1
|
King WM, Curless SE, Hood JM. River phosphorus cycling during high flow may constrain Lake Erie cyanobacteria blooms. WATER RESEARCH 2022; 222:118845. [PMID: 35868100 DOI: 10.1016/j.watres.2022.118845] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 07/08/2022] [Indexed: 06/15/2023]
Abstract
Cyanobacterial harmful blooms have been increasing worldwide, due in part to excessive phosphorus (P) losses from agriculture-dominated watersheds. Unfortunately, cyanobacteria bloom management is often complicated by uncertainty associated with river P cycling. River P cycling mediates P exports during low flow but has been assumed to be unimportant during high flows. Thus, we examined interactions between dissolved reactive phosphorus (DRP) and suspended sediment P during high flows in the Maumee River network, focusing on March-June Maumee River DRP exports, which fuel recurring cyanobacteria blooms in Lake Erie. We estimate that during 2003-2019 March to June high flow events, P sorption reduced DRP exports by an average of 13-27%, depending upon the colloidal-P:DRP ratio, decreasing the bioavailability of P exports, and potentially constraining cyanobacteria blooms by 13-40%. Phosphorus sorption was likely lower during 2003-2019 than 1975-2002 due to reductions in suspended sediment loads, associated with soil-erosion-minimizing agricultural practices. This unintended outcome of erosion management has likely decreased P sorption, increased DRP exports to Lake Erie, and subsequent cyanobacteria blooms. In other watersheds, DRP-sediment P interactions during high flow could have a positive or negative effect on DRP exports; therefore, P management should consider riverine P cycles, particularly during high flow events, to avoid undermining expensive P mitigation efforts.
Collapse
Affiliation(s)
- Whitney M King
- Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Behavior, The Ohio State University, 230 Research Center, 1314 Kinnear Road, Columbus, OH 43212, USA
| | - Susan E Curless
- Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Behavior, The Ohio State University, 230 Research Center, 1314 Kinnear Road, Columbus, OH 43212, USA
| | - James M Hood
- Aquatic Ecology Laboratory, Department of Evolution, Ecology, and Organismal Behavior, The Ohio State University, 230 Research Center, 1314 Kinnear Road, Columbus, OH 43212, USA; Translational Data Analytics Institute, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
2
|
Agricultural Water Management Using Two-Stage Channels: Performance and Policy Recommendations Based on Northern European Experiences. SUSTAINABILITY 2021. [DOI: 10.3390/su13169349] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Conventional dredging of ditches and streams to ensure agricultural drainage and flood mitigation can have severe environmental impacts. The aim of this paper is to investigate the potential benefits of an alternative, nature-based two-stage channel (TSC) design with floodplains excavated along the main channel. Through a literature survey, investigations at Finnish field sites and expert interviews, we assessed the performance, costs, and monetary environmental benefits of TSCs in comparison to conventional dredging, as well as the bottlenecks in their financing and governance. We found evidence supporting the expected longer-term functioning of drainage as well as larger plant and fish biodiversity in TSCs compared to conventional dredging. The TSC design likely improves water quality since the floodplains retain suspended sediment and phosphorus and remove nitrogen. In the investigated case, the additional value of phosphorus retention and conservation of protected species through the TSC design was 2.4 times higher than the total costs. We demonstrate how TSCs can be made eligible for the obligatory vegetated riparian buffer of the European Union agri-environmental subsidy scheme (CAP-AES) by optimising their spatial application with respect to other buffer measures, and recommend to publicly finance their additional costs compared to conventional dredging at priority sites. Further studies on biodiversity impacts and long-term performance of two-stage channels are required.
Collapse
|
3
|
Kreiling RM, Bartsch LA, Perner PM, Hlavacek EJ, Christensen VG. Riparian Forest Cover Modulates Phosphorus Storage and Nitrogen Cycling in Agricultural Stream Sediments. ENVIRONMENTAL MANAGEMENT 2021; 68:279-293. [PMID: 34105016 DOI: 10.1007/s00267-021-01484-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Watershed land cover affects in-stream water quality and sediment nutrient dynamics. The presence of natural land cover in the riparian zone can reduce the negative effects of agricultural land use on water quality; however, literature evaluating the effects of natural riparian land cover on stream sediment nutrient dynamics is scarce. The objective of this study was to assess if stream sediment phosphorus retention and nitrogen removal varies with riparian forest cover in agricultural watersheds. Stream sediment nutrient dynamics from 28 sites with mixed land cover were sampled three times during the growing season. Phosphorus dynamics and nitrification rates did not change considerably throughout the study period. Sediment total phosphorus concentrations and nitrification rates decreased as riparian forest cover increased likely due to a decline in fine, organic material. Denitrification rates were strongly correlated to surface water nitrate concentrations. Denitrification rate and denitrification enzyme activity decreased with an increase in forest cover during the first sampling period only. The first sampling period coincided with the greatest connectivity between the watershed and in-stream processing, indicating that riparian forest cover indirectly decreased denitrification rates by reducing the concentrations of dissolved nutrients entering the stream. This reduction in load may allow the sediment to maintain greater nitrogen removal efficiency, because bacteria are not saturated with nitrogen. Riparian forest cover also appeared to lessen the effect of agriculture in the watershed by decreasing the amount of fine material in the stream, resulting in reduced phosphorus storage in the stream sediment.
Collapse
Affiliation(s)
- R M Kreiling
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, USA.
| | - L A Bartsch
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, USA
| | - P M Perner
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, USA
| | - E J Hlavacek
- U.S. Geological Survey, Upper Midwest Environmental Sciences Center, La Crosse, WI, USA
| | - V G Christensen
- U.S. Geological Survey, Upper Midwest Water Science Center, Moundsview, MN, USA
| |
Collapse
|
4
|
Land Use Change Influences Ecosystem Function in Headwater Streams of the Lowland Amazon Basin. WATER 2021. [DOI: 10.3390/w13121667] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Intensive agriculture alters headwater streams, but our understanding of its effects is limited in tropical regions where rates of agricultural expansion and intensification are currently greatest. Riparian forest protections are an important conservation tool, but whether they provide adequate protection of stream function in these areas of rapid tropical agricultural development has not been well studied. To address these gaps, we conducted a study in the lowland Brazilian Amazon, an area undergoing rapid cropland expansion, to assess the effects of land use change on organic matter dynamics (OM), ecosystem metabolism, and nutrient concentrations and uptake (nitrate and phosphate) in 11 first order streams draining forested (n = 4) or cropland (n = 7) watersheds with intact riparian forests. We found that streams had similar terrestrial litter inputs, but OM biomass was lower in cropland streams. Gross primary productivity was low and not different between land uses, but ecosystem respiration and net ecosystem production showed greater seasonality in cropland streams. Although we found no difference in stream concentrations of dissolved nutrients, phosphate uptake exceeded nitrate uptake in all streams and was higher in cropland than forested streams. This indicates that streams will be more retentive of phosphorus than nitrogen and that if fertilizer nitrogen reaches streams, it will be exported in stream networks. Overall, we found relatively subtle differences in stream function, indicating that riparian buffers have thus far provided protection against major functional shifts seen in other systems. However, the changes we did observe were linked to watershed scale shifts in hydrology, water temperature, and light availability resulting from watershed deforestation. This has implications for the conservation of tens of thousands of stream kilometers across the expanding Amazon cropland region.
Collapse
|
5
|
Stenfert Kroese J, Batista PVG, Jacobs SR, Breuer L, Quinton JN, Rufino MC. Agricultural land is the main source of stream sediments after conversion of an African montane forest. Sci Rep 2020; 10:14827. [PMID: 32908233 PMCID: PMC7481190 DOI: 10.1038/s41598-020-71924-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 08/24/2020] [Indexed: 11/09/2022] Open
Abstract
In many parts of Africa, soil erosion is an important problem, which is evident from high sediment yields in tropical montane streams. Previous studies in Kenya pointed to a large contribution from catchments cultivated by smallholder farmers. This led to the hypothesis that unpaved tracks and gullies are the main sediment sources in smallholder agriculture catchments of the highlands of Kenya. The aim of this study was to investigate the sediment sources with sediment fingerprinting to generate the knowledge base to improve land management and to reduce sediment yields. Four main sediment sources (agricultural land, unpaved tracks, gullies and channel banks) and suspended sediments were analysed for biogeochemical elements as potential tracers. To apportion the catchments target sediment to different sources, we applied the MixSIAR un-mixing modelling under a Bayesian framework. Surprisingly, the fingerprinting analysis showed that agricultural land accounted for 75% (95% confidence interval 63-86%) of the total sediment. Channel banks contributed 21% (8-32%), while the smallest contributions to sediment were generated by the unpaved tracks and gullies with 3% (0-12%) and 1% (0-4%), respectively. Erosion management strategies should target agricultural lands with an emphasis on disconnecting unpaved tracks form hillslope source areas to reduce sediment yields to Lake Victoria.
Collapse
Affiliation(s)
- Jaqueline Stenfert Kroese
- Lancaster Environment Centre, Lancaster University, Lancaster, England, UK. .,Centre for International Forestry Research (CIFOR), Nairobi, Kenya.
| | - Pedro V G Batista
- Department of Environmental Sciences, University of Basel, Basel, Switzerland
| | - Suzanne R Jacobs
- Centre for International Development and Environmental Research (ZEU), Justus Liebig University Giessen, Giessen, Germany
| | - Lutz Breuer
- Institute for Landscape Ecology and Resources Management (ILR), Justus Liebig University Giessen, Giessen, Germany.,Centre for International Development and Environmental Research (ZEU), Justus Liebig University Giessen, Giessen, Germany
| | - John N Quinton
- Lancaster Environment Centre, Lancaster University, Lancaster, England, UK
| | - Mariana C Rufino
- Lancaster Environment Centre, Lancaster University, Lancaster, England, UK.,Centre for International Forestry Research (CIFOR), Nairobi, Kenya
| |
Collapse
|
6
|
Choi DS, Ready RC, Shortle JS. Valuing water quality benefits from adopting best management practices: A spatial approach. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:582-592. [PMID: 33016386 DOI: 10.1002/jeq2.20005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 10/22/2019] [Indexed: 06/11/2023]
Abstract
We developed a GIS-based tool that values, in a spatially explicit way, the ecosystem services generated by water quality improvements resulting from adoption of agricultural best management practices (BMPs). The tool is calibrated for watersheds in the Chesapeake Bay drainage and includes the benefits from water quality improvements within targeted watersheds, water quality improvements downstream from targeted watersheds, and reductions in pollutant loadings to Chesapeake Bay. The tool is used to investigate specific BMP scenarios adopted within specific watersheds. The results show that (i) BMP adoption generates large positive net benefits to society, with benefit/cost ratios ranging from 22 to 276; (ii) by selecting cost effective BMPs and placing them in the most appropriate places, the cost of meeting pollutant reduction targets would be reduced by 34-71%; and (iii) net benefits from BMP adoption are higher when they are implemented close to or upstream from population centers.
Collapse
Affiliation(s)
- Dong Soon Choi
- Dep. of Agricultural Economics, Sociology and Education, Pennsylvania State Univ., University Park, PA, 16802
| | - Richard C Ready
- Dep. of Agricultural Economics and Economics and Montana Institute on Ecosystems, Montana State Univ., Bozeman, MT, 59717
| | - James S Shortle
- Dep. of Agricultural Economics, Sociology and Education, Pennsylvania State Univ., University Park, PA, 16802
| |
Collapse
|
7
|
Glendell M, Palarea-Albaladejo J, Pohle I, Marrero S, McCreadie B, Cameron G, Stutter M. Modeling the Ecological Impact of Phosphorus in Catchments with Multiple Environmental Stressors. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:1336-1346. [PMID: 31589719 DOI: 10.2134/jeq2019.05.0195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The broken phosphorus (P) cycle has led to widespread eutrophication of freshwaters. Despite reductions in anthropogenic nutrient inputs that have led to improvement in the chemical status of running waters, corresponding improvements in their ecological status are often not observed. We tested a novel combination of complementary statistical modeling approaches, including random-effect regression trees and compositional and ordinary linear mixed models, to examine the potential reasons for this disparity, using low-frequency regulatory data available to catchment managers. A benthic Trophic Diatom Index (TDI) was linked to potential stressors, including nutrient concentrations, soluble reactive P (SRP) loads from different sources, land cover, and catchment hydrological characteristics. Modeling suggested that SRP, traditionally considered the bioavailable component, may not be the best indicator of ecological impacts of P, as shown by a stronger and spatially more variable negative relationship between total P (TP) concentrations and TDI. Nitrate-N ( < 0.001) and TP ( = 0.002) also showed negative relationship with TDI in models where land cover was not included. Land cover had the strongest influence on the ecological response. The positive effect of seminatural land cover ( < 0.001) and negative effect of urban land cover ( = 0.030) may be related to differentiated bioavailability of P fractions in catchments with different characteristics (e.g., P loads from point vs. diffuse sources) as well as resilience factors such as hydro-morphology and habitat condition, supporting the need for further research into factors affecting this stressor-response relationship in different catchment types. Advanced statistical modeling indicated that to achieve desired ecological status, future catchment-specific mitigation should target P impacts alongside multiple stressors.
Collapse
|
8
|
Thoms M, Scown M, Flotemersch J. Characterization of River Networks: A GIS Approach and Its Applications. JOURNAL OF THE AMERICAN WATER RESOURCES ASSOCIATION 2018; 54:899-913. [PMID: 31456632 PMCID: PMC6711203 DOI: 10.1111/1752-1688.12649] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Fluvial geomorphology provides the basis for characterizing complex river networks and evaluating biophysical processes within watersheds. Understanding the spatial organization of morphological features, their influencing processes, and resultant geomorphic diversity in stream networks are important for efficient restoration, river health assessment, and improving our knowledge of the resilience of riverine landscapes. River characterization is a means to determine the biophysical character of river networks but many methods are fraught with pitfalls, such as the use of incorrect variables and limited acknowledgment of the hierarchical organization of rivers. In this paper, a top-down geographic information system-based approach for determining the physical typology of river networks is outlined. A suite of multivariate analyses are used to develop a nomenclature for functional process zones (FPZs) - large tracts of the river network with similar hydro-geomorphological character. Applied to the Little Miami River, Ohio, six distinct FPZs emerged, which had a nonuniform distribution along the river network. Some FPZs repeated downstream; others were rare in terms of total length and number of FPZ segments. The physical structure of the Little Miami River network was analyzed using a series of community metrics. Application of this approach for river monitoring, establishing reference conditions, as well as management of threatened and endangered species and asset trading is highlighted.
Collapse
Affiliation(s)
- Martin Thoms
- Riverine Landscapes Research Laboratory, University of New England, Armidale, New South Wales, AUS
| | - Murray Scown
- Centre for Sustainability Studies, Lund University, Lund, SWE
| | - Joseph Flotemersch
- National Exposure Research Laboratory, U.S. Environmental Protection Agency, Cincinnati, Ohio, USA
| |
Collapse
|