1
|
Liu B, Lee CW, Bong CW, Wang AJ. Investigating Escherichia coli habitat transition from sediments to water in tropical urban lakes. PeerJ 2024; 12:e16556. [PMID: 38223759 PMCID: PMC10788090 DOI: 10.7717/peerj.16556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/09/2023] [Indexed: 01/16/2024] Open
Abstract
Background Escherichia coli is a commonly used faecal indicator bacterium to assess the level of faecal contamination in aquatic habitats. However, extensive studies have reported that sediment acts as a natural reservoir of E. coli in the extraintestinal environment. E. coli can be released from the sediment, and this may lead to overestimating the level of faecal contamination during water quality surveillance. Thus, we aimed to investigate the effects of E. coli habitat transition from sediment to water on its abundance in the water column. Methods This study enumerated the abundance of E. coli in the water and sediment at five urban lakes in the Kuala Lumpur-Petaling Jaya area, state of Selangor, Malaysia. We developed a novel method for measuring habitat transition rate of sediment E. coli to the water column, and evaluated the effects of habitat transition on E. coli abundance in the water column after accounting for its decay in the water column. Results The abundance of E. coli in the sediment ranged from below detection to 12,000 cfu g-1, and was about one order higher than in the water column (1 to 2,300 cfu mL-1). The habitat transition rates ranged from 0.03 to 0.41 h-1. In contrast, the E. coli decay rates ranged from 0.02 to 0.16 h-1. In most cases (>80%), the habitat transition rates were higher than the decay rates in our study. Discussion Our study provided a possible explanation for the persistence of E. coli in tropical lakes. To the best of our knowledge, this is the first quantitative study on habitat transition of E. coli from sediments to water column.
Collapse
Affiliation(s)
- Boyu Liu
- Laboratory of Microbial Ecology, Institute of Biological Science, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Choon Weng Lee
- Laboratory of Microbial Ecology, Institute of Biological Science, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Chui Wei Bong
- Laboratory of Microbial Ecology, Institute of Biological Science, Faculty of Science, Universiti Malaya, Kuala Lumpur, Malaysia
- Institute of Ocean and Earth Sciences, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ai-Jun Wang
- Laboratory of Coastal and Marine Geology, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen, Fujian, China
- Fujian Provincial Key Laboratory of Marine Physical and Geological Processes, Xiamen, Fujian, China
| |
Collapse
|
2
|
Persistent Spatial Patterns of Listeria monocytogenes and Salmonella enterica Concentrations in Surface Waters: Empirical Orthogonal Function Analysis of Data from Maryland. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12157526] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
High spatiotemporal variability of pathogen concentrations in surface waters complicates the design and interpretation of microbial water quality monitoring. Empirical orthogonal function (EOF) analysis can provide spatial patterns (EOFs) of variability in deviations of concentrations in specific locations from the average concentration across the study area. These patterns can be interpreted to assess the effect of environmental factors on pathogen levels in the water. The first and the second EOFs for Listeria monocytogenes explained 84.4% and 9.7% of the total variance of deviations from average, respectively. That percentage was 50.8% and 45.0% for Salmonella enterica. The precipitation also had a strong explanatory capability (79%) of the first EOF. The first EOFs of Listeria and precipitation were similar at pond sites but were opposite to the precipitation at the stream sites. The first EOF of S. enterica and precipitation demonstrated opposite trends, whereas the second S. enterica EOF pattern had similar signs with the precipitation EOF at pond sites, indicating a relationship between rainfall and Salmonella at these sites. Overall, the rainfall data could inform on persistent spatial patterns in concentrations of the two pathogens at the pond sites in farm settings but not at stream sites located in forested areas.
Collapse
|
3
|
Drummond JD, Aquino T, Davies‐Colley RJ, Stott R, Krause S. Modeling Contaminant Microbes in Rivers During Both Baseflow and Stormflow. GEOPHYSICAL RESEARCH LETTERS 2022; 49:e2021GL096514. [PMID: 35866058 PMCID: PMC9286818 DOI: 10.1029/2021gl096514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 01/20/2022] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
Rivers transport contaminant microorganisms (including fecal indicator bacteria and human pathogens) long distances downstream of diffuse and point sources, posing a human health risk. We present a mobile-immobile model that incorporates transport as well as immobilization and remobilization of contaminant microbes and other fine particles during baseflow and stormflow. During baseflow conditions, hyporheic exchange flow causes particles to accumulate in streambed sediments. Remobilization of stored particles from streambed sediments occurs slowly during baseflow via hyporheic exchange flow, while remobilization is vastly increased during stormflow. Model predictions are compared to observations over a range of artificial and natural flood events in the dairy contaminated Topehaehae Stream, New Zealand. The model outputs closely matched timing and magnitude of E. coli and turbidity observations through multiple high-flow events. By accounting for both state-of-flow and hyporheic exchange processes, the model provides a valuable framework for predicting particle and contaminant microbe behavior in streams.
Collapse
Affiliation(s)
- J. D. Drummond
- University of BirminghamSchool of Geography, Earth & Environmental SciencesBirminghamUK
| | - T. Aquino
- Université de RennesCNRSGéosciences Rennes, UMR 6118RennesFrance
| | - R. J. Davies‐Colley
- NIWA (National Institute of Water & Atmospheric Research Ltd.)HamiltonNew Zealand
| | - R. Stott
- NIWA (National Institute of Water & Atmospheric Research Ltd.)HamiltonNew Zealand
| | - S. Krause
- University of BirminghamSchool of Geography, Earth & Environmental SciencesBirminghamUK
- Université de LyonUniversité Claude Bernard Lyon 1CNRSENTPEUMR5023Ecologie des Hydrosystèmes Naturels et Anthropisés (LEHNA)VilleurbanneFrance
| |
Collapse
|
4
|
Salam S, McDaniel R, Bleakley B, Amegbletor L, Mardani S. Variability of E. coli in streambed sediment and its implication for sediment sampling. JOURNAL OF CONTAMINANT HYDROLOGY 2021; 242:103859. [PMID: 34343844 DOI: 10.1016/j.jconhyd.2021.103859] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/02/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
E. coli is the number one cause for water quality impairments in rivers and streams in South Dakota and the United States. Stream bottom sediments can be a reservoir for bacteria, including pathogenic organisms and fecal indicator bacteria (FIB), due to the favorable conditions provided by sediments for survival. Despite this, little is known about the variability of E. coli in sediments which should be considered when developing a sampling regime. This study examines the spatial variability of E. coli in sediment across the stream cross-section, the temporal stability of E. coli in sediment samples, and the implications for sediment sampling and processing. Five locations were sampled for sediment E. coli along two tributaries to the Big Sioux River in eastern South Dakota, four along Skunk Creek (Sk1, Sk2, Sk3, and Sk4), and one in Sixmile Creek (SM). In Skunk Creek, site Sk1 has direct cattle access where the other three sites (Sk2, Sk3, and Sk4) are under Seasonal Riparian Area Management (SRAM), a strategy that limits the cattle access to the stream. E. coli concentrations in the sediment ranged from 4 to 997 CFU g-1 (8.5 × 102 to 2.1 × 105 CFU 100 mL-1). The highest and lowest E. coli concentrations observed were at sites Sk1 and Sk4, respectively. The E. coli concentration decreased from the upstream cattle crossing site (Sk1) through the downstream SRAM sites. Analyzing the stream cross-section analysis revealed no significant difference in E. coli concentration between the edge and the middle of the stream. Sediment samples can be held up to 24 h after sample collection in refrigerated conditions (37 °F) in the majority of cases (80%) without significant changes in E. coli concentrations. The sample size analysis indicated the spatial variability of E. coli across the stream cross-section is high and a single grab sample may not be able to provide adequate representation of E. coli concentrations in sediment without substantial error. The findings provide insight for designing E. coli monitoring projects and promote the awareness of unconventional sources of microbiological water quality impairment which are often overlooked.
Collapse
Affiliation(s)
- Sadia Salam
- Department of Agricultural and Biosystems Engineering, South Dakota State University, 1400 N Campus Drive, Ag & biosystems Engineering-Box 2120 University Station, Brookings, SD 57007, USA.
| | - Rachel McDaniel
- Department of Agricultural and Biosystems Engineering, South Dakota State University, 1400 N Campus Drive, Ag & biosystems Engineering-Box 2120 University Station, Brookings, SD 57007, USA
| | - Bruce Bleakley
- Department of Biology and Microbiology, South Dakota State University, Alfred Dairy Science Hall 220 Biology & Microbiology-Box 2104A, University Station, Brookings, SD 57007, USA
| | - Louis Amegbletor
- Department of Agricultural and Biosystems Engineering, South Dakota State University, 1400 N Campus Drive, Ag & biosystems Engineering-Box 2120 University Station, Brookings, SD 57007, USA
| | - Sara Mardani
- Department of Agricultural and Biosystems Engineering, South Dakota State University, 1400 N Campus Drive, Ag & biosystems Engineering-Box 2120 University Station, Brookings, SD 57007, USA
| |
Collapse
|
5
|
Neher TP, Ma L, Moorman TB, Howe A, Soupir ML. Seasonal variations in export of antibiotic resistance genes and bacteria in runoff from an agricultural watershed in Iowa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 738:140224. [PMID: 32806354 DOI: 10.1016/j.scitotenv.2020.140224] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/09/2020] [Accepted: 06/12/2020] [Indexed: 06/11/2023]
Abstract
Seasonal variations of antimicrobial resistance (AMR) indicators in runoff water can help improve our understanding of AMR sources and transport within an agricultural watershed. This study aimed to monitor multiple areas throughout the Black Hawk Lake (BHL) watershed (5324 ha) in central Iowa during 2017 and 2018 that consists of both swine and cattle feeding operations as well as known areas with manure application. The measured indicators included plate counts for fecal indicator bacteria (FIB) E. coli, Enterococcus, antibiotic resistant fecal indicator bacteria (ARBs) tylosin resistant Enterococcus, tetracycline resistant Enterococcus, and antibiotic resistance genes (ARGs): ermB, ermF (macrolide), tetA, tetM, tetO, tetW (tetracycline), sul1, sul2 (sulfonamide), aadA2 (aminoglycoside), vgaA, and vgaB (pleuromutilin). Both the plate count and the ARG analyses showed seasonal trends. Plate counts were significantly greater during the growing season, while the ARGs were greater in the pre-planting and post-harvest seasons (Wilcoxon Rank-Sum Test p < 0.05). The ermB gene concentration was significantly correlated (p < 0.05) with E. coli and Enterococcus concentrations in 2017, suggesting a potential use of this ARG as an indicator of environmental AMR and human health risk. Flow rate was not a significant contributor to annual variations in bacteria and AMR indicators. Based on observed seasonal patterns, we concluded that manure application was the likely contributor to elevated ARG indicators observed in the BHL watershed, while the driver of elevated ARB indictors in the growing season can only be speculated. Understanding AMR export patterns in agricultural watersheds provides public health officials knowledge of seasonal periods of higher AMR load to recreational waters.
Collapse
Affiliation(s)
- Timothy P Neher
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States.
| | - Lanying Ma
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Thomas B Moorman
- National Laboratory for Agriculture and the Environment, USDA-ARS, IA, United States
| | - Adina Howe
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| | - Michelle L Soupir
- Department of Agricultural and Biosystems Engineering, Iowa State University, Ames, IA, United States
| |
Collapse
|
6
|
Microbial Water Quality Conditions Associated with Livestock Grazing, Recreation, and Rural Residences in Mixed-Use Landscapes. SUSTAINABILITY 2020. [DOI: 10.3390/su12125207] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Contamination of surface waters with microbial pollutants from fecal sources is a significant human health issue. Identification of relative fecal inputs from the mosaic of potential sources common in rural watersheds is essential to effectively develop and deploy mitigation strategies. We conducted a cross-sectional longitudinal survey of fecal indicator bacteria (FIB) concentrations associated with extensive livestock grazing, recreation, and rural residences in three rural, mountainous watersheds in California, USA during critical summer flow conditions. Overall, we found that 86% to 87% of 77 stream sample sites across the study area were below contemporary Escherichia coli-based microbial water quality standards. FIB concentrations were lowest at recreation sites, followed closely by extensive livestock grazing sites. Elevated concentrations and exceedance of water quality standards were highest at sites associated with rural residences, and at intermittently flowing stream sites. Compared to national and state recommended E. coli-based water quality standards, antiquated rural regional policies based on fecal coliform concentrations overestimated potential fecal contamination by as much as four orders of magnitude in this landscape, hindering the identification of the most likely fecal sources and thus the efficient targeting of mitigation practices to address them.
Collapse
|
7
|
Evaluation of the Methodology to Assess the Influence of Hydraulic Characteristics on Habitat Quality. WATER 2020. [DOI: 10.3390/w12041131] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The article aims at assessing the impact of hydraulic characteristics on the habitat quality of mountain and piedmont watercourses. The solution results from the Riverine Habitat Simulation model, where the quality of the aquatic habitat is represented by the weighted usable area (WUA), which is determined using brown trout as the bioindicator. Flow velocity and water depth are basic abiotic characteristics that determine the ratio of suitability of the instream habitat represented by the weighted usable area. The influence of these parameters on the objective evaluation of the habitat quality is the essence of the paper. The measurements were carried out during the summer period at minimum discharges for 17 mountain and piedmont streams in Slovakia. Three methods for assessing the habitat quality were tested, and differences in the results were found to be significant. The evaluation shows the optimum design methods for calculating the weighted usable area.
Collapse
|
8
|
Coffey R, Butcher J, Benham B, Johnson T. Modeling the Effects of Future Hydroclimatic Conditions on Microbial Water Quality and Management Practices in Two Agricultural Watersheds. TRANSACTIONS OF THE ASABE 2020; 63:753-770. [PMID: 34327039 PMCID: PMC8318128 DOI: 10.13031/trans.13630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Anticipated future hydroclimatic changes are expected to alter the transport and survival of fecally-sourced waterborne pathogens, presenting an increased risk of recreational water quality impairments. Managing future risk requires an understanding of interactions between fecal sources, hydroclimatic conditions and best management practices (BMPs) at spatial scales relevant to decision makers. In this study we used the Hydrologic Simulation Program FORTRAN to quantify potential fecal coliform (FC - an indicator of the potential presence of pathogens) responses to a range of mid-century climate scenarios and assess different BMP scenarios (based on reduction factors) for reducing the risk of water quality impairment in two, small agricultural watersheds - the Chippewa watershed in Minnesota, and the Tye watershed in Virginia. In each watershed, simulations show a wide range of FC responses, driven largely by variability in projected future precipitation. Wetter future conditions, which drive more transport from non-point sources (e.g. manure application, livestock grazing), show increases in FC loads. Loads typically decrease under drier futures; however, higher mean FC concentrations and more recreational water quality criteria exceedances occur, likely caused by reduced flow during low-flow periods. Median changes across the ensemble generally show increases in FC load. BMPs that focus on key fecal sources (e.g., runoff from pasture, livestock defecation in streams) within a watershed can mitigate the effects of hydroclimatic change on FC loads. However, more extensive BMP implementation or improved BMP efficiency (i.e., higher FC reductions) may be needed to fully offset increases in FC load and meet water quality goals, such as total maximum daily loads and recreational water quality standards. Strategies for managing climate risk should be flexible and to the extent possible include resilient BMPs that function as designed under a range of future conditions.
Collapse
Affiliation(s)
- R Coffey
- formerly ORISE Fellow, Office of Research and Development, U.S. Environmental Protection Agency, Washington, D.C., USA
| | - J Butcher
- Director, Tetra Tech, Inc., Research Triangle Park, North Carolina, USA
| | - B Benham
- Professor, Department of Biological Systems Engineering, Seitz Hall, Virginia Tech, Blacksburg, VA, USA
| | - T Johnson
- Physical Scientist, Office of Research and Development, U.S. Environmental Protection Agency, Washington, D.C., USA
| |
Collapse
|
9
|
Furey PC, Liess A, Lee S. Substratum-associated microbiota. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1326-1341. [PMID: 31523907 DOI: 10.1002/wer.1226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/09/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
This survey of 2018 literature on substratum-associated microbiota presents brief highlights on research findings from primarily freshwaters, but includes those from a variety of aquatic ecosystems. Coverage of topics associated with benthic algae and cyanobacteria, though not comprehensive, includes new methods, taxa new to science, nutrient dynamics, trophic interactions, herbicides and other pollutants, metal contaminants, nuisance, bloom-forming and harmful algae, bioassessment, and bioremediation. Coverage of bacteria, also not comprehensive, focused on methylation of mercury, metal contamination, toxins, and other environmental pollutants, including oil, as well as the use of benthic bacteria as bioindicators, in bioassessment tools and in biomonitoring. Additionally, we cover trends in recent and emerging topics on substratum-associated microbiota of relevance to the Water Environment Federation. PRACTITIONER POINTS: This review of literature from 2018 on substratum-associated microbiota presents highlights of findings on algae, cyanobacteria, and bacteria from primarily freshwaters. Topics covered that focus on algae and cyanobacteria include findings on new methods, taxa new to science, nutrient dynamics, trophic interactions, herbicides and other pollutants, metal contaminants, nuisance, bloomforming and harmful algae, bioassessment, and bioremediation. Topics covered that focus on bacteria include findings on methylation of mercury, metal contamination, toxins and other environmental pollutants, including oil, as well as the us e of benthic bacteria as bioindicators, in bioassessment tools and in biomonitoring. A brief presentation of new, noteworthy and emerging topics on substratum-associated microbiota, build on those from 2017, to highlight those of particular relevance to the Water Environment Federation.
Collapse
Affiliation(s)
- Paula C Furey
- Department Biology, St. Catherine University, St. Paul, Minnesota, USA
| | - Antonia Liess
- Rydberg Laboratory, School of Buisness, Engineering and Science, Halmstad University, Halmstad, Sweden
| | - Sylvia Lee
- Office of Research and Development, U.S. Environmental Protection Agency, Washington, District of Columbia, USA
| |
Collapse
|
10
|
Porter KDH, Quilliam RS, Reaney SM, Oliver DM. High resolution characterisation of E. coli proliferation profiles in livestock faeces. WASTE MANAGEMENT (NEW YORK, N.Y.) 2019; 87:537-545. [PMID: 31109554 DOI: 10.1016/j.wasman.2019.02.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 02/03/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Agricultural intensification can lead to high volumes of livestock faeces being applied to land, either as solid or liquid manures or via direct defecation, and can result in reservoirs of faecal indicator organisms (FIOs) persisting within farmland. Understanding the survival of FIOs, e.g. E. coli, in agricultural environments, and in particular within different livestock faeces, is key to developing catchment management practices for the protection of ecosystem services provided by clean water. Frequently, controlled laboratory studies, under constant temperature regimes, are used to determine the impact of environmental factors on E. coli persistence in livestock faeces; however, such studies oversimplify the diurnal variations and interactions of real world conditions. The aim of this study was to investigate the survival of E. coli using a controlled environment facility, which simulated diurnal variation of temperatures typically experienced during a British spring and summer. The approach provided a comparison of E. coli persistence profiles within faeces of sheep, beef cattle and dairy cattle to allow novel interpretations of E. coli regrowth patterns in contrasting livestock faeces in the period immediately post-defecation. Thus, the coupling of a tightly controlled environment facility with high resolution monitoring enabled the development of a new non-linear, asymptotic description of E. coli proliferation in livestock faeces, with increased potential for E. coli growth observed during warmer temperatures for all livestock types. While this study focused on temperatures typical of the UK, the occurrence of a phase of E. coli regrowth has implications for microbial water quality management worldwide.
Collapse
Affiliation(s)
- Kenneth D H Porter
- Biological & Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Richard S Quilliam
- Biological & Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK
| | - Sim M Reaney
- Department of Geography, Durham University, Durham DH1 3LE, UK
| | - David M Oliver
- Biological & Environmental Sciences, Faculty of Natural Sciences, University of Stirling, Stirling FK9 4LA, UK.
| |
Collapse
|
11
|
Pachepsky YA, Allende A, Boithias L, Cho K, Jamieson R, Hofstra N, Molina M. Microbial Water Quality: Monitoring and Modeling. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:931-938. [PMID: 30272779 DOI: 10.2134/jeq2018.07.0277] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microbial water quality lies in the nexus of human, animal, and environmental health. Multidisciplinary efforts are under way to understand how microbial water quality can be monitored, predicted, and managed. This special collection of papers in the was inspired by the idea of creating a special section containing the panoramic view of advances and challenges in the arena of microbial water quality research. It addresses various facets of health-related microorganism release, transport, and survival in the environment. The papers analyze the spatiotemporal variability of microbial water quality, selection of predictors of the spatiotemporal variations, the role of bottom sediments and biofilms, correlations between concentrations of indicator and pathogenic organisms and the role for risk assessment techniques, use of molecular markers, subsurface microbial transport as related to microbial water quality, antibiotic resistance, real-time monitoring and nowcasting, watershed scale modeling, and monitoring design. Both authors and editors represent international experience in the field. The findings underscore the challenges of observing and understanding microbial water quality; they also suggest promising research directions for improving the knowledge base needed to protect and improve our water sources.
Collapse
|