1
|
Kumaragamage D, Hettiarachchi GM, Amarakoon I, Goltz D, Indraratne S. Phosphorus fractions and speciation in an alkaline, manured soil amended with alum, gypsum, and Epsom salt. JOURNAL OF ENVIRONMENTAL QUALITY 2024; 53:314-326. [PMID: 38453693 DOI: 10.1002/jeq2.20554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/09/2024] [Indexed: 03/09/2024]
Abstract
Snowmelt runoff is a dominant pathway of phosphorus (P) losses from agricultural lands in cold climatic regions. Soil amendments effectively reduce P losses from soils by converting P to less soluble forms; however, changes in P speciation in cold climatic regions with fall-applied amendments have not been investigated. This study evaluated P composition in soils from a manured field with fall-amended alum (Al2(SO4)3·18H2O), gypsum (CaSO4·2H2O), or Epsom salt (MgSO4·7H2O) using three complementary methods: sequential P fractionation, scanning electron microscopy with energy-dispersive X-rays (SEM-EDX) spectroscopy, and P K-edge X-ray absorption near-edge structure spectroscopy (XANES). Plots were established in an annual crop field in southern Manitoba, Canada, with unamended and amended (2.5 Mg ha-1) treatments having four replicates in 2020 fall. Soil samples (0-10 cm) taken from each plot soon after spring snowmelt in 2021 were subjected to P fractionation. A composite soil sample for each treatment was analyzed using SEM-EDX and XANES. Alum- and Epsom salt-treated soils had significantly greater residual P fraction with a higher proportion of apatite-like P and a correspondingly lower proportion of P sorbed to calcite (CaCO3) than unamended and gypsum-amended soils. Backscattered electron imaging of SEM-EDX revealed that alum- and Epsom salt-amended treatments had P-enriched microsites frequently associated with aluminum (Al), iron (Fe), magnesium (Mg), and calcium (Ca), which was not observed in other treatments. Induced precipitation of apatite-like species may have been responsible for reduced P loss to snowmelt previously reported with fall application of amendments.
Collapse
Affiliation(s)
- Darshani Kumaragamage
- Department of Environmental Studies and Sciences, The University of Winnipeg, Winnipeg, Manitoba, Canada
- Department of Agronomy, Kansas State University, Manhattan, Kansas, USA
| | | | - Inoka Amarakoon
- Department of Soil Science, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Doug Goltz
- Department of Chemistry, The University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Srimathie Indraratne
- Department of Environmental Studies and Sciences, The University of Winnipeg, Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Indraratne SP, Attanayake CP, Kumaragamage D, Amarawansha G, Goltz DM, Applin DM. Mobility of arsenic and vanadium in waterlogged calcareous soils due to addition of zeolite and manganese oxide amendments. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:380-392. [PMID: 36647899 DOI: 10.1002/jeq2.20451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Addition of manganese(IV) oxides (MnO2 ) and zeolite can affect the mobility of As and V in soils due to geochemical changes that have not been studied well in calcareous, flooded soils. This study evaluated the mobility of As and V in flooded soils surface-amended with MnO2 or zeolite. A simulated summer flooding study was conducted for 8 weeks using intact soil columns from four calcareous soils. Redox potential was measured in soils, whereas pH, major cations, and As and V concentrations were measured biweekly in pore water and floodwater. Aqueous As and V species were modeled at 0, 4, and 8 weeks after flooding (WAF) using Visual MINTEQ modeling software with input parameters of redox potential, temperature, pH, total alkalinity, and concentrations of major cations and anions. Aqueous As concentrations were below the critical thresholds (<100 μg L-1 ), whereas aqueous V concentrations exceeded the threshold for sensitive aquatic species (2-80 μg L-1 ). MnO2 -amended soils were reduced to sub-oxic levels, whereas zeolite-amended and unamended soils were reduced to anoxic levels by 8 WAF. MnO2 decreased As and V mobilities, whereas zeolite had no effect on As but increased V mobility, compared to unamended soils. Arsenic mobility increased under anoxic conditions, and V mobility increased under oxic and alkaline pH conditions. Conversion of As(V) to As(III) and V(V) to V(IV) was regulated by MnO2 in flooded soils. MnO2 can be used as an amendment in immobilizing As and V, whereas the use of zeolite in flooded calcareous soils should be done cautiously.
Collapse
Affiliation(s)
- Srimathie P Indraratne
- Department of Environmental Studies and Sciences, The University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Chammi P Attanayake
- Department of Environmental Studies and Sciences, The University of Winnipeg, Winnipeg, Manitoba, Canada
- Department of Soil Science, Faculty of Agriculture, University of Peradeniya, Peradeniya, Sri Lanka
| | - Darshani Kumaragamage
- Department of Environmental Studies and Sciences, The University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Geethani Amarawansha
- Department of Environmental Studies and Sciences, The University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Douglas M Goltz
- Department of Chemistry, The University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Daniel M Applin
- Department of Geography, The University of Winnipeg, Winnipeg, Manitoba, Canada
| |
Collapse
|
3
|
Attanayake CP, Kumaragamage D, Amarawansha G, Hettiarachchi GM, Indraratne SP, Goltz DM. Phosphorus Release and Speciation in Manganese(IV) Oxide and Zeolite-Amended Flooded Soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8082-8093. [PMID: 35634990 DOI: 10.1021/acs.est.2c01185] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Phosphorus (P) losses from flooded soils and subsequent transport to waterways contribute to eutrophication of surface waters. This study evaluated the effectiveness of MnO2 and a zeolite Y amendment in reducing P release from flooded soils and explored the underlying mechanisms controlling P release. Unamended and amended (MnO2 or zeolite, surface-amended at 5 Mg ha-1) soil monoliths from four clayey-alkaline soils were flooded at 22 ± 2 °C for 56 days. Soil redox potential and dissolved reactive P (DRP), pH, and concentrations of major cations and anions in porewater and floodwater were analyzed periodically. Soil P speciation was simulated using Visual MINTEQ at 1, 28, and 56 days after flooding (DAF) and P K-edge X-ray absorption near-edge structure spectroscopy and sequential fractionation at 56 DAF. Porewater DRP increased with DAF and correlated negatively with pe+pH and positively with dissolved Fe. Reductive dissolution of Fe-associated P was the dominant mechanism of flooding-induced P release. The MnO2 amendment reduced porewater DRP by 30%-50% by favoring calcium phosphates (Ca-P) precipitation and delaying the reductive dissolution reactions. In three soils, the zeolite amendment at some DAF increased porewater and/or floodwater DRP through dissolution of Ca-P and thus was not effective in reducing P release from flooded soils.
Collapse
Affiliation(s)
- Chammi P Attanayake
- Department of Environmental Studies and Sciences, The University of Winnipeg, Winnipeg, MB, Canada R3B 2E9
- Department of Soil Science, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Darshani Kumaragamage
- Department of Environmental Studies and Sciences, The University of Winnipeg, Winnipeg, MB, Canada R3B 2E9
| | - Geethani Amarawansha
- Department of Environmental Studies and Sciences, The University of Winnipeg, Winnipeg, MB, Canada R3B 2E9
| | - Ganga M Hettiarachchi
- Department of Agronomy, Throckmorton Plant Sciences Center, Kansas State University, Manhattan, Kansas 66506, United States
| | - Srimathie P Indraratne
- Department of Environmental Studies and Sciences, The University of Winnipeg, Winnipeg, MB, Canada R3B 2E9
| | - Douglas M Goltz
- Department of Chemistry, The University of Winnipeg, Winnipeg, MB, Canada R3B 2E9
| |
Collapse
|
4
|
Alum and Gypsum Amendments Decrease Phosphorus Losses from Soil Monoliths to Overlying Floodwater under Simulated Snowmelt Flooding. WATER 2022. [DOI: 10.3390/w14040559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Phosphorus (P) loss from soils poses a threat of eutrophication to downstream waterbodies. Alum (Al2(SO4)3·18H2O) and gypsum (CaSO4·2H2O) are effective in reducing P loss from soils; however, knowledge on their effectiveness under cold temperatures is limited. This study examined the reduction of P loss from soils with alum and gypsum amendment under simulated snowmelt flooding. Intact soil monoliths (15 cm depth) collected from eight agricultural fields in flood-prone areas of Manitoba, Canada, were surface amended with alum or gypsum, pre-incubated for 2 weeks, then flooded and incubated at 4 °C for 8 weeks. Porewater and floodwater samples collected weekly were analyzed for dissolved reactive P (DRP), dominant cations and anions. An enhanced P release with flooding time was observed in all soils whether amended or unamended; however, alum/gypsum amendment reduced DRP concentrations in porewater and floodwater in general, with alum showing a more consistent effect across soils. The reduction in floodwater DRP concentrations (maximum DRP concentration during flooding) with alum and gypsum ranged from 34–90% and 1–66%, respectively. Based on Visual MINTEQ thermodynamic model predictions, precipitation of P and formation of P-sorbing mineral species with alum and gypsum amendment reduced DRP concentrations at latter stages of flooding.
Collapse
|
5
|
Attanayake CP, Dharmakeerthi RS, Kumaragamage D, Indraratne SP, Goltz D. Flooding-induced inorganic phosphorus transformations in two soils, with and without gypsum amendment. JOURNAL OF ENVIRONMENTAL QUALITY 2022; 51:90-100. [PMID: 34964984 DOI: 10.1002/jeq2.20319] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Abstract
Anaerobic conditions developed during flooding can increase phosphorus (P) losses from soils to waterways. Soil amendment with gypsum (CaSO4 ·2H2 O) can effectively reduce flooding-induced P release, but its effectiveness is soil dependent, and the reasons are poorly understood. The objectives of this study were to reveal the possible inorganic P transformations during flooding of two soils (acidic-Neuenberg sandy loam [NBG-SL] and alkaline-Fyala clay [FYL-Cl]), with and without gypsum amendment prior to flooding. Porewater samples collected at 0, 35, and 70 d after flooding (DAF) from soils incubated in vessels were analyzed for dissolved reactive P (DRP); pH; and concentrations of calcium (Ca), magnesium, iron (Fe), manganese, chloride, nitrate, sulfate, and fluoride. Thermodynamic modeling using Visual MINTEQ software and chemical fractionation of soil P were used to infer P transformations. Soil redox potential (Eh) decreased with flooding and favored reductive dissolution of Fe-associated P increasing porewater DRP concentrations. Greater solubility of Ca-P under acidic pH maintained a higher DRP concentration in NBG-SL during early stages of flooding. A subsequent increase in pH with flooding and higher Ca concentration with added gypsum enhanced the stability of Ca-P (β-tricalcium phosphate and octacalcium phosphate), reducing the DRP concentration in gypsum-amended NBG-SL. Stability of Ca-P was less affected with flooding and gypsum amendment in FYL-Cl soil because it had an alkaline pH and inherently higher Ca concentration. The FYL-Cl, with a more rapid decrease in Eh than NBG-SL, became severely reduced, releasing more P and Fe by 70 DAF. These conditions favored vivianite formation in FYL-Cl but not in NBG-SL.
Collapse
Affiliation(s)
- Chammi P Attanayake
- Dep. of Environmental Studies and Sciences, The Univ. of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
- Dep. of Soil Science, Faculty of Agriculture, Univ. of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Randombage Saman Dharmakeerthi
- Dep. of Environmental Studies and Sciences, The Univ. of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
- Dep. of Soil Science, Faculty of Agriculture, Univ. of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Darshani Kumaragamage
- Dep. of Environmental Studies and Sciences, The Univ. of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | | | - Doug Goltz
- Dep. of Chemistry, The Univ. of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| |
Collapse
|
6
|
Vitharana UWA, Kumaragamage D, Balasooriya BLWK, Indraratne SP, Goltz D. Phosphorus mobilization in unamended and magnesium sulfate-amended soil monoliths under simulated snowmelt flooding. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 287:117619. [PMID: 34426378 DOI: 10.1016/j.envpol.2021.117619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/07/2021] [Accepted: 06/16/2021] [Indexed: 06/13/2023]
Abstract
Enhanced release of phosphorus (P) from soils with snowmelt flooding poses a threat of eutrophication to waterbodies in cold climatic regions. Reductions in P losses with various soil amendments has been reported, however effectiveness of MgSO4 has not been studied under snowmelt flooding. This study examined (a) the P release enhancement with flooding in relation to initial soil P status and (b) the effectiveness of MgSO4 at two rates in reducing P release to floodwater under simulated snowmelt flooding. Intact soil monoliths were collected from eight agricultural fields from Southern Manitoba, Canada. Unamended and MgSO4 surface-amended monoliths (2.5 and 5.0 Mg ha-1) in triplicates were pre-incubated for 7 days, then flooded and incubated (4 °C) for 56 days. Pore water and floodwater samples collected at 7-day intervals were analyzed for dissolved reactive P (DRP), pH, Ca, Mg, Fe and Mn. Redox potential (Eh) was measured on each day of sampling. Representative soil samples collected from each field were analyzed for Olsen and Mehlich 3-P. Simulated snowmelt flooding enhanced the mobility of soil P with approximately 1.2-1.6 -fold increase in pore water DRP concentration from 0 to 21 days after flooding. Mehlich-3 P content showed a strong relationship with the pore water DRP concentrations suggesting its potential as a predictor of P loss risk during prolonged flooding. Surface application of MgSO4 reduced the P release to pore water and floodwater. The 2.5 Mg ha-1 rate was more effective than the higher rate with a 21-75% reduction in average pore water DRP, across soils. Soil monoliths amended with MgSO4 maintained a higher Eh, and had greater pore water Ca and Mg concentrations, which may have reduced redox-induced P release and favored re-precipitation of P with Ca and Mg, thus decreasing DRP concentrations in pore water and floodwater.
Collapse
Affiliation(s)
- Udaya W A Vitharana
- Dept. of Environmental Studies and Sciences, Univ. of Winnipeg, Winnipeg, MB, R3B 2E9, Canada; Dept. of Soil Science, Faculty of Agriculture, Univ. of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - Darshani Kumaragamage
- Dept. of Environmental Studies and Sciences, Univ. of Winnipeg, Winnipeg, MB, R3B 2E9, Canada.
| | - B L W K Balasooriya
- Dept. of Environmental Studies and Sciences, Univ. of Winnipeg, Winnipeg, MB, R3B 2E9, Canada; Dept. of Biotechnology, Faculty of Agriculture and Plantation Management, Wayamba University of Sri Lanka, Makandura, 60170, Sri Lanka
| | - Srimathie P Indraratne
- Dept. of Environmental Studies and Sciences, Univ. of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Doug Goltz
- Dept. of Chemistry, Univ. of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| |
Collapse
|
7
|
Weerasekara C, Kumaragamage D, Akinremi W, Indraratne S, Goltz D. Phosphorus mobilization from intact soil monoliths flooded under simulated summer versus spring snowmelt with intermittent freeze-thaw conditions. JOURNAL OF ENVIRONMENTAL QUALITY 2021; 50:215-227. [PMID: 33305377 DOI: 10.1002/jeq2.20182] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 11/27/2020] [Indexed: 06/12/2023]
Abstract
Enhanced phosphorus (P) release from flooded, anaerobic soils has been extensively studied under summer temperatures but not under cold temperatures with intermittent freeze-thaw events. We investigated the temperature and freeze-thaw effects during flooding on the release of P to floodwater from soil monoliths (15-cm depth) collected from eight agricultural fields in Manitoba. Soil monoliths were flooded with reverse osmosis water and incubated for 56 d under simulated summer flooding (SSF; 22 ± 1 °C) or snowmelt flooding with intermittent freeze-thaw (IFT; 4 ± 1 °C with intermittent freezing) in triplicates. Redox potential (Eh), pore water and floodwater dissolved reactive P (DRP) concentrations, pH, and concentrations of Ca, Mg, Fe, and Mn were determined weekly. In seven soils, Eh decreased rapidly with days after flooding (DAF) under SSF to values <200 mV but not under IFT. Both pore water and floodwater DRP concentrations significantly increased with DAF in all soils under SSF and in seven soils under IFT. Although DRP concentrations were consistently greater under SSF than IFT in four soils, other soils had similar concentrations at certain DAF. Significant relationships between ion concentrations and redox status that fitted both IFT and SSF data in most soils suggest that similar redox-driven mechanisms are responsible for the P release; however, less P was released under IFT than under SSF because soils were not severely reduced under IFT. Substantial P release in a few soils under IFT appeared to be unrelated to redox status, suggesting other P release mechanisms that are not redox driven.
Collapse
Affiliation(s)
- Chamara Weerasekara
- Dep. of Environmental Studies and Sciences, The Univ. of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
- Dep. of Soil Science, Univ. of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Darshani Kumaragamage
- Dep. of Environmental Studies and Sciences, The Univ. of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Wole Akinremi
- Dep. of Soil Science, Univ. of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Srimathie Indraratne
- Dep. of Environmental Studies and Sciences, The Univ. of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Doug Goltz
- Dep. of Chemistry, The Univ. of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| |
Collapse
|
8
|
Kumaragamage D, Concepcion A, Gregory C, Goltz D, Indraratne S, Amarawansha G. Temperature and freezing effects on phosphorus release from soils to overlying floodwater under flooded-anaerobic conditions. JOURNAL OF ENVIRONMENTAL QUALITY 2020; 49:700-711. [PMID: 33016390 DOI: 10.1002/jeq2.20062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 02/07/2020] [Indexed: 06/11/2023]
Abstract
Increased phosphorus (P) availability under flooded, anaerobic conditions may accelerate P loss from soils to water bodies. Existing knowledge on P release to floodwater from flooded soils is limited to summer conditions and/or room temperatures. Spring snowmelt runoff, which occurs under cold temperatures with frequent freeze-thaw events, is the dominant mode of P loss from agricultural lands to water bodies in the Canadian Prairies. This research examined the effects of temperature on P dynamics under flooded conditions in a laboratory study using five agricultural soils from Manitoba, Canada. The treatments were (a) freezing for 1 wk at -20 °C, thawing and flooding at 4 ± 1 °C (frozen, cold); (b) flooding unfrozen soil at 4 ± 1 °C (unfrozen, cold); and (c) flooding unfrozen soil at 20 ± 2 °C (warm). Pore water and surface water were collected weekly over 8 wk and analyzed for dissolved reactive phosphorus (DRP), pH, calcium, magnesium, iron (Fe), and manganese (Mn). Soils under warm flooding showed enhanced P release with significantly higher DRP concentrations in pore and surface floodwater compared with cold flooding of frozen and unfrozen soils. The development of anaerobic conditions was slow under cold flooding with only a slight decrease in Eh, whereas under warm flooding Eh declined sharply, favoring reductive dissolution reactions releasing P, Fe, and Mn. Pore water and floodwater DRP concentrations were similar between frozen and unfrozen soil under cold flooding, suggesting that one freeze-thaw event prior to flooding had minimal effect on P release under simulated snowmelt conditions.
Collapse
Affiliation(s)
- Darshani Kumaragamage
- Dep. of Environmental Studies and Sciences, Univ. of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Angela Concepcion
- Dep. of Environmental Studies and Sciences, Univ. of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Carolyn Gregory
- Dep. of Chemistry, Univ. of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Doug Goltz
- Dep. of Chemistry, Univ. of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | - Srimathie Indraratne
- Dep. of Environmental Studies and Sciences, Univ. of Winnipeg, Winnipeg, MB, R3B 2E9, Canada
| | | |
Collapse
|
9
|
Dharmakeerthi RS, Kumaragamage D, Goltz D, Indraratne SP. Phosphorus Release from Unamended and Gypsum- or Biochar-Amended Soils under Simulated Snowmelt and Summer Flooding Conditions. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:822-830. [PMID: 31589686 DOI: 10.2134/jeq2019.02.0091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Prolonged flooding changes the oxidation-reduction status of soils, often enhancing P release to overlying floodwater. We studied P release from unamended, gypsum-amended, and biochar-amended soils under simulated snowmelt flooding (previously frozen, cold flooding at +4°C) and summer flooding (unfrozen, warm flooding at +22°C) using two soils, Fyala clay (FYL-Cl) and Neuenberg sandy loam (NBG-SL), from Manitoba, Canada. Amended and unamended soils were packed into vessels and flooded under cold and warm temperatures in the laboratory. Pore water and floodwater samples were taken weekly for 6 wk after flooding (WAF) and thereafter biweekly for 10 WAF and analyzed for dissolved reactive P (DRP), pH, and cation concentrations. The NBG-SL showed a significantly higher DRP concentration in pore water and floodwater despite its low Olsen P content. Redox potential (Eh) decreased slowly under cold versus warm flooding; hence, redox-induced P release was substantially lower under cold flooding. Gypsum amendment significantly decreased the floodwater DRP concentrations in NBG-SL by 38 and 35% under cold and warm flooding, respectively, but had no significant effect in FYL-Cl, which had low DRP concentrations (<1.2 mg L) throughout the flooding period. Biochar amendment significantly increased floodwater DRP concentrations by 27 to 68% in FYL-Cl under cold and warm flooding, respectively, but had no significant effect in NBG-SL. The results indicate substantially less P release under cold than under warm flooding. Gypsum was effective in reducing floodwater DRP concentrations only at high DRP concentrations; thus, the effectiveness was greater under warm than under cold flooding conditions.
Collapse
|