 PMCID: PMC3659475 DOI: 10.1155/2013/373579] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 03/27/2013] [Accepted: 03/27/2013] [Indexed: 02/07/2023]
Abstract
JC and BK polyomaviruses were discovered over 40 years ago and have become increasingly prevalent causes of morbidity and mortality in a variety of distinct, immunocompromised patient cohorts. The recent discoveries of eight new members of the Polyomaviridae family that are capable of infecting humans suggest that there are more to be discovered and raise the possibility that they may play a more significant role in human disease than previously understood. In spite of this, there remains a dearth of specific therapeutic options for human polyomavirus infections and an incomplete understanding of the relationship between the virus and the host immune system. This review summarises the human polyomaviruses with particular emphasis on pathogenesis in those directly implicated in disease aetiology and the therapeutic options available for treatment in the immunocompromised host.
Collapse
|
32
|
Marine and Freshwater Fecal Indicators and Source Identification. Infect Dis (Lond) 2013. [DOI: 10.1007/978-1-4614-5719-0_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
|
33
|
Molecular biology, epidemiology, and pathogenesis of progressive multifocal leukoencephalopathy, the JC virus-induced demyelinating disease of the human brain. Clin Microbiol Rev 2012; 25:471-506. [PMID: 22763635 DOI: 10.1128/cmr.05031-11] [Citation(s) in RCA: 289] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Progressive multifocal leukoencephalopathy (PML) is a debilitating and frequently fatal central nervous system (CNS) demyelinating disease caused by JC virus (JCV), for which there is currently no effective treatment. Lytic infection of oligodendrocytes in the brain leads to their eventual destruction and progressive demyelination, resulting in multiple foci of lesions in the white matter of the brain. Before the mid-1980s, PML was a relatively rare disease, reported to occur primarily in those with underlying neoplastic conditions affecting immune function and, more rarely, in allograft recipients receiving immunosuppressive drugs. However, with the onset of the AIDS pandemic, the incidence of PML has increased dramatically. Approximately 3 to 5% of HIV-infected individuals will develop PML, which is classified as an AIDS-defining illness. In addition, the recent advent of humanized monoclonal antibody therapy for the treatment of autoimmune inflammatory diseases such as multiple sclerosis (MS) and Crohn's disease has also led to an increased risk of PML as a side effect of immunotherapy. Thus, the study of JCV and the elucidation of the underlying causes of PML are important and active areas of research that may lead to new insights into immune function and host antiviral defense, as well as to potential new therapies.
Collapse
|
34
|
Wong K, Fong TT, Bibby K, Molina M. Application of enteric viruses for fecal pollution source tracking in environmental waters. ENVIRONMENT INTERNATIONAL 2012; 45:151-64. [PMID: 22537583 DOI: 10.1016/j.envint.2012.02.009] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 02/27/2012] [Accepted: 02/28/2012] [Indexed: 05/22/2023]
Abstract
Microbial source tracking (MST) tools are used to identify sources of fecal pollution for accurately assessing public health risk and implementing best management practices (BMPs). This review focuses on the potential of enteric viruses for MST applications. Following host infection, enteric viruses replicate and are excreted in high numbers in the hosts' feces and urine. Due to the specificity in host infection, enteric viruses have been considered one of the most accurate library-independent culture-independent MST tools. In an assessment of molecular viral assays based on sensitivity, specificity and the density of the target virus in fecal-impacted samples, human adenovirus and human polyomavirus were found to be the most promising human-specific viral markers. However, more research is needed to identify promising viral markers for livestock because of cross-reactions that were observed among livestock species or the limited number of samples tested for specificity. Other viral indicators of fecal origin, F+ RNA coliphage and pepper mild mottle virus, have also been proposed as potential targets for developing MST markers. Enhancing the utility of enteric viruses for MST applications through next generation sequencing (NGS) and virus concentration technology is discussed in the latter part of this review. The massive sequence databases generated by shotgun and gene-targeted metagenomics enable more efficient and reliable design of MST assays. Finally, recent studies revealed that alternative virus concentration methodologies may be more cost-effective than standard technologies such as 1MDS; however, improvements in the recovery efficiency and consistency are still needed. Overall, developments in metagenomic information combined with efficient concentration methodologies, as well as high host-specificity, make enteric viruses a promising tool in MST applications.
Collapse
Affiliation(s)
- Kelvin Wong
- United States Environmental Protection Agency, Ecosystems Research Division, 960 College Station Road, Athens, GA, USA.
| | | | | | | |
Collapse
|
35
|
Butel JS. Patterns of polyomavirus SV40 infections and associated cancers in humans: a model. Curr Opin Virol 2012; 2:508-14. [PMID: 22771310 DOI: 10.1016/j.coviro.2012.06.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Revised: 06/13/2012] [Accepted: 06/15/2012] [Indexed: 12/19/2022]
Abstract
A model is described that predicts patterns of polyomavirus SV40 infections and associated cancers in humans. The model proposes that SV40 infections were established in humans primarily by exposure to contaminated oral poliovaccines and that infections persist today in geographic regions where poor sanitation or living conditions allow maintenance of infections transmitted by a fecal/urine-oral route. Predictions from the model include that SV40 infections and virus-associated malignancies will be restricted geographically and demographically and that in developed countries, such as the US, SV40 prevalence rates will be generally very low. The model highlights the importance of selection of populations for investigations of SV40 human infections. This model can explain inconsistencies in the published literature of SV40 infections in humans and can guide the design of future studies.
Collapse
Affiliation(s)
- Janet S Butel
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
36
|
Association of fecal indicator bacteria with human viruses and microbial source tracking markers at coastal beaches impacted by nonpoint source pollution. Appl Environ Microbiol 2012; 78:6423-32. [PMID: 22773625 DOI: 10.1128/aem.00024-12] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Water quality was assessed at two marine beaches in California by measuring the concentrations of culturable fecal indicator bacteria (FIB) and by library-independent microbial source tracking (MST) methods targeting markers of human-associated microbes (human polyomavirus [HPyV] PCR and quantitative PCR, Methanobrevibacter smithii PCR, and Bacteroides sp. strain HF183 PCR) and a human pathogen (adenovirus by nested PCR). FIB levels periodically exceeded regulatory thresholds at Doheny and Avalon Beaches for enterococci (28.5% and 31.7% of samples, respectively) and fecal coliforms (20% and 5.8%, respectively). Adenoviruses were detected at four of five sites at Doheny Beach and were correlated with detection of HPyVs and human Bacteroides HF183; however, adenoviruses were not detected at Avalon Beach. The most frequently detected human source marker at both beaches was Bacteroides HF183, which was detected in 27% of samples. Correlations between FIBs and human markers were much more frequent at Doheny Beach than at Avalon Beach; e.g., adenovirus was correlated with HPyVs and HF183. Human sewage markers and adenoviruses were routinely detected in samples meeting FIB regulatory standards. The toolbox approach of FIB measurement coupled with analysis of several MST markers targeting human pathogens used here demonstrated that human sewage is at least partly responsible for the degradation of water quality, particularly at Doheny Beach, and resulted in a more definitive assessment of recreational water quality and human health risk than reliance on FIB concentrations alone could have provided.
Collapse
|
37
|
Ahmed W, Sidhu JPS, Toze S. Evaluation of the nifH gene marker of Methanobrevibacter smithii for the detection of sewage pollution in environmental waters in Southeast Queensland, Australia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:543-550. [PMID: 22070524 DOI: 10.1021/es203372u] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
This study aimed at evaluating the host-specificity and -sensitivity of the nifH gene marker of Methanobrevibacter smithii by screening 272 fecal and wastewater samples from 11 animal species including humans in Southeast Queensland (SEQ), Australia. In addition, environmental water samples (n = 21) were collected during the dry and wet weather conditions and tested for the presence of the nifH marker along with other sewage-associated markers, namely, enterococci surface protein (esp) found in Enterococci faecium, Bacteroides HF183, adenoviruses (AVs), and polyomaviruses (PVs). The overall host-specificity of the nifH marker to differentiate between human and animal feces was 0.96 (maximum value of 1), while the overall sensitivity of this marker in human sourced feces and wastewater was 0.81 (maximum value of 1). Among the 21 environmental water samples tested, 2 (10%), 3 (14%), 12 (57%), 6 (29%), and 6 (29%) were positive for the nifH, esp, HF183, AVs and PVs markers, respectively. The prevalence of the nifH marker in environmental water samples, however, was low compared to other markers, suggesting that the use of this marker alone may not be sensitive enough to detect fecal pollution in environmental waters. The nifH marker, however, appears to be sewage-specific in SEQ, Australia, and therefore, it is recommended that this marker should be used as an additional marker in combination with the HF183 or viral markers such as AVs or PVs for accurate and sensitive detection of fecal pollution in SEQ waterways.
Collapse
Affiliation(s)
- W Ahmed
- CSIRO Land and Water, Ecosciences Precinct, 41 Boggo Road, Qld 4102, Australia.
| | | | | |
Collapse
|
38
|
Matos A, Duque V, Luxo C, Meliço-Silvestre A, Major EO. Individuals infected with JC polyomavirus do not present detectable JC virus DNA in oropharyngeal fluids. J Gen Virol 2011; 93:692-697. [PMID: 22158878 DOI: 10.1099/vir.0.036798-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
JC virus (JCV) is ubiquitous in the human population. Primary infection normally occurs during childhood and is followed by a lifelong persistent infection. The main mode of transmission remains unknown. Several authors have hypothesized that JCV transmission occurs through the respiratory route, and that respiratory secretions could represent a possible source of viral particles. The present study intended to evaluate oropharyngeal fluids from patients infected with JCV, in order to ascertain if respiratory secretions could indeed constitute a source of exposure to this polyomavirus. Oropharyngeal washing samples from 25 patients co-infected with JCV and human immunodeficiency virus type 1 were evaluated for the presence of JCV DNA. Regardless of the titre of antibodies or the presence of viral urinary excretion, JCV genome was not detected in oropharyngeal samples collected from any of the patients infected with JCV included in this study, which may suggest that oropharyngeal fluids are an unlikely source for JCV infection.
Collapse
Affiliation(s)
- Ana Matos
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - Vitor Duque
- Laboratory of Virology, Infectious Diseases Department, Coimbra's University Hospital, Coimbra, Portugal
| | - Cristina Luxo
- Center for Pharmaceutical Studies, Faculty of Pharmacy, University of Coimbra, Coimbra, Portugal
| | - António Meliço-Silvestre
- Laboratory of Virology, Infectious Diseases Department, Coimbra's University Hospital, Coimbra, Portugal
| | - Eugene O Major
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
39
|
Abstract
The simian virus 40 and murine polyomaviruses were shown to be DNA tumor viruses in their natural hosts and/or heterologous experimental hosts in the mid-20th Century. The first two human polyomaviruses, the BK polyomavirus and JC polyomavirus, were discovered in 1971 and were shown to induce severe disease in immunocompromised patients, but their involvement in human cancers is still a matter for debate. The discovery of a polyomavirus associated with Merkel cell carcinoma (Merkel cell polyomavirus) in 2008 resulted in a renewed interest in the Polyomaviridae family, leading to the discovery of new human polyomaviruses. This review addresses the involvement of the nine human polyomaviruses and simian virus 40 in human diseases, with a particular focus on their prevalence and the humoral response directed against structural antigens in the general population and in subjects presenting specific diseases.
Collapse
Affiliation(s)
- Jérôme TJ Nicol
- Université François Rabelais, INSERM U618 Equipe Vecteurs, Virus, Vaccins. Faculté des Sciences Pharmaceutiques Philippe Maupas, 31 avenue Monge, 37200 TOURS, France
| | - Antoine Touzé
- Université François Rabelais, INSERM U618 Equipe Vecteurs, Virus, Vaccins. Faculté des Sciences Pharmaceutiques Philippe Maupas, 31 avenue Monge, 37200 TOURS, France
| |
Collapse
|