1
|
Jiang H, Guo B, Brusseau ML. Pore-Scale Modeling of Fluid-Fluid Interfacial Area in Variably Saturated Porous Media Containing Microscale Surface Roughness. WATER RESOURCES RESEARCH 2020; 56:e2019WR025876. [PMID: 33408424 PMCID: PMC7785087 DOI: 10.1029/2019wr025876] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
A pore-scale model is developed to simulate fluid-fluid interfacial area in variably saturated porous media, with a specific focus on incorporating the effects of solid-surface roughness. The model is designed to quantify total (film and meniscus) fluid-fluid interfacial area (Anw ) over the full range of wetting-phase fluid saturation (Sw ) based on the inherent properties of the porous medium. The model employs a triangular pore space bundle of cylindrical capillaries (BCC) framework, modified with three surface roughness-related parameters. The first parameter (surface roughness factor) represents the overall magnitude of surface roughness, whereas the other two parameters (interface growth factor and critical adsorptive film thickness) reflect the micro-scale structure of surface roughness. A series of sensitivity analyses was conducted for the controlling variables, and the efficacy of the model was tested using air-water interfacial area data measured for three natural porous media. The model produced good simulations of the measured Anw data over the full range of saturation. The results demonstrate that total interfacial areas for natural media are typically much larger than those for ideal media comprising smooth surfaces due to the substantial contribution of surface roughness to wetting-film interfacial area. The degree to which fluid-fluid interfacial area is influenced by roughness is a function of fluid-retention characteristics and the nature of the rough surfaces. The full impact of roughness may be masked to some degree due to the formation of thick wetting films, which is explicitly quantified by the model. Application of the model provides insight into the importance of the interplay between pore-scale distribution and configuration of wetting fluid and the surface properties of solids.
Collapse
Affiliation(s)
- Hao Jiang
- Department of Chemical and Environmental Engineering, University of Arizona, 1133 E James E Rogers Way, Tucson, Arizona 85721, USA
| | - Bo Guo
- Department of Hydrology and Atmospheric Sciences, University of Arizona, 1133 E James E Rogers Way, Tucson, Arizona 85721, USA
| | - Mark L Brusseau
- Department of Hydrology and Atmospheric Sciences, University of Arizona, 1133 E James E Rogers Way, Tucson, Arizona 85721, USA
- Department of Soil, Water and Environmental Science, School of Earth and Environmental Sciences, University of Arizona, 429 Shantz Bldg., Tucson, AZ 85721, USA
| |
Collapse
|
2
|
Brusseau ML, Khan N, Wang Y, Yan N, Van Glubt S, Carroll KC. Nonideal Transport and Extended Elution Tailing of PFOS in Soil. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10654-10664. [PMID: 31464435 PMCID: PMC6830724 DOI: 10.1021/acs.est.9b02343] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The objective of this research was to examine the influence of nonideal sorption/desorption on the transport of polyfluorinated alkyl substances (PFASs) in soil, with a specific focus on characterizing and quantifying potential extended, mass-transfer-limited elution behavior. Perfluorooctane sulfonic acid (PFOS) was used as a representative PFAS, and miscible-displacement experiments were conducted with two soils comprising contrasting geochemical properties. The influence of nonlinear, rate-limited, hysteretic, and irreversible sorption/desorption on transport was investigated through experiments and model simulations. The breakthrough curves measured for PFOS transport in the two soils were asymmetrical and exhibited extensive elution tailing, indicating that sorption/desorption was significantly nonideal. The widely used two-domain sorption kinetics model could not fully simulate the observed transport behavior, whereas a multirate model employing a continuous distribution of sorption domains was successful. The overall results indicated that sorption/desorption was significantly rate-limited and that nonlinear, hysteretic, and irreversible sorption/desorption had minimal impact on PFOS transport. Comparison of PFOS transport data to data reported for two hydrophobic organic contaminants (HOCs) showed that the HOCs exhibited much more extensive elution tailing, likely reflecting differences in sorption/desorption mechanisms. The projected influence of rate-limited sorption/desorption on PFOS transport at the field scale was investigated through simulation. The results of the study suggest that rate-limited sorption/desorption may affect the field-scale transport of PFOS and other PFAS for systems influenced by transient or short-residence-time conditions and in some cases could possibly increase the amount of flushing required to reduce PFOS concentrations to levels below those associated with human-health concerns.
Collapse
Affiliation(s)
- Mark L. Brusseau
- Environmental Science Department, University of Arizona, Tucson, AZ 85721, United States
- Hydrology and Atmospheric Sciences Department, University of Arizona, Tucson, AZ 85721, United States
- Corresponding author:
| | - Naima Khan
- Department of Plant &Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, United States
| | - Yake Wang
- Environmental Science Department, University of Arizona, Tucson, AZ 85721, United States
| | - Ni Yan
- Environmental Science Department, University of Arizona, Tucson, AZ 85721, United States
- Hydrology and Atmospheric Sciences Department, University of Arizona, Tucson, AZ 85721, United States
| | - Sarah Van Glubt
- Environmental Science Department, University of Arizona, Tucson, AZ 85721, United States
| | - Kenneth C. Carroll
- Department of Plant &Environmental Sciences, New Mexico State University, Las Cruces, New Mexico, United States
| |
Collapse
|
3
|
Liu G, Zhong H, Jiang Y, Brusseau ML, Huang J, Shi L, Liu Z, Liu Y, Zeng G. Effect of low-concentration rhamnolipid biosurfactant on Pseudomonas aeruginosa transport in natural porous media. WATER RESOURCES RESEARCH 2017; 53:361-375. [PMID: 28943669 PMCID: PMC5607479 DOI: 10.1002/2016wr019832] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effect of low-concentrations of monorhamnolipid biosurfactant on transport of Pseudomonas aeruginosa ATCC 9027 in natural porous media (silica sand and a sandy soil) was studied with miscible-displacement experiments using artificial groundwater as the background solution. Transport of two types of cells was investigated, glucose- and hexadecane-grown cells with lower and higher cell surface hydrophobicity (CSH), respectively. The effect of hexadecane presence as a residual non-aqueous phase liquid (NAPLs) on transport was also examined. A clean-bed colloid deposition model was used to calculate deposition rate coefficients (k) for quantitative assessment. Significant cell retention was observed in the sand (81% and 82% for glucose- and hexadecane-grown cells, respectively). Addition of a low-concentration rhamnolipid solution enhanced cell transport, with 40 mg/L of rhamnolipid reducing retention to 50% and 60% for glucose- and hexadecane-grown cells, respectively. The k values for both glucose- and hexadecane-grown cells correlate linearly with rhamnolipid-dependent CSH represented as bacterial-adhesion-to-hydrocarbon rate of cells. Retention of cells by the soil was nearly complete (>99%). Addition of 40 mg/L rhamnolipid solution reduced retention to 95%. The presence of NAPLs in the sand increased the retention of hexadecane-grown cells with higher CSH. Transport of cells in the presence of the NAPL was enhanced by rhamnolipid at all concentrations tested, and the relative enhancement was greater than in was in the absence of NAPL. This study shows the importance of hydrophobic interaction on bacterial transport in natural porous media and the potential of using low-concentration rhamnolipid for facilitating the transport in subsurface for bioaugmentation efforts.
Collapse
Affiliation(s)
- Guansheng Liu
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430070, China
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430070, China
| | - Hua Zhong
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430070, China
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430070, China
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yongbing Jiang
- The Sericultural Research Institute of Hunan Province, Changsha 410127, China
| | - Mark L Brusseau
- Department of Soil, Water and Environmental Science, University of Arizona, Tucson, Arizona 85721, U.S
| | - Jiesheng Huang
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430070, China
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430070, China
| | - Liangsheng Shi
- State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan 430070, China
- School of Water Resources and Hydropower Engineering, Wuhan University, Wuhan 430070, China
| | - Zhifeng Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Yang Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
4
|
McLaughlin SJ, Kalita PK, Kuhlenschmidt MS. Fate of Cryptosporidium parvum oocysts within soil, water, and plant environment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2013; 131:121-128. [PMID: 24157412 DOI: 10.1016/j.jenvman.2013.09.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Revised: 09/11/2013] [Accepted: 09/13/2013] [Indexed: 06/02/2023]
Abstract
Vegetative Filter Strips (VFS) have long been used to control the movement of agricultural nutrients and prevent them from reaching receiving waters. Earlier studies have shown that VFS also dramatically reduce both the kinetics and extent of Cryptosporidium parvum (C. parvum) oocysts overland transport. In this study, we investigated possible mechanisms responsible for the ability of VFS to reduce oocyst overland transport. Measurement of the kinetics of C. parvum adhesion to individual sand, silt, and clay soil particles revealed that oocysts associate over time, albeit relatively slow, with clay but not silt or sand particles. Measurement of oocyst overland transport kinetics, soil infiltration depth, distance of travel, and adhesion to vegetation on bare and vegetated soil surfaces indicate that oocysts move more slowly, and penetrate the soil profile to a greater extent on a vegetated surface than on a bare soil surface. Furthermore, we demonstrate a small fraction of the oocysts become attached to vegetation at the soil-vegetation interface on VFS. These results suggest VFS function to reduce oocyst overland transport by primarily decreasing oocyst surface flow enough to allow penetration within the soil profile followed by subsequent adhesion to or entrapment within clay particle aggregates, and to a lesser extent, adhesion to the surface vegetation.
Collapse
|