1
|
Gros M, Mas-Pla J, Sànchez-Melsió A, Čelić M, Castaño M, Rodríguez-Mozaz S, Borrego CM, Balcázar JL, Petrović M. Antibiotics, antibiotic resistance and associated risk in natural springs from an agroecosystem environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159202. [PMID: 36208750 DOI: 10.1016/j.scitotenv.2022.159202] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
This study investigates the occurrence, transport, and risks associated to antibiotic residues, antibiotic resistance genes (ARGs) and antibiotic resistant Escherichia coli (AR-E. coli) in eleven natural springs in an agroecosystem environment with intense livestock production, where groundwater nitrate concentration usually sets above 50 mg L-1. Out of 23 multiple-class antibiotics monitored, tetracycline and sulfonamide residues were the most ubiquitous, and they were detected at concentrations ranging from ng L-1 to μg L-1. Five ARGs were monitored, conferring resistance to the antibiotic classes of major use in livestock production. Thus, genes conferring resistance to sulfonamides (sul1 and sul2) and tetracyclines (tetW) as well as a gene proxy for anthropogenic pollution (intI1) were present in most springs. sul1 was the most abundant, with absolute concentrations ranging from 4 × 102 to 5.6 × 106 gene copies L-1 water. AR-E. coli showing resistance to sulfonamides and tetracyclines was also detected, with a prevalence up to approximately 40 % in some sites but with poor correlations with the concentration of antibiotic residues and ARGs. The occurrence of antibiotics, ARGs and AR-E. coli was characterized by large seasonal variations which were mostly associated to both hydrological factors and reactive transport processes. Finally, a risk assessment approach pointed out towards low risk for both the groundwater environment and human health, when spring water is used for direct human consumption, associated with the occurrence of antibiotics, ARGs and AR-E. coli. However, long-term effects cannot be neglected, and proper actions must be taken to preserve groundwater quality.
Collapse
Affiliation(s)
- Meritxell Gros
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain.
| | - Josep Mas-Pla
- Catalan Institute for Water Research (ICRA), Spain; Grup de Recerca GAiA-Geocamb, Department of Environmental Sciences, University of Girona, Spain
| | | | - Mira Čelić
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Marc Castaño
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Carles M Borrego
- Catalan Institute for Water Research (ICRA), Spain; Group of Molecular Microbial Ecology, Institute of Aquatic Ecology, University of Girona, Spain
| | - José Luis Balcázar
- Catalan Institute for Water Research (ICRA), Spain; University of Girona (UdG), Spain
| | - Mira Petrović
- Catalan Institute for Water Research (ICRA), Spain; Catalan Institution for Research and Advanced Studies (ICREA), Spain
| |
Collapse
|
2
|
Characterisation of Organic Matter and Its Transformation Processes in On-Site Wastewater Effluent Percolating through Soil Using Fluorescence Spectroscopic Methods and Parallel Factor Analysis (PARAFAC). WATER 2021. [DOI: 10.3390/w13192627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This research has used fluorescence spectroscopy and parallel factor analysis (PARAFAC) in order to characterize dissolved organic matter in septic tank effluent, as it passes through the biomat/biozone, infiltrating into the unsaturated zone beneath domestic wastewater treatment systems (DWWTSs). Septic tank effluent and soil moisture samples from the percolation areas of two DWWTSs have been analyzed using fluorescence excitation–emission spectroscopy. Using PARAFAC analysis, a six-component model was obtained whereby individual model components could be assigned to humified organic matter, fluorescent whitening compounds (FWCs), and protein-like compounds. This has shown that fluorescent dissolved organic matter (FDOM) in domestic wastewater was dominated by protein-like compounds and FWCs and that, with treatment in the percolation area, protein-like compounds and FWCs are removed and contributions from terrestrially derived (soil) organic decomposition compounds increase, leading to a higher degree of humification and aromaticity. The results also suggest that the biomat is the most important element determining FDOM removal and consequently affecting DOM composition. Furthermore, no significant difference was found in the FDOM composition of samples from the percolation area irrespective of whether they received primary or secondary effluent. Overall, the tested fluorometric methods were shown to provide information about structural and functional properties of organic matter which can be useful for further studies concerning bacterial and/or virus transport from DWWTSs.
Collapse
|
3
|
Mattioli MC, Benedict KM, Murphy J, Kahler A, Kline KE, Longenberger A, Mitchell PK, Watkins S, Berger P, Shanks OC, Barrett CE, Barclay L, Hall AJ, Hill V, Weltman A. Identifying septic pollution exposure routes during a waterborne norovirus outbreak - A new application for human-associated microbial source tracking qPCR. J Microbiol Methods 2020; 180:106091. [PMID: 33137355 DOI: 10.1016/j.mimet.2020.106091] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/13/2020] [Accepted: 10/27/2020] [Indexed: 11/18/2022]
Abstract
In June 2017, the Pennsylvania Department of Health (PADOH) was notified of multiple norovirus outbreaks associated with 179 ill individuals who attended separate events held at an outdoor venue and campground over a month period. Epidemiologic investigations were unable to identify a single exposure route and therefore unable to determine whether there was a persistent contamination source to target for exposure mitigation. Norovirus was detected in a fresh recreational water designated swimming area and a drinking water well. A hydrogeological site evaluation suggested a nearby septic leach field as a potential contamination source via ground water infiltration. Geological characterization revealed a steep dip of the bedrock beneath the septic leach field toward the well, providing a viral transport pathway in a geologic medium not previously documented as high risk for viral ground water contamination. The human-associated microbial source tracking (MST) genetic marker, HF183, was used as a microbial tracer to demonstrate the hydrogeological connection between the malfunctioning septic system, drinking water well, and recreational water area. Based on environmental investigation findings, venue management and local public health officials implemented a series of outbreak prevention strategies including discontinuing the use of the contaminated well, issuing a permit for a new drinking water well, increasing portable toilet and handwashing station availability, and promoting proper hand hygiene. Despite the outbreaks at the venue and evidence of ground water contamination impacting nearby recreational water and the drinking water well, no new norovirus cases were reported during a large event one week after implementing prevention practices. This investigation highlights a new application for human-associated MST methods to trace hydrological connections between multiple fecal pollutant exposure routes in an outbreak scenario. In turn, pollutant source information can be used to develop effective intervention practices to mitigate exposure and prevent future outbreaks associated with human fecal contaminated waters.
Collapse
Affiliation(s)
- Mia C Mattioli
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, USA.
| | - Katharine M Benedict
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, USA
| | - Jennifer Murphy
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, USA
| | - Amy Kahler
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, USA
| | - Kelly E Kline
- Pennsylvania Department of Health, Division of Infectious Disease Epidemiology, USA
| | - Allison Longenberger
- Pennsylvania Department of Health, Division of Infectious Disease Epidemiology, USA
| | - Patrick K Mitchell
- Pennsylvania Department of Health, Division of Infectious Disease Epidemiology, USA; Epidemic Intelligence Service, Division of Scientific Education and Professional Development, Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Sharon Watkins
- Pennsylvania Department of Health, Division of Infectious Disease Epidemiology, USA
| | - Philip Berger
- U.S. Environmental Protection Agency, Office of Ground Water and Drinking Water, Washington, DC, USA
| | - Orin C Shanks
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Catherine E Barrett
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, USA
| | - Leslie Barclay
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, USA
| | - Aron J Hall
- Viral Gastroenteritis Branch, Division of Viral Diseases, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, USA
| | - Vincent Hill
- Waterborne Disease Prevention Branch, Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, USA
| | - Andre Weltman
- Pennsylvania Department of Health, Division of Infectious Disease Epidemiology, USA
| |
Collapse
|
4
|
Latchmore T, Hynds P, Brown RS, Schuster-Wallace C, Dickson-Anderson S, McDermott K, Majury A. Analysis of a large spatiotemporal groundwater quality dataset, Ontario 2010-2017: Informing human health risk assessment and testing guidance for private drinking water wells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:140382. [PMID: 32806349 DOI: 10.1016/j.scitotenv.2020.140382] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/01/2020] [Accepted: 06/18/2020] [Indexed: 05/12/2023]
Abstract
Approximately 1.5 million individuals in Ontario are supplied by private water wells (private groundwater supplies). Unlike municipal supplies, private well water quality remains unregulated, with owners responsible for testing, treating, and maintaining their own water supplies. The primary goal of this study was to assess the effect of repeat sampling of private well water in Ontario and investigate the efficacy of geographically- and/or temporally specific testing recommendations and health risk assessments. The current study combines the Well Water Information System Dataset and the Well Water Testing Dataset from 2010 to 2017, inclusive. These two large existing province-wide datasets collated over an eight-year period were merged using an integrated spatial fuzzy logic and (next)- nearest neighbour approach. Provincial sampling data from 239,244 wells (702,861 samples) were analyzed for Escherichia coli to study the relationship between sampling frequency and Escherichia coli detection. Dataset variables were delineated based on hydrogeological setting (e.g. aquifer type, overburden depth, well depth, bedrock type) and seasonality to provide an in-depth understanding of Escherichia coli detection in private well water. Findings reveal differences between detection rates in consolidated and unconsolidated aquifers (p = 0.0191), and across seasons (p < 0.0001). The variability associated with Escherichia coli detection rates was explored by estimating sentinel sampling rates for private wells sampled three times, twelve times and twenty-four times per year. As sample size increases on an annual basis, so too does detection rate, highlighting the need to address current testing frequency guidelines. Future health risk assessments for private well water should consider the impact of spatial and temporal factors on the susceptibility of this drinking water source, leading to an increasingly accurate depiction of private well water contamination and the estimated effects on human health.
Collapse
Affiliation(s)
- Tessa Latchmore
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | - Paul Hynds
- Technological University Dublin, Dublin, Ireland
| | - R Stephen Brown
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada
| | | | | | | | - Anna Majury
- School of Environmental Studies, Queen's University, Kingston, Ontario, Canada; Public Health Ontario, Kingston, Ontario, Canada.
| |
Collapse
|
5
|
Clemens H, Pang L, Morgan LK, Weaver L. Attenuation of rotavirus, MS2 bacteriophage and biomolecule-modified silica nanoparticles in undisturbed silt loam over gravels dosed with onsite wastewater. WATER RESEARCH 2020; 169:115272. [PMID: 31726397 DOI: 10.1016/j.watres.2019.115272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 10/07/2019] [Accepted: 11/02/2019] [Indexed: 05/24/2023]
Abstract
Contamination of potable groundwater by pathogenic viruses from on-site wastewater treatment systems (OWTS) poses a serious health risk. This study investigated the attenuation and transport of rotavirus, bacteriophage MS2 and DNA-labelled-glycoprotein-coated silica nanoparticles (DGSnp) in 2 intact cores of silt loam over gravels dosed with wastewater from an OWTS at 3.53 L/day. To simulate a worst-case scenario, experiments were conducted under saturated conditions. The results from 6 experiments demonstrated that the rotavirus and DGSnp reductions were very similar and markedly greater than the MS2 reduction. This was reflected in the peak concentrations, relative mass recoveries, and temporal and spatial reduction rates. For a given log10 reduction, the estimated soil depth required for MS2 was over twice that required for rotavirus and DGSnp. This is the first study in which DGSnp was used as a rotavirus surrogate in soil under wastewater applications. Consistent with previous studies, DGSnp showed promise at mimicking rotavirus attenuation and transport in porous media. The results suggest DGSnp could be used to assess the attenuation capacity of subsurface media to rotavirus. However, DGSnp is not conservative and will underestimate the setback distances required for rotavirus reductions by 3%. On the other hand, separation distances determined using the rotavirus parameters and criteria but based on MS2 attenuation, can be too conservative in some subsurface media. To determine safe and realistic separation distances, it would be beneficial and complementary to apply both conservative virus surrogate using MS2 bacteriophage and representative but non-conservative new virus surrogates using biomolecule-modified silica nanoparticles.
Collapse
Affiliation(s)
- Hazel Clemens
- Institute of Environmental Science and Research, PO Box 29181, Christchurch, 8540, New Zealand; Waterways Centre for Freshwater Management, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Liping Pang
- Institute of Environmental Science and Research, PO Box 29181, Christchurch, 8540, New Zealand.
| | - Leanne K Morgan
- Waterways Centre for Freshwater Management, University of Canterbury, Private Bag 4800, Christchurch, 8140, New Zealand
| | - Louise Weaver
- Institute of Environmental Science and Research, PO Box 29181, Christchurch, 8540, New Zealand
| |
Collapse
|
6
|
Smith HJ, Zelaya AJ, De León KB, Chakraborty R, Elias DA, Hazen TC, Arkin AP, Cunningham AB, Fields MW. Impact of hydrologic boundaries on microbial planktonic and biofilm communities in shallow terrestrial subsurface environments. FEMS Microbiol Ecol 2018; 94:5107865. [PMID: 30265315 PMCID: PMC6192502 DOI: 10.1093/femsec/fiy191] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 09/26/2018] [Indexed: 12/12/2022] Open
Abstract
Subsurface environments contain a large proportion of planetary microbial biomass and harbor diverse communities responsible for mediating biogeochemical cycles important to groundwater used by human society for consumption, irrigation, agriculture and industry. Within the saturated zone, capillary fringe and vadose zones, microorganisms can reside in two distinct phases (planktonic or biofilm), and significant differences in community composition, structure and activity between free-living and attached communities are commonly accepted. However, largely due to sampling constraints and the challenges of working with solid substrata, the contribution of each phase to subsurface processes is largely unresolved. Here, we synthesize current information on the diversity and activity of shallow freshwater subsurface habitats, discuss the challenges associated with sampling planktonic and biofilm communities across spatial, temporal and geological gradients, and discuss how biofilms may be constrained within shallow terrestrial subsurface aquifers. We suggest that merging traditional activity measurements and sequencing/-omics technologies with hydrological parameters important to sediment biofilm assembly and stability will help delineate key system parameters. Ultimately, integration will enhance our understanding of shallow subsurface ecophysiology in terms of bulk-flow through porous media and distinguish the respective activities of sessile microbial communities from more transient planktonic communities to ecosystem service and maintenance.
Collapse
Affiliation(s)
- H J Smith
- Center for Biofilm Engineering, Montana State University, Bozeman, MT
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - A J Zelaya
- Center for Biofilm Engineering, Montana State University, Bozeman, MT
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - K B De León
- Department of Biochemistry, University of Missouri, Columbia, MO
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - R Chakraborty
- Climate and Ecosystems Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - D A Elias
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - T C Hazen
- Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, TN
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - A P Arkin
- Department of Bioengineering, Lawrence Berkeley National Laboratory, Berkeley, CA
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| | - A B Cunningham
- Center for Biofilm Engineering, Montana State University, Bozeman, MT
- Department of Civil Engineering, Montana State University, Montana State University, Bozeman, MT
| | - M W Fields
- Center for Biofilm Engineering, Montana State University, Bozeman, MT
- Department of Microbiology & Immunology, Montana State University, Bozeman, MT
- ENIGMA (www.enigma.lbl.gov) Environmental Genomics and Systems Biology Division, Biosciences Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, MS:977, Berkeley, CA 94720
| |
Collapse
|
7
|
Pachepsky YA, Allende A, Boithias L, Cho K, Jamieson R, Hofstra N, Molina M. Microbial Water Quality: Monitoring and Modeling. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:931-938. [PMID: 30272779 DOI: 10.2134/jeq2018.07.0277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microbial water quality lies in the nexus of human, animal, and environmental health. Multidisciplinary efforts are under way to understand how microbial water quality can be monitored, predicted, and managed. This special collection of papers in the was inspired by the idea of creating a special section containing the panoramic view of advances and challenges in the arena of microbial water quality research. It addresses various facets of health-related microorganism release, transport, and survival in the environment. The papers analyze the spatiotemporal variability of microbial water quality, selection of predictors of the spatiotemporal variations, the role of bottom sediments and biofilms, correlations between concentrations of indicator and pathogenic organisms and the role for risk assessment techniques, use of molecular markers, subsurface microbial transport as related to microbial water quality, antibiotic resistance, real-time monitoring and nowcasting, watershed scale modeling, and monitoring design. Both authors and editors represent international experience in the field. The findings underscore the challenges of observing and understanding microbial water quality; they also suggest promising research directions for improving the knowledge base needed to protect and improve our water sources.
Collapse
|
8
|
Oladeinde A, Lipp E, Chen CY, Muirhead R, Glenn T, Cook K, Molina M. Transcriptome Changes of Escherichia coli, Enterococcus faecalis, and Escherichia coli O157:H7 Laboratory Strains in Response to Photo-Degraded DOM. Front Microbiol 2018; 9:882. [PMID: 29867797 PMCID: PMC5953345 DOI: 10.3389/fmicb.2018.00882] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/17/2018] [Indexed: 11/26/2022] Open
Abstract
In this study, we investigated gene expression changes in three bacterial strains (Escherichia coli C3000, Escherichia coli O157:H7 B6914, and Enterococcus faecalis ATCC 29212), commonly used as indicators of water quality and as control strains in clinical, food, and water microbiology laboratories. Bacterial transcriptome responses from pure cultures were monitored in microcosms containing water amended with manure-derived dissolved organic matter (DOM), previously exposed to simulated sunlight for 12 h. We used RNA sequencing (RNA-seq) and quantitative real-time reverse transcriptase (qRT-PCR) to compare differentially expressed temporal transcripts between bacteria incubated in microcosms containing sunlight irradiated and non-irradiated DOM, for up to 24 h. In addition, we used whole genome sequencing simultaneously with RNA-seq to identify single nucleotide variants (SNV) acquired in bacterial populations during incubation. These results indicate that E. coli and E. faecalis have different mechanisms for removal of reactive oxygen species (ROS) produced from irradiated DOM. They are also able to produce micromolar concentrations of H2O2 from non-irradiated DOM, that should be detrimental to other bacteria present in the environment. Notably, this study provides an assessment of the role of two conjugative plasmids carried by the E. faecalis and highlights the differences in the overall survival dynamics of environmentally-relevant bacteria in the presence of naturally-produced ROS.
Collapse
Affiliation(s)
- Adelumola Oladeinde
- National Exposure Research Laboratory, Student Volunteer, U.S. Environmental Protection Agency, Office of Research and Development, Athens, GA, United States.,Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Erin Lipp
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Chia-Ying Chen
- National Exposure Research Laboratory, National Research Council Associate, U.S. Environmental Protection Agency, Office of Research and Development, Athens, GA, United States
| | | | - Travis Glenn
- Department of Environmental Health Science, University of Georgia, Athens, GA, United States
| | - Kimberly Cook
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. National Poultry Research Center, Agricultural Research Service, United States Department of Agriculture, Athens, GA, United States
| | - Marirosa Molina
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Office of Research and Development, Athens, GA, United States
| |
Collapse
|